TREFETHEN SIAM J S CI OMPUT 2005 Society for Industrial and Applied Mathematics Vol 26 No 4 pp 12141233 Abstract A modi64257cation of the exponential timedi64256erencing fourthorder RungeKutta meth od for solving sti64256 nonlinear PDEs is present ID: 4569 Download Pdf
Lecturers: Professor . Fawang. Liu and . Professor . Zhi-Zhong. Sun. May 22-31, 2013. Short Course Brochure. Short Course on Fractional PDEs. All lectures will take place in . Room . 110, 182 George .
Gtplot. from . GSS. to create Stiff Diagrams and other specialty plots.. Graphs → . Stiff Diagram…. Double-click . on plot to bring up the Stiff Diagram configuration dialog.. Right-click . on labels or axes to change color, font, size, etc..
Licensed Electrical & Mechanical Engineer. BMayer@ChabotCollege.edu. Engr/Math/Physics 25. Chp9: ODE . Solns. By MATLAB. Learning Goals. Use MATLAB’s ODE Solvers to find Solutions to Ordinary Differential .
Outset, Inc.2460 Galpin Court, Suite #110Chanhassen, MN 55317(888) MYOUTSEToutsetinc.comChanhassen, Minn March 6, 2007 Outsets new FLEX Grill Baskets unique grid construction
Presented by: Wm. Mark Woodall. Introduction. “The future . ain’t. what it used to be” – Former New York Yankee Manager and Hall of Famer Yogi Berra. The present Insurance Industry market place will look quite different in the years to come. The creative and adaptive will survive, the weak will have expense ratios that will be unsustainable..
40 Years in Show Business. A composer and producer. Andrew Lloyd Webber is the composer of . The Likes of Us. , . Joseph and the Amazing Technicolor® . Dreamcoat. , . Jesus Christ Superstar. , . By Jeeves.
M. uscles in a Patient with Stiff Person. . Syndrome Implanted with an . Intrathecal. Baclofen Pump: A Case Report. . Praveen N . Pakeerappa,MD. .. . Pravardhan. . Birthi. , MD. Sara . Salles. , DO..
(1805-1879). By Ken, . luu. William Lloyd Garrison. (1805-1879). William Lloyd Garrison was born in December 10, 1905.. B. orn in Newburyport, Massachusetts.. He is the son of a merchant sailor.. His mother is a devout Baptist named Frances Maria..
. of. EOS in . Heavy. . Ion. . Collisions. :. results. . from. . transport. . theories. Maria Colonna. . IN. F. N. - Laboratori Nazionali del Sud (Catania. ). Nuclear Structure & . Astrophysical Applications.
i Stiff witch grass, Panicum flexile (Gattinger) Scribn. (Poaceae), is a widely distributedannual grass found in wet or dry, usually open, calcareous habitats. Natural communitiessupporting this spec
Published byellena-manuel
TREFETHEN SIAM J S CI OMPUT 2005 Society for Industrial and Applied Mathematics Vol 26 No 4 pp 12141233 Abstract A modi64257cation of the exponential timedi64256erencing fourthorder RungeKutta meth od for solving sti64256 nonlinear PDEs is present
Download Pdf - The PPT/PDF document "FOURTHORDER TIMESTEPPING FOR STIFF PDEs ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
A.-K.KASSAMANDL.N.TREFETHENThetermisknownastheintegratingfactor.InmanyapplicationswecanworkinFourierspaceandrenderdiagonal,sothatscalarsratherthanmatricesareinvolved.Dierentiating(1.5)givesNow,multiplying(1.2)bytheintegratingfactorgives thatis,ThishastheeectofamelioratingthestilinearpartofthePDE,andwecanuseatime-steppingmethodofourchoice(forexample,afourth-orderRungeKuttafor-mula)toadvancethetransformedequation.Inpractice,onedoesntusetheequationasitiswrittenin(1.8),butratherreplacesactualtime,,withthetimestep,andincrementallyupdatestheformulafromonetimesteptothenext.Thisgreatlyimprovesthestability.Inboththesplitstepmethodandtheintegratingfactormethod,weuseafourth-orderRungeKuttamethodforthetime-stepping.Thefourth-orderRungeKuttaalgorithmthatweusedtoperformthetimeintegrationforthismethodwasc,t )(Fourth-orderRK)isthetimestepandisthenonlinearfunctionalontheright-handsideof(1.8).Forthesplitstepmethod,wesimplyreplacein(1.9)withfrom(1.4).Inarecentpaper[20],FornbergandDriscolldescribeacleverextensionoftheimplicit-explicitconceptdescribedabove.Inadditiontosplittingtheproblemintoalinearandanonlinearpart,theyalsosplitthelinearpart(aftertransformationtoFourierspace)intothreeregions:low,medium,andhighwavenum-bers.Theslidermethodinvolvesusingadierentnumericalschemeineachregion.Theadvantageofthismethodisthatonecancombinehigh-ordermethodsforthelowwavenumberswithhigh-stabilitymethodsforthehigherwavenumbers.Wecansummarizeoneversionofthismethodwiththefollowingtable. Low Medium|k| High|k| AB4/AB4 AB4/AM6 AB4/AM2* isthewavenumber,AB4denotesthefourth-orderAdamsBashforthformula,AM6denotesthesixth-orderAdamsMoultonformula,andAM2denotesamodiedsecond-orderAdamsMoultonformulaspeciedby 23 2Lun1 isthetimestep. A.-K.KASSAMANDL.N.TREFETHENd.Thisequationisexact,andthevariousorderETDschemescomefromhowoneap-proximatestheintegral.IntheirpaperCoxandMatthewsrstpresentasequenceofrecurrenceformulaethatprovidehigherandhigher-orderapproximationsofamulti-steptype.Theyproposeageneratingformulaistheorderofthescheme.Thecoecientsaregivenbytherecurrence 2gm1+1 3gm2+g0 CoxandMatthewsalsoderiveasetofETDmethodsbasedonRungeKuttatime-stepping,whichtheycallETDRKschemes.Inthisreportweconsideronlythefourth-orderschemeofthistype,knownasETDRK4.AccordingtoCoxandMatthews,thederivationofthisschemeisnotatallobviousandrequiresasymbolicmanipulationsystem.TheCoxandMatthewsETDRK4formulaeare: an=eLun+L1(eLI)N(un), bn=eLun+L1(eLI)N(an+h/2), cn=eLan+L1(eLI)(2N(bn+h/2)N(un)), uneLhun+h2L3{[4Lh+eLh(43Lhh)2)]N(un) +2[2+2)+ 43Lh(Lh)2+eLh(4Lh)]N(cn+h)}. Unfortunately,inthisform,ETDRK4(andindeedanyoftheETDschemesoforderhigherthantwo)suersfromnumericalinstability.Tounderstandwhythisisthecase,considertheexpression Theaccuratecomputationofthisfunctionisawell-knownprobleminnumericalanalysisandisdiscussed,forexample,inthemonographbyHigham[25],aswellasthepaperbyFriesneretal.[21].Thereasonitisnotstraightforwardisthatforsmall(2.4)suersfromcancellationerror.WeillustratethisinTable2.1bycomparingthetruevalueof)tovaluescomputeddirectlyfrom(2.4)andfromvetermsofaTaylorexpansion.Forsmall,thedirectformulaisnogoodbecauseofcancellation,buttheTaylorpolynomialisexcellent.Forlarge,thedirectformulaisne,butthe A.-K.KASSAMANDL.N.TREFETHENThesolutionwehavefoundistoevaluate)viaanintegraloveracontourinthecomplexplanethatenclosesandiswellseparatedfrom0: 2f(t) becomesamatrixinsteadofascalar,thesameapproachworks,withtheterm1)becomingtheresolventmatrix( HerecanbeanycontourthatenclosestheeigenvaluesofContourintegralsofanalyticfunctions(scalarormatrix)inthecomplexplaneareeasytoevaluatebymeansofthetrapezoidrule,whichconvergesexponentially[15,16,24,60].Inpracticewetaketobeacircleandusuallyndthat32or64equallyspacedpointsaresucient.Whenisreal,wecanexploitthesymmetryandevaluateonlyinequallyspacedpointsontheupperhalfofacirclecenteredontherealaxis,thentaketherealpartoftheresult.ThescalarsoreigenvaluesofthatariseinadiscretizedPDEtypicallylieinornearthelefthalfofthecomplexplaneandmaycoverawiderange,whichgrowswiththespatialdiscretizationparameter.Fordiusiveproblemstheyareclosetothenegativerealaxis(e.g.,theKSequation),andfordispersiveproblemstheyareclosetotheimaginaryaxis(KdV).Suitablecontoursmayaccordinglyvaryfromproblemtoproblem.Ourexperienceshowsthatmanydierentchoicesworkwell,solongasoneiscarefultoensurethattheeigenvaluesareindeedenclosedby.Forsomediusiveproblems,itmightbeadvantageoustouseaparaboliccontourextendingto,takingadvantageofexponentialdecaydeepinthelefthalf-plane,butwehavenotusedthisapproachfortheproblemstreatedinthispaper.Fordiagonalproblems,wehavetheadditionalexibilityofbeingabletochooseacontourthatdependson,suchasacirclecenteredat.Inthisspecialcase,thecontourintegralreducessimplytoameanof)over,whichweapproximatetofullaccuracybyameanoverequallyspacedpointsalong(oragainjusttheupperhalfof,followedbytakingtherealpart).Forthedetailsofexactlyhowthiscontourintegralapproachcanbeimplemented,seetheMatlabcodeslistedinsections4and5.Thereisconsiderableexibilityaboutthisprocedure,andwedonotclaimthatourparticularimplementationsareoptimal,merelythattheyworkandareeasytoprogram.Fornondiagonalproblems,quiteabitofcomputationisinvolvedsay,32matrixinversesbutasthisisdonejustoncebeforethetime-steppingbegins(assumingthatthetimestepsareofaxedsize),theimpactonthetotalcomputingtimeissmall.Itwouldbegreaterforsomeproblemsinmultiplespacedimensions,butinsomecasesonecouldamelioratetheproblemwithapreliminarySchurfactorizationtobringthematrixtotriangularform.ContourintegralsandTaylorseriesarenottheonlysolutionsthathavebeenproposedforthisproblem.BothBeylkin[5]andFriesneretal.[21],forexample,useamethodthatisbasedonscalingandsquaring.Thatmethodisalsoeective,butthecontourintegralmethodappealstousbecauseofitsgreatergeneralityfordealingwitharbitraryfunctions.Todemonstratetheeectivenessofourstabilizationmethod,Table2.2considersthecomputationofthecoecient)of(2.5)(here=1)byuseoftheformula(2.5)andbyacontourintegralmethod.Herewefollowthesimplestapproach A.-K.KASSAMANDL.N.TREFETHENBurgersequationwithperiodicboundaryconditions, ,x,t=0)=exp(10sin03andthesimulationrunningto=1.KSequationwithperiodicboundaryconditions,conditions,,32],(3.3)u(x,t=0)=cos 1+sin withthesimulationrunningto=30.AllenCahnequationwithconstantDirichletboundaryconditions,conditions,1,1],(3.4)u(x,t=0)=47sin(001andthesimulationrunningto=3.Toimposetheboundaryconditionswedeneandworkwithhomogeneousboundaryconditionsinthevariable;thespatialdiscretizationisbyan80-pointChebyshevspectralmethod(seesection5).Weemphasizethattherstthreeproblems,becauseoftheperiodicboundaryconditions,canbereducedtodiagonalformbyFouriertransformation,whereasthefourthcannotbereducedthiswayandthusforcesustoworkwithmatricesratherthanscalars.OurresultsaresummarizedinFigures14.Therstplotineachgurecomparesaccuracyagainststepsizeandthusshouldbereasonablyindependentofmachineandimplementation.Ultimately,ofcourse,itiscomputertimethatmatters,andthisiswhatisdisplayedinthesecondplotineachgure,basedonourMatlabimplementationsonan800MHzPentium3machine.Otherimplementationsandothermachineswouldgivesomewhatdierentresults.BeforeconsideringthedierencesamongmethodsrevealedinFigures14,letusrsthighlightthemostgeneralpoint:ourcomputationsshowthatitisentirelypracticaltosolvethesedicultnonlinearPDEstohighaccuracybyfourth-ordertime-stepping.Mostsimulationsinthepasthavebeenoflowerorderintime,typicallysecondorder,butwebelievethatformostpurposes,afourth-ordermethodissuperior.TurningnowtothedierencesbetweenmethodsrevealedinFigures14,therstthingwenoteisthatthedierencesareveryconsiderable.Themethodsdierineciencybyfactorsasgreatas10orhigher.Wewerenotabletomakeeverymethodworkineverycase.Ifamethoddoesnotappearonagraphitmeansthatitdidnotsucceed,seeminglyforreasonsofnonlinearinstability(whichperhapsmighthavebeentackledbydealiasinginourspectraldiscretizations).Akeyfeaturetolookforintherstplotineachgureistherelativepositioningofthedierentmethods.Schemesthatarefurthertotherightforagivenaccuracytakefewerstepstoachievethataccuracy.Itispossiblethateachstepismorecostly,however,sojustbecauseaschemeachievesagoodaccuracyinfewstepsdoesnotmeanthatitisthemostecient.Thesecondplotintheguresgivesinsightintothesecomputationtimes.Wecanmakeafewcommentsoneachofthemethodsinvestigated. A.-K.KASSAMANDL.N.TREFETHEN Relative timestepRelative error at t = 30 Integrating factorETDRK4RK Slider 10 0 101 102 103 10 Computer time (s)Relative error at t = 30 Fig.3ResultsfortheKSequation.OurMatlabcodeislistedinsection 0 10 0 Relative timestepRelative error at t = 3 Split step 0 101 102 103 10 0 Computer time (s)Relative error at t = 3 Fig.4ResultsfortheAllenCahnequation.Thisproblemisnondiagonalandmorechallengingthantheothers.OurMatlabcodeislistedinsectionproblemwithschemesofhigherthansecondorder.Forsecond-ordercalculations,splitstepschemesarecertainlycompetitive.methoddoeswellinallofthediagonalcases.Itisfast,accurate,andverystable.ThisisremarkablewhenwecompareitsperformancewiththatoftheIMEXschemesfromwhichitwasderived.Theonlyproblemwiththisschemeisthedicultyingeneralizingittonondiagonalcases.Finally,theintegratingfactorschemeperformswellfortheBurgersequation.ItdoesntdowellfortheKSequation,though,comingoworstofall,andwecouldntgetittoworkfortheKdVequationortheAllenCahnequationwiththespatialdiscretizationthatweused.Thisisalsoalittlesurprising,consideringhowwidelyusedthisschemeis. A.-K.KASSAMANDL.N.TREFETHEN Relative timestepRelative error at t = 3 radius = 1e3 Fig.5LossofstabilityintheETDschemeappliedtotheBurgersequationastheradiusofthecontourshrinkstozero.ThecontourofzeroradiuscorrespondstoanETDcalculationdirectlyfromthedeningformula.Weusetheinitialcondition0)=cos(16)(1+sin(Astheequationisperiodic,wediscretizethespatialpartusingaFourierspectralmethod.TransformingtoFourierspacegives or,inthestandardformof(1.2),u,t denotesthediscreteFouriertransform.WesolvetheproblementirelyinFourierspaceanduseETDRK4time-steppingtosolveto=150.Figure6showstheresult,whichtooklessthan1secondofcomputertimeonourworkstation.Despitetheextraordinarysensitivityofthesolutionatlatertimestoperturbationsintheinitialdata(suchperturbationsareampliedbyasmuchas10upto=150),wearecondentthatthisimageiscorrecttoplottingaccuracy.Itwouldnothavebeenpracticaltoachievethiswithatime-steppingschemeoflowerWeproducedFigure6withtheMatlabcodelistedinFigure7.5.Anondiagonalexample:AllenCahn.TheAllenCahnequationisan-otherwell-knownequationfromtheareaofreaction-diusionsystems: A.-K.KASSAMANDL.N.TREFETHEN%kursiv.m-solutionofKuramoto-SivashinskyequationbyETDRK4scheme%u_t=-u*u_x-u_xx-u_xxxx,periodicBCson[0,32*pi]%computationisbasedonv=fft(u),solineartermisdiagonal%comparep27.minTrefethen,"SpectralMethodsinMATLAB",SIAM2000%AKKassamandLNTrefethen,July2002%Spatialgridandinitialcondition:N=128;x=32*pi*(1:N)/N;u=cos(x/16).*(1+sin(x/16));v=fft(u);%PrecomputevariousETDRK4scalarquantities:h=1/4;%timestepk=[0:N/2-10-N/2+1:-1]/16;%wavenumbersL=k.^2-k.^4;%FouriermultipliersE=exp(h*L);E2=exp(h*L/2);M=16;%no.ofpointsforcomplexmeansr=exp(1i*pi*((1:M)-.5)/M);%rootsofunityLR=h*L(:,ones(M,1))+r(ones(N,1),:);Q=h*real(mean((exp(LR/2)-1)./LR,2));f1=h*real(mean((-4-LR+exp(LR).*(4-3*LR+LR.^2))./LR.^3,2));f2=h*real(mean((2+LR+exp(LR).*(-2+LR))./LR.^3,2));f3=h*real(mean((-4-3*LR-LR.^2+exp(LR).*(4-LR))./LR.^3,2));%Maintime-steppingloop:uu=u;tt=0;tmax=150;nmax=round(tmax/h);nplt=floor((tmax/100)/h);g=-0.5i*k;forn=1:nmaxt=n*h;Nv=g.*fft(real(ifft(v)).^2);a=E2.*v+Q.*Nv;Na=g.*fft(real(ifft(a)).^2);b=E2.*v+Q.*Na;Nb=g.*fft(real(ifft(b)).^2);c=E2.*a+Q.*(2*Nb-Nv);Nc=g.*fft(real(ifft(c)).^2);v=E.*v+Nv.*f1+2*(Na+Nb).*f2+Nc.*f3;ifmod(n,nplt)==0u=real(ifft(v));uu=[uu,u];tt=[tt,t];%Plotresults:surf(tt,x,uu),shadinginterp,lightingphong,axistightview([-9090]),colormap(autumn);set(gca,zlim,[-550])light(color,[110],position,[-1,2,2])material([0.300.600.6040.001.00]);Fig.7MatlabcodetosolvetheKSequationandproduceFigure.Despitetheextraordinarysensitivityofthisequationtoperturbations,thiscodecomputescorrectresultsinlessthansecondonan800MHzPentiummachine. A.-K.KASSAMANDL.N.TREFETHEN%allencahn.m-solutionofAllen-CahnequationbyETDRK4scheme%u_t=0.01*u_xx+u-u^3on[-1,1],u(-1)=-1,u(1)=1%computationisbasedonChebyshevpoints,solineartermisnondiagonal%comparep34.minTrefethen,"SpectralMethodsinMATLAB",SIAM2000%AKKassamandLNTrefethen,July2002%Spatialgridandinitialcondition:N=20;[D,x]=cheb(N);x=x(2:N);%spectraldifferentiationmatrixw=.53*x+.47*sin(-1.5*pi*x)-x;%usew=u-xtomakeBCshomogeneousu=[1;w+x;-1];%PrecomputevariousETDRK4matrixquantities:h=1/4;%timestepM=32;%no.ofpointsforresolventintegralr=15*exp(1i*pi*((1:M)-.5)/M);%pointsalongcomplexcircleL=D^2;L=.01*L(2:N,2:N);%2nd-orderdifferentiationA=h*L;E=expm(A);E2=expm(A/2);I=eye(N-1);Z=zeros(N-1);f1=Z;f2=Z;f3=Z;Q=Z;forj=1:Mz=r(j);zIA=inv(z*I-A);Q=Q+h*zIA*(exp(z/2)-1);f1=f1+h*zIA*(-4-z+exp(z)*(4-3*z+z^2))/z^2;f2=f2+h*zIA*(2+z+exp(z)*(z-2))/z^2;f3=f3+h*zIA*(-4-3*z-z^2+exp(z)*(4-z))/z^2;f1=real(f1/M);f2=real(f2/M);f3=real(f3/M);Q=real(Q/M);%Maintime-steppingloop:uu=u;tt=0;tmax=70;nmax=round(tmax/h);nplt=floor((tmax/70)/h);forn=1:nmaxt=n*h;Nu=(w+x)-(w+x).^3;a=E2*w+Q*Nu;Na=a+x-b=E2*w+Q*Na;Nb=b+x-c=E2*a+Q*(2*Nb-Nu);Nc=c+x-w=E*w+f1*Nu+2*f2*(Na+Nb)+f3*Nc;ifmod(n,nplt)==0u=[1;w+x;-1];uu=[uu,u];tt=[tt,t];%Plotresults:surf([1;x;-1],tt,uu),lightingphong,axistightview([-4560]),colormap(cool),light(col,[110],pos,[-10010])Fig.9MatlabcodetosolvetheAllenCahnequationandproduceFigure.Again,thiscodetakeslessthansecondtorunonan800MHzPentiummachine. A.-K.KASSAMANDL.N.TREFETHENTREFETHENA.IserlesAFirstCourseintheNumericalAnalysisofDierentialEquations,CambridgeUniversityPress,Cambridge,UK,2000.2000.A.IserlesOnthenumericalquadratureofhighlyoscillatingintegrals:FouriertransformsIMAJ.Numer.Anal.,24(2004),pp.365391.365391.J.C.Jiminez,R.Biscay,C.Mora,andL.M.RodriguezDynamicpropertiesofthelocallin-earizationmethodforinitial-valueproblems,Appl.Math.Comput.,126(2002),pp.6381.6381.G.E.Karniadakis,M.Israeli,andS.A.OrszagHighordersplittingmethodsfortheincompressibleNavier-Stokesequations,J.Comput.Phys.,97(1991),pp.414443.414443.C.A.KennedyandM.H.CarpenterAdditiveRungeKuttaschemesforconvection-diusion-reactionequations,Appl.Numer.Math.,44(2003),pp.139181.139181.J.KimandP.MoinApplicationsofafractionalstepmethodtoincompressibleNavier-Stokesequations,J.Comput.Phys.,59(1985),pp.308323.308323.O.M.Knio,H.N.Najim,andP.S.WyckoffAsemi-implicitnumericalschemeforreacting,J.Comput.Phys.,154(1999),pp.428467.428467.D.KortewegandG.deVriesOnthechangeofformoflongwavesadvancinginarectan-gularcanal,andonanewtypeoflongstationarywaves,Philos.Mag.Ser.5,39(1895),pp.422433.422433.W.KressandB.GustafssonDeferredcorrectionmethodsforinitialvalueboundaryprob-,J.Sci.Comput.,17(2002),pp.241251.241251.M.KrusemeyerDierentialEquations,MacmillanCollegePublishing,NewYork,1994.1994.Y.KuramotoandT.TsuzukiPersistentpropagationofconcentrationwavesindissipativemediafarfromthermalequilibrium,Prog.Theoret.Phys.,55(1976),pp.356369.356369.Y.Maday,A.T.Patera,andE.M.RnquistAnoperator-integration-factorsplittingmethodfortime-dependentproblems:Applicationtoincompressibleuidow,J.Sci.Com-put.,5(1990),pp.263292.263292.R.I.McLachlanandP.AtelaTheaccuracyofsymplecticintegrators,Nonlinearity,5(1992),pp.541562.541562.R.McLachlanSymplecticintegrationofHamiltonianwaveequations,Numer.Math.,66(1994),pp.465492.465492.W.J.MerryfieldandB.ShizgalPropertiesofcollocationthird-derivativeoperators,J.Comput.Phys.,105(1993),pp.182185.182185.P.A.MilewskiandE.G.TabakApseudospectralprocedureforthesolutionofnonlinearwaveequationswithexamplesfromfree-surfaceows,SIAMJ.Sci.Comput.,21(1999),pp.11021114.11021114.M.L.MinionSemi-implicitspectraldeferredcorrectionmethodsforordinarydierentialequa-,Commun.Math.Sci.,1(2003),pp.471500.471500.D.R.Mott,E.S.Oran,andB.vanLeerAquasi-steadystatesolverforthestiordinarydierentialequationsofreactionkinetics,J.Comput.Phys.,164(2000),pp.407428.407428.B.Nicolaenko,B.Scheurer,andT.TemamSomeglobalpropertiesoftheKuramoto-Sivashinskyequation:Nonlinearstabilityandattractors,Phys.D,16(1985),pp.155183.155183.S.P.NrsettAnA-stablemodicationoftheAdamsBashforthmethods,inConferenceonNumericalSolutionofDierentialEquations(Dundee,1969),LectureNotesinMath.109,Springer-Verlag,Berlin,1969,pp.214219.214219.E.OttChaosinDynamicalSystems,CambridgeUniversityPress,Cambridge,UK,1993.1993.R.D.RuthAcanonicalintegrationtechnique,IEEETrans.NuclearScience,NS-30(1983),pp.26692671.26692671.S.J.RuuthImplicit-explicitmethodsforreaction-diusionproblemsinpatternformation,J.Math.Biol.,34(2)(1995),pp.148176.148176.Y.SaadAnalysisofsomeKrylovsubspaceapproximationstothematrixexponentialoperatorSIAMJ.Numer.Anal.,29(1992),pp.209228.209228.J.M.Sanz-SernaandM.P.CalvoNumericalHamiltonianProblems,ChapmanandHall,London,1994.1994.M.SchatzmanTowardnon-commutativenumericalanalysis:HighorderintegrationintimeJ.Sci.Comput.,17(2002),pp.99116.99116.L.M.SmithandF.WaleffeTransferofenergytotwo-dimensionallargescalesinforced,rotatingthree-dimensionalturbulence,Phys.Fluids,11(1999),pp.16081622.16081622.L.M.SmithandF.WaleffeGenerationofslowlargescalesinforcedrotatingstratiedturbulence,J.FluidMech.,451(2002),pp.145169.145169.G.StrangOntheconstructionandcomparisonofdierenceschemes,SIAMJ.Numer.Anal.,5(1968),pp.506517.506517.E.TadmorTheexponentialaccuracyofFourierandChebyshevdierencingmethods,SIAMJ.Numer.Anal.,23(1986),pp.110.
© 2021 docslides.com Inc.
All rights reserved.