/
However,wecanreplacetheconditiononofbeingasetorconsistentmultiplicity However,wecanreplacetheconditiononofbeingasetorconsistentmultiplicity

However,wecanreplacetheconditiononofbeingasetorconsistentmultiplicity - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
357 views
Uploaded On 2016-05-18

However,wecanreplacetheconditiononofbeingasetorconsistentmultiplicity - PPT Presentation

2MorseKelleySetTheoryInthissectionwewilldiscusstheexistenceconditionswhichleadtotheimpredicativesecondordertheoryofsets rstintroducedinMorse1965GivenanexistenceconditionC C willdenotethele ID: 325262

2Morse-KelleySetTheoryInthissection wewilldiscusstheexistenceconditionswhichleadtothe(impredicative)second-ordertheoryofsets rstintroducedin[Morse 1965].GivenanexistenceconditionC C( )willdenotethele

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "However,wecanreplacetheconditiononofbei..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

However,wecanreplacetheconditiononofbeingasetorconsistentmultiplicitybycertainotherconditionsCwhichhaveaprecisemeaning,yieldingtheprincipleIftheinitialsegmentof Csatis estheconditionC,thenithasaleaststrictupperboundS()2 C.WewillcallsuchconditionsCexistenceconditions.Unlikethecaseof ,noobviouscontradictionarisesingeneralfromtheassumptionthatwecantaketheleastupperboundS( C).Wecanmerelyconcludethat CdoesnotsatisfytheconditionC(since,otherwise,S( C)2 CandsoS( C)S( C));sothat,inproceedingtoconstructS( C)andlargernumbers,wemustreplaceCbysomeotherexistenceconditionwhichtheysatisfy.Inthisway,weareledtoahierarchyofmoreandmoreinclusiveexistenceconditions,eachofwhichcanreplacethecondition\isaset"inCantor'sde nitionandsoyieldsaninitialsegmentofthetrans nitenumbers,butnoneofwhichyields`allthenumbers'.Informulatingexistenceconditions,wecanmakeuseofthefactthateachtrans nitenumber canbearmedwiththestructurehR( );2 ;ran i,whereR( )isobtainedbystartingwiththenullsetanditeratingtheoperationD7!P(D)oftakingpowersets times.(R(S())=SfR( )j 2g.)2 =2\(R( )R( )).Therankofasetistheleaststrictupperboundoftheranksofitselements,sothatR( )isthesetofallsetsofrank .ranistherankfunction,assigningtoeachsetitsrank,andran isitsrestrictiontoR( ).Thusran isafunctionwithdomainR( )andrangeofvaluesthesetofordinals .Weavoidtakingthetrans nitenumberstobeexternaltosettheorybyidentifyingthemwiththevonNeumannordinals,i.e.withthetransitivesetsoftransitivesets.(Thesetxistransitivei y2x�!yx.) thenisthesubsetofR( )consistingofallordinalsinR( )and simplymeans 2 .IntermsofvonNeumannordinals,S()isjustandanexistenceconditionispreciselyaconditionunderwhichweadmittheexistenceofasaset.Thus,wewillbediscussingaparticularconceptionofsettheorywhichisexplicitlyformulatedin[Godel,*1933o]and[Godel,1947]butisimplicitin[Zermelo,1930].Inpart,itistheconceptionaccordingtowhichsetsaretheobjectsinanymemberofthehierarchyofdomainsobtainedfromthenulldomainbyiteratingthepowersetoperation.Thus,thisideapresupposesaswell-understoodthemoreprimitive,logicalnotionofset,theonewhichisformalizedinsecond-orderpredicatelogic,namelythatofformingfroma2 2Morse-KelleySetTheoryInthissection,wewilldiscusstheexistenceconditionswhichleadtothe(impredicative)second-ordertheoryofsets rstintroducedin[Morse,1965].GivenanexistenceconditionC, C( )willdenotetheleastinitialseg-mentofordinalscontaining +1whichdoesnotpossessC.Inwhatfollows,willbeaninitialsegmentofordinals.IfTisanextensionofT0,thenbyanordinalofTweshallmeanan suchthatR( )isamodelofT.Inthefollowing,weshallconsiderextensionsTofT0obtainedbyaddingaxiomswhichareformalexpressionsofexistenceconditions.Thus,theleastordinalofT� is C( ),whereCistheexistenceconditioninquestion.Theexistenceconditionsthatweshallconsiderinthispaperareallfor-mulatedintermsofaformula(X),withonlyXfree.Fornow,theformulaisoneinthelanguageofbasicsettheoryandXisasecond-ordervariable.Thecorrespondingconditionisthat(A)istrueinR()forsomeAR()and,forno 2is(A\R( ))trueinR( ).Theformalexpressionthatthisconditionisanexistenceconditionistheaxiom8X[(X)�!9  (X\R( ))](1)where (X)istheresultofrestrictingthe rst-andsecond-orderboundvariablesin(X)toR( )andR( +1),respectively.Axiomsofthisformhavebeencalledre ectionprinciples,becausetheyexpressthefactthatR()'spossessionofacertainpropertyisre ectedbyR( )'spossessionofitforsome 2.Sincepredicatelogicassumesthatallmodelsarenon-null,T0alreadyexpressesthattheconditiongivenby(X)=8y(y6=y)isanexistencecondition.Ifwetake(X)=9 (X=f g)then(1)isequivalenttotheaxiomofSuccessor8 [ [f gisaset]:Withthisaxiom,wecanderivetheaxiomsofUnorderedPairsandPowerset,sinceifxandyareinR( ),thentheclassesfx;ygandfzjzxgareincludedinR( +1)andsoaresets.Sincewehavearbitraryunorderedpairs,wecannowintroducetheusualcoding(x;y)=ffxg;fx;ygg6 Rank2,sincerancannowbede nedby2-inductionandthesetwoaxiomscanbededucedfromtheremainingaxioms[Zermelo,1930].Asusual,weidentifycardinalnumberswithinitialordinals,i.e.withordinalnumberswhicharenotinone-to-onecorrespondencewithsmallerordinals.InT2wecanprovethateverysetxhas(i.e.isinone-to-onecorrespondencewith)acardinalnumberjxj.Let2 =jP( )j.Acardinaliscalledastronglimitcardinalif alwaysimpliesthat2 .So,everyordinalofT2mustbeastronglimitcardinal.Anordinal iscalledsingulari itisoftheformS F( ),wheredom(F)= ;otherwise, iscalledregular.Notethat0and!arebothregularstronglimitcardinals.Clearlyaregularordinalmustbeacardinaland,inviewoftheaxiomofReplacement,theordinalsofT2mustberegular.Conversely,ifisaregularstronglimitcardinal&#x-281;0,thenitisanordinalofT2.First,notethatwecande netheordinalfunction(i.e.ordinal-valuedfunctiononordinals)inR()by(0)=0( +1)=2( )andforlimitordinals ( )=[ ( )For ,( )=jR( )jandsox2R()=S R( )impliesjxj2R().ToseethatR()satis estheaxiomofRegularity,letFbeafunctionwithdom(F)2R()andrang(F)R().Letgbeaone-to-onecorre-spondencefromjdom(F)jtodom(F).ThenG=ranFgisafunc-tionfromjdom(F)jandso,sinceisregular,Srang(G)= .Butrang(F)R( )andsorang(F)2R().So,aswas rstprovedin[Zermelo,1930],theordinalsofT2arepreciselytheregularstronglimitcar-dinals&#x-460;0.isanexampleofanormalfunction,i.e.anordinalfunctionfwhichisorder-preserving,i.e. impliesf( )f( ),andcontinuous,i.e.,when isalimitordinal,thenf( )=S f( ).Whenfisanorder-preservingordinalfunction,then f( )forall .For,f( ) impliesf(f( ))f( );andsotherecanbeno suchthatf( ) becausetherecanbenoleastsuch .Whenfisanormalfunction,thenithas xed-pointsf( )= anygiven .Either isalreadya xedpointorelse,usingthe8 3Zermelo'sconceptionofsettheoryItisanembarassmentinsettheory,asitisoftenunderstood,thatanab-solutedistinctionmustbedrawnbetweentotalitiessuchasthetotalityof`allordinals'or`allcardinals'or`allsets'|thetotalitieswhichCantorcalled`inconsistentmanifolds'andwecallproperclasses|ontheonehand,andthosetotalitieswhichformsets.Forwhenwetaketheformertotalitiestobewell-de nedobjects,thenwemustmakethisabsolutedistinction:thetwokindsofobjectsmustbetreatedquitedi erently.Butwhy,ifthetotalityofallsetshasawell-de nedextension,isitnotasetinanmoreextensivetotality?Theonlygroundsforthedistinctionisthenegativeonethat,ifwetreatproperclasseslikesets,weareledtoinconsistency|intheexamplescited,tothefamiliar`paradoxesofsettheory'.Thus,onthisunderstandingofsettheory,theseparadoxestrulyareparadoxical:thereisnoaccountingforthem.Wecan,asCantordid,onlyintroducethedistinctionbetweenthosetotalitieswhichare`consistent'andthosewhicharenot.(Ofcourse,relativetoanydomainR( )thereareproperclasses,i.e.subclassesofthedomainwhicharenotcoextensivewithelementsofit;buttheseareproperclassesonlyinthisrelativesense:eachsubclassofR( )willbecoextensivewithasetinR( +1)forexample.)Attheendof[1930],Zermelosketchedaquitedi erentapproachtoun-derstandingsettheoryandtheso-calledparadoxes,onewhichprecludesthisembarassment.HebeginswiththeHilbertianthesisthatwemayspeakabouttheexistenceofthisorthatobjectinmathematicsonlywhenwehavespeci edaconsistentandcategoricaltheoryinwhichwecanspeakofsuchobjects.Moregenerally,wemayassertmathematicalpropositions(includingexistencepropositions)onlywithinsuchatheory.Thebackgroundofthisviewisthattherearenomathematicalphenomena(suchasKantianpureintuitions)onthebasisofwhichmathematicalpropositionsaremeaningful:howeveritisthatwecometoacceptabodyofpropositionsinsomemathe-maticalsphere,whetherderivedfromempiricalexperienceorbyanalogyorwhatever,therecanbenode nitivecriterionforexistenceortruthuntilwehavespeci edanaxiomaticbasisforthesepropositions.Therequirementofconsistencyaimsatmakingsurethatthedistinctionsbetweenexistenceandnon-existenceand,moregenerally,betweentruthandfalsetydonotcollapse.Therequirementofcategoricity,forHilbertandZermelo,probablyaimedatmakingsurethatquestionsoftruthhaddeterminateanswers.Sincethenon-trivialcategoricalaxiomatictheoriesareallsecond-orderandwenowknow10 thisprecise,wemaytaketherangeofthesecond-ordervariablestobetheisomorphicreplicaR( +1)ofR( +1)whichconsistsinreplacingeachelementxofthelatterbythepair( ;x).Fory2R( )and( ;x)aclass,y2( ;x)meanssimplythaty2x.Inthesameway,wecanequallywellconsiderquanti ersoforderhigherthan2aswell.4FormulasofFiniteOrderInfact,inwhatfollows,wearegoingtowanttoconsidernotonlysecond-orderformulas,butformulasofarbitrary niteorder,wherethequanti ersofordern+1(n�0)rangeoverclassesofobjectsofordern.Sowewillbeginwithsomedetailsthatwillapplygenerallyandnotjusttotheformulasofsecond-ordersettheory.Theorderofaformulaisthemaximumoftheordersoftheboundvari-ablesinit.Notethattheformulasoforder0arethosewhichcontainnoquanti ers.Therelativization oftheformulatoR( )isextendedfromformulasofsecond-ordersettheorytothoseofarbitrary niteorderintheobviousway:allthequanti ersofordern+1arerestrictedtoR( +n).Whentalkingaboutsetsandclasses,itismorenaturaltospeakoftheirtypesratherthantheirorders.Thetypeofanobjectofordern+1isn.LetAbeoftype1.FromthepointofviewofR( ),AisA =A\R( ).For,whenAandBaretype1,thenAandBareequalrelativetoR( )justincase8z2R( )[z2A !z2B]i A =B .Itfollowsthat,fromthepointofviewofR( ),BisB =fA jA2BgforBofarbitrarytype�1.So,forAoftype�0, (A )expressesthetruthof(A)inR( ).When= (A;:::;B)isaformulaof niteordercontainingnoparametersotherthanA;:::;B,eachofwhichisoftype�0, willdenote (A ;:::;B ).Inordertocodehigherorderandpossiblyheterogeneousrelationsasobjectsof nitetype,weintroducethefollowingoperations:Wede neA"oftypen+1forAofanytypen,andA#oftypen+1forAofanytypen+2,suchthatA"#=A.A"=fxjx=Ag:12 De nition1Letn0.Aformulaoforderniscalledan0formulaandan0formula.Anm+1isoneoftheform8Y (Y)where isanmformulaandYisavariableoftypen.Anm+1formulaisthenegationofanmformula.If isalimitordinal,thenR( )isclosedunderalltheoperationsX",X#,XnandX=n.Wenotealso,forlateruseLemma1For alimitordinal,eachofthefollowingholdwhenbothsidesoftheequationarede ned:(A") =A "(A#) =A #A n=(A )nA =n=(A )=n(A+B) =A +B :5Re ectiononaSecond-orderParameterWhenisrestrictedtonmandthetypeofXto1,thenwedenotetheaxiomschema(1)byRF(n;m):De nition2Anordinal issaidtobe-indescribableif(1)holdsinR( ).Ifisaclassofformulas,then iscalled-indescribableifitis-indescribableforeach2containingonlythefreevariableXoforder2.14 De nition3AbinarytreeisaclassToffunctionsfsuchthat,forsomeordinal ,f: �!2andsuchthat,iff2Tandfhasdomain ,thenfrestrictedtoanyordinallessthan isinT.AbinarytreeTispath-boundedi foreveryfunctionF: �!2,thereisan suchthatFrestrictedto isnotinT.Tisboundedi thereisan suchthatforallF: �!2,Frestrictedto isnotinT.Thebinarytreepropertyisthateverypath-boundedbinarytreeisbounded.TheinstanceTisbounded�!9 [T isbounded] ofRF(1;1)impliesthebinarytreeproperty.So,sinceacardinalisweaklycompactjustincaseitisinaccessibleandR()hasthebinarytreeproperty,RF(1;2)impliestheexistenceofastationaryclassofweaklycompactcardi-nals.Wecanofcoursegoontoconstructastationaryclassofhyper-weaklycompactcardinals;andsoon.WenotedthatRF(1;0)notonlyimplies,butisequivalentinT0totheaxiomsofSuccessor,ReplacementandIn nity.Likewise,RF(1;1)notonlyimplies,butisequivalentinT3tothebinarytreeproperty.Inotherwords,inT0,inaccessibilityisequivalentto10-indescribabilityandweakcompactnessisequivalentto11-indescribability([HanfandScott,1961]).Form;n�1,thereisasinglenmformula(X;y)suchthateverynmformulacontainingatmostthesecond-ordervariableXfreeisequivalentinT1to(X;e)forsome niteordinale.Iteasilyfollowsthat,notjustform;n=1,butforalln;m�0,RF(n;m)isequivalenttothesinglenm+1formula n;m=8X8n2![(X;n)�!9  (X ;n)]inT1.So n;mexpressesnm-indescribability.[Kanamori,1994,Section6.9]SobyLemma2,RF(n;m+1)impliesthattheclassofnm-indescribablecardinalsisstationary.Inotherwords,theclassofnm-indescribablecardinalslessthanagivennm+1-indescribablecardinalisstationaryin.SotheprincipleRF(n;m)strictlyincreasesinstrengthasmincreases.16 Aswehavenoted,relativetoR( ),thesecond-orderclassAisA =A\R( )andsotherelativizationB ofathird-orhigher-orderclassBisB =fA jA2Bg:Withthisde nition,(A) (= (A )),whereAisofarbitrary nitetype�0,expressesthat(A)istrueinR( )and(1)hasmeaningforXofarbitrary nitetype.Butthereisaproblemwiththegeneralized(1),evenforXofthird-order:whenUistheclassofallbounded(or,alternatively,ofallunbounded)second-orderclasses,forexample,wehavethetruesentence(U)thateveryclassinUisbounded(orunbounded);whereasforevery , (U )isfalsesinceU isjustR( +1)and,inparticular,containsbothR( )andthenullset.Therefore,wemustrestrict(1)tospecialclassesofformulas.Oneplausiblewaytothinkaboutthedi erencebetweenre ecting(A)whenAissecond-orderandwhenitisofhigher-orderisthat,intheformercase,re ectionisassertingthat,if(A)holdsinthestructurehR();2;Ai,thenitholdsinthesubstructurehR( );2;A iforsome .(Wearenolongerconsideringtherankfunctionranaspartofthestructure,sinceitisde nableinT3.)But,whenAishigher-order,sayofthird-order,thisisnolongerso.NowweareconsideringthestructurehR();R(+1);2;AiandhR( );R( +1);2;A i.Butthelatterisnotasubstructureoftheformer,i.e.the`inclusionmap'ofthelatterstructureintotheformerisnolongersinglevalued:forsubclassesXandYofR(),X6=YdoesnotimplyX 6=Y .Likewise,forX2R( +1),X62AdoesnotimplyX 62A .Forthisreason,theformulasthatwecanexpecttobepreservedinpassingfromtheformerstructuretothelattermustbesuitablyrestrictedandinparticularshouldnotcontaintherelation62betweensecond-andthird-orderobjectsnortherelation6=betweensecond-orderobjects.Inthegeneralcaseofre ecting(A)whenAisofordern2,oneshouldnotadmitin(X)therelation62betweenkth-orderandk+1th-orderobjectsortherelation6=betweenkth-orderobjects,for1kn.However,wewillnotpursuethequestionofthemostgeneralgeneralformulationofthere ectionprinciplewithhigher-orderparametershere.Rather,weshallconsider(1)foraveryspecialclassofformulas(X).Let beaformula.A-instanceof istheresultofsubstitutingforeachfreevariableofordern(thenameof)anobjectofordernoverR(),foreachn.De nition518 �istheclassof rst-orderformulaspositiveintheextendedsense.�nistheclassofformulas8Y19Z18Yn9Zn where 2�=�0andtheYiaresecond-order.(TheZimaybeofanyorder.)Sothe�nformulasareallpositiveintheextendedsenseandso,byLemma3,re ectableforallregularcardinals.WewanttostudythecardinalsforwhichR()satis es(1)forallformulasin�n.Moregenerally:De nition7Disn-re ectivei 8X[�!9 2D ]forall2�ncontainingjustthefreevariableXofarbitraryorder�1.Weshallinvestigatetheclassofsubsetsofcardinalswhicharen-re ective.Inparticular,weshallproveTheorem2IfDisn-re ective,thenD�!(Stationary)n+1.7n-StationarityDe nition8Forn�0,afunctionKde nedon[]nsuchthat,for� 1�:::� n;K( 1;::: n)R( n),iscalledann-sequence(on).When,morestrictly,K( 1;::: n)isalways n,thenKiscalledathinn-sequenceon.LetKbeann-sequenceon.AsubsetHofiscalledhomogeneousforKi thereisaBR()suchthatK( 1;::: n)=B\R( n)forall( 1;::: n)2[H]nwith 1�:::� n.20 Wede nethenotionofann-boxforD.Ann-boxisofordern+2.{A0-boxforDisaCLUBclassCsuchthatC\D=;.{Ann+1-boxforDisaclassToftriples(K;X;S)forsome xed1-sequenceK,calledthewitnessforT,suchthat,foreverysecond-orderclassX,thereisanSwith(K;X;S)2TandSisann-boxfor[K;X]\D.LetTbeofordern+2.Wede nethe�nformulan(T)byinductiononn:{0(T) !Tisanunboundedsubsetof{n+1(T) !8X9K9S[(K;X;S)2T^n(S)]TheorderoftheboundvariablesX,AandSare,respectively,2;2andn+2.Notethatn+1(T)canbeputintheformofa�n+1formulabymeansofcontractingoperations.Lemma5a)Disnotn-stationaryi ithasann-box.b)IfTisann-boxforsomeD,thenn(T)istrue(inR()).c)IfTisann-boxforD,thenn(T) isfalseforall 2D.d)IfDisn-re ective,thenitisn-stationary.Theproofofa)andb)isimmediatebyinductiononn.d)followsimmediatelyfroma)-c).Forc),letTbeann-boxforD, 2D,andassumethatn(T) istrue.Wederiveacontradiction,byinductiononn.n=0.0(T) assertsthatT =T\ isunboundedin .SinceTisCLUB, 2T,contradictingD\T=;.n=m+1.LetKbethewitnessforT.ThenthereareK0andS0suchthathK0;K( );S0i2T and m(S0).K0=K ,K( )=A forsomeA,andS0=S ,wherehK;A;Si2T.SoSisanm-boxforD\[K;A],m(S) istrue,and 2D\[K;A]|acontradiction.SowehaveprovedhalfofLemma6Disn-re ectivei itisn-stationary.22 Lemma8Ifn�0andDisn-stationarythenDisn-ine able.(Whenn=1,theconversealsoholds.)Letn=m+1withm�0andletKbeann-sequence(thinorotherwise.)ChooseAsothatD\[K0;A]ism-stationaryandhencem-ine able.SoK00(A)hasastationaryhomogeneousclassHD\[K0;A].SoHishomogeneousforK.9BoundsonHigher-OrderRe ectionAverygenerousupperboundfortheleastn-re ectivecardinalissimplyobtained:Theorem4LetbemeasurableandletUbeanormalultra lteron.Then,foreverythin1-sequenceK,thereisasetAsuchthat[K;A]2U.SoeveryD2Uisn-stationary,i.e.n-re ective.Thesecondassertioneasilyfollowsfromthe rst:EverysetinUisstationary,i.e.0-stationary,sinceUisanormalultra lter.AssumethateverysetinUisn-stationaryandletKbeathin1-sequence.ThereisanAsuchthat[K;A]2U.SoforD2U,[K;A]\DisinUandsoisn-stationary.HenceDisn+1-stationary.Toprovethe rstassertion,letKbeathin1-sequenceandde neB =fj 2Kg.Aisde nedby 2A,B 2ULetC beB ifthelattersetisinUandletitbe�B ,otherwise.Inanycase,C 2U.Then 2[K;A]i K =A\ i 8 [ 2B ,B 2Ui 8 [ 2C ]i 2C,where,sinceUisanormalultra ltercontainingeachC ,C=f j8 [ 2C ]gisinU.PeterKoellnerhasshownthatthereisacardinallessthantheErdoscardinal(!)(( )beingtheleastsuchthat�!( ))whichisn-re ectiveforeachn.Asimpleextensionofthenotionofn-re ectivenessisobtainedasfollows:,let�mnbetheclassofformulas8Y19Z18Yn9Zn 24 Cantor,G.[1883].Uberunendliche,linearePunktmannigfaltigkeiten,5,MathematischeAnnalen21:545{586.In[Cantor,1932].Cantor,G.[1932].GesammelteAbhandlungenmathematischenundphilosophischenIn-halts,Berlin:Springer.ed.E.Zermelo.Ewald,W.[1996].FromKanttoHilbert:ASourceBookintheFoundationsofMathemat-ics.TwoVolumes,Oxford:OxfordUniversityPress.Godel,K.[*1933o].Thepresentsituationinthefoundationsofmathematics,[Godel,1995].Godel,K.[1947].WhatisCantor'scontinuumproblem?,AmericanMathematicalMonthly54:515{525.Reprintedin[Godel,1990][Godel,1964]isarevisedandexpandedversion.Godel,K.[1964].WhatisCantor'scontinuumproblem?,[BenacerrafandPutnam,1983],pp.258{273.Revisedandexpandedversionof[Godel,1947].Reprintedin[Godel,1990].Inthesecondeditionof[BenacerrafandPutnam,1983],thepagesare470{485.Godel,K.[1990].CollectedWorks,Vol.II,Oxford:OxfordUniversityPress.Godel,K.[1995].CollectedWorks,Vol.III,Oxford:OxfordUniversityPress.Hanf,W.andScott,D.[1961].Classifyinginaccessiblecardinals(abstract),NoticesoftheAmericanmathematicalSociety8:445.Kanamori,A.[1994].TheHigherIn nite,Berlin:Springer-Verlag.Morse,A.[1965].ATheoryofSets,NewYork:AcademicPress.Tait,W.[1998a].Foundationsofsettheory,inH.DalesandG.Oliveri(eds),TruthinMathematics,pp.273{290.Zermelo,E.[1908].Neuerbeweisefurdiemoglichkeiteinerwohlorddnung,MathematischeAnnalen65:107{128.Zermelo,E.[1930].UberGrenzzahlenundMengenbereiche.NeueUntersuchungenuberdieGrundlagenderMengenlehre,FundamentaMathematicae16:29{47.Translatedin[Ewald,1996,1219-1233].26

Related Contents


Next Show more