/
IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL

IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
452 views
Uploaded On 2014-12-20

IEEE TRANSACTIONS ON AUTOMATIC CONTROL VOL - PPT Presentation

53 NO 6 JULY 2008 Unit QuaternionBased Output Feedback for the Attitude Tracking Problem Abdelhamid Tayebi Senior Member IEEE Abstract In this note we propose a quaternionbased dynamic output feedback for the attitude tracking problem of a rigid bo ID: 26797

JULY

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON AUTOMATIC CONTROL V..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.53,NO.6,JULY2008 Fig.1.Thethreecomponentsoftheangularvelocityerror versustime. Fig.2.Unitquaterniontrackingerror ;q ;q versustime.proofofTheorem1)sincetheequilibriumpointof(18),inviewofthefactthattendstozero,ischaracterizedby.Onceconvergetozero,theconvergenceoftozeroisguaranteedinviewofthesystemdynamics(1)andthestructureofthecontrollaw(13).Remark4:Intheregulationcase,ourcontrollaw(22)isapurequaternionfeedback(sincearethevectorpartsofunitquater-nion).Since,itisclearthatthecontroleffortisboundedasandhenceanaturalsaturation,intermsofthecontrolgains,isachievedandthedesignercansetthelimitsofthecontroleffortthroughthecontrolgains.Thisconclu-sioncannotbeachievedwiththeregulationcontrollerof[10]sincethetermsubstitutingtheangularvelocityisnotaunit-quaternionandisfrequencydependant.V.SIMULATIONESULTSInthissection,wepresentsomesimulationresultsshowingtheeffec-tivenessoftheproposedcontroller.Theinertiamatrixhasbeentakenas Fig.3.=(~ ;~q ;~q ;~q versustime. Fig.4.Controlinputversustime.=diag(2030).WeappliedthecontrollawofTheorem1,with=20=diag(3.Theinitialconditionshavebeentakenasfollows:(0)=(0(0)=(0Thereferencetrajectoryisgivenby(9)with(0)=(11sin(0)[1.ThesimulationwasperformedwithSimulinkforatimespanof50s.Fig.1showstheevolutionofthethreecomponentsoftheangularvelocitytrackingerrorwithrespecttotime.Fig.2,showstheevolutionoftheunit-quaterniontrackingerror,describingthede-viationbetweentheorientationofthebodyandthedesiredorientation,withrespecttotime.Fig.3,showsthetimeevolutionoftheunit-quater-nionerror,describingthedeviationbetween.Fig.4,showsthecontrolinputversustime. IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.53,NO.6,JULY2008,andlettheinputoftheauxiliarysystem(12)beThevectorsarethevectorpartsoftheunit-quater-,respectively.Then,areglobally,andlim)=lim)=lim)=0,where):=Proof:ThedynamicalequationfortheangularvelocitytrackingerrorisgivenbyAftersomealgebraicmanipulations,onecanshowthat dt 1 2~ TIf~ ,itisclearthatisaskewsymmetricmatrixandhence =0.There- dt 1 2~ TIf~ Using(11)and(12),onecanshowthat dt(Q1)=1 2Q ?~Q+1 2~ = 1 2~qT( ~ );1 2~q0(~ 2~q(~) :=(ConsiderthefollowingLyapunovfunctioncandidate: +(~ + 1 (qe)Tqee01)2 +1 )+2 whosetime-derivative,inviewof(11),(17)and(18)isgivenby dt 1 2~ TIf~ )+whichinviewof(13)and(14),leadstoTherefore,onecanconcludethataregloballybounded.Therefore,itisclearthatisbounded.Hence,invokingBarbalatLemma,onecanconcludethat)=0,whichimpliesTheglobalboundednesshereindicatesthatthestatesareboundedforany ~Q(0); (0))2   .Notethattheunit-quaternion areboundedbyde.Consequently,onecanshowthatboundedsinceisbounded,andhence)=0,whichinturns,from(18),impliesthat))=0.Since)=0,itisclear,from(14),that)=0Consequently,onecanconcludethat)=0.Usingthefactthatisboundedandthepreviousboundednessresults,onecanshowthatisbounded,andhence,onecanconclude)=0.Asgoestoinnity,from(15),wehave.Therefore,from(13),itisclearthat))=0,whichim-pliesthat)=0)=0.Finally,.Sincetendsto,whentgoestonity,itiscleargoestoandhence,tendstoConsequently,))=0 Itisclearthatourcontrolschemeincludestheattituderegulationproblemasaparticularcase,i.e.,.Thevelocity-freeattituderegulationschemeisgiveninthefollowingCorollary.Corollary1:Considersystem(1)underthefollowingcontrollaw: isthevectorpartof =(0 .Then,aregloballybounded)=lim)=0Remark1:FromtheproofofTheorem1,itisclearthatfortheclosedloopsystem,atthefollowingfourequilibriumpoints=0),andawayfromtheseequilib-riumpoints.Notethatthesefourequilibriarepresentthesamephysicalequilibriumfortherigidbody().Ifinitially,theclosed-loopsystemisatoneofthesefourequilibria,itwillremainthereforallsubsequenttime.Inthecasewheretheclosed-loopsystemisnotatoneofthefourequilibria,itwillconvergetotheattractiveequi-libriumpoint=0)forwhichThethreeisolatedequilibriumpoints=0)=0)=0)notattractors,butrepellerequilibria[8].Remark2:Theintroductionoftheauxiliarysystem(12)allowstogenerateapassivemap[5].Infact,thiscanbeeasilyseenbysubstituting(13)in(20)toget dt)=(~.Therefore,theauxil-iarysysteminputcanbedesignedinastraightforwardmannerasin(14).Theresultingclosed-loopsystemisafeedbackinterconnectionofapassivesystemandaconstantgain.This,guaranteesglobalbound-ednessofandtheconvergenceoftozero.Finally,thankstothefactthatthelargestpositivelyinvariantsetissimplytheRemark3:Itisworthnotingthatthemainpurposesoftheauxiliarydynamicalsystem(12)are1)togenerateapassivemappingbetweenandthevectorpartoftheunitquaternionerror;2)toguaranteethattheequilibriumof(18),inviewofthefactthattendstozero,ischaracterizedby.Infact,underthecontrollaw(13)andforcingtheinputoftheauxiliarysystem(12)tobeproportionaltoweensureasymptoticconvergenceoftozero.Theconvergenceoftozerowillguaranteetheconvergenceoftozero(asshownintheTheglobalboundednesshere,meansforany   . IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.53,NO.6,JULY2008VI.CAnewquaternion-basedsolutiontotheattitudetrackingproblem,withoutvelocitymeasurement,hasbeenproposed.Ourapproachisbasedontheuseofaunit-quaternionauxiliarysystemwhoseinputisrelatedtothevectorpartoftheunitquaternionerrorviaapas-sivemap,underanappropriateunitquaternion-basedfeedback.Theproposedcontrolschemeincludestheattituderegulationproblemasaparticularcase,andguaranteesglobalasymptoticstabilityoftheequilibriumpoint().Intheregulationcase,ourcontrolschemeisapurequaternionfeedback,andconsequently,thedesignercanset,inastraightforwardmanner,theupperboundforthecontroleffortintermsofthecontrolgains.[1]M.R.Akella,J.T.Halbert,andG.R.Kotamraju,Rigidbodyatti-tudecontrolwithinclinometerandlow-costgyromeasurements,Contr.Lett.,vol.49,pp.151159,2003.[2]S.P.BhatandD.S.Bernstein,Atopologicalobstructiontocontin-uousglobalstabilizationofrotationalmotionandtheunwindingphe-Syst.Contr.Lett.,vol.39,pp.6370,2000.[3]F.CaccavaleandL.Villani,OutputfeedbackcontrolforattitudeSyst.Contr.Lett.,vol.38,no.2,pp.9198,1999.[4]B.T.Costic,D.M.Dawson,M.S.d.Queiroz,andV.Kapila,quaternion-basedadaptiveattitudetrackingcontrollerwithoutvelocityAIAAJ.Guidance,Contr.Dynam.,vol.24,no.6,2001.[5]C.A.DesoerandM.Vidyasagar,FeedbackSystems:Input-OutputProperties,ser.ElectricalScience.NewYork:Academic,1975.[6]O.EgelandandJ.M.Godhavn,Passivity-basedadaptiveattitudecon-trolofarigidspacecraft,IEEETrans.Autom.Control,vol.39,pp.846,1994.[7]P.C.Hughes,SpacecraftAttitudeDynamics.NewYork:Wiley,1986.[8]S.M.Joshi,A.G.Kelkar,andJ.T.-Y.Wen,Robustattitudestabiliza-tionofspacecraftusingnonlinearquaternionfeedback,IEEETrans.Autom.Control,vol.40,pp.18001803,1995.[9]D.E.Koditschek,ApplicationofanewLyapunovfunctiontoglobaladaptiveattitudetracking,Proc.27thIEEECDC,Austin,TX,1988,pp.63[10]F.LizarraldeandJ.T.Wen,Attitudecontrolwithoutangularvelocitymeasurement:Apassivityapproach,IEEETrans.Autom.Control,vol.41,pp.468472,1996.[11]R.M.Murray,Z.Li,andS.Satry,AMathematicalIntroductiontoRoboticManipulation.BatonRaton,FL:CRC,1994.[12]S.Salcudean,Agloballyconvergentangularvelocityobserverforrigidbodymotion,IEEETrans.Autom.Control,vol.36,pp.1497,1991.[13]M.D.Shuster,Asurveyofattituderepresentations,J.Astronaut.Sci.vol.41,no.4,pp.439517,1993.[14]W.Stanley,Quaternionfromrotationmatrix,J.GuidanceControlvol.1,no.3,pp.223224,1978.[15]A.TayebiandS.McGilvray,Attitudestabilizationofaquadrotorair-IEEETrans.ControlSyst.Technol.,vol.14,pp.562571,2006.[16]A.Tayebi,Unitquaternionobserverbasedattitudestabilizationofarigidspacecraftwithoutvelocitymeasurement,Inproc.ofthe45thIEEEConferenceonDecisionandControl,SanDiego,CA,2006,pp.[17]P.Tsiotras,Furtherresultsontheattitudecontrolproblem,Trans.Autom.Control,vol.43,pp.15971600,1998.[18]J.T.-Y.WenandK.Kreutz-Delgado,Theattitudecontrolproblem,IEEETrans.Autom.Control,vol.36,pp.11481162,1991.[19]B.Wie,H.Weiss,andA.Arapostathis,Quaternionfeedbackregulatorforspacecrafteigenaxisrotations,AIAAJ.GuidanceControl,vol.12,no.3,pp.375380,1989. RobustControlofNonlinearJumpParameterSystemsGovernedbyUncertainChainsJasonJ.FordandValeryA.UgrinovskiiWeconsideraninÞnite-horizonminimaxoptimalcontrolproblemforstochasticuncertainsystemsgovernedbyadiscrete-stateuncertaincontinuous-timechain.Usingexistingrisk-sensitivecontrolre-sults,arobustsuboptimalabsolutelystabilizingguaranteedcostcontrollerisconstructed.Conditionsarepresentedunderwhichthissuboptimalcontrollerisminimaxoptimal.Wethenpresentanumericalgorithmforcalculatingarobust(sub)optimalcontrollerusingaMarkovchainapproximationtechnique.IndexTermsMarkovchainapproximations,Markovjumpparametersystems,robustcontrol,stochasticcontrol.I.INTRODUCTIONMinimaxrobustcontrolofuncertainstochasticsystems,inwhichperturbationsarerestrictedtosatisfyaconstraintonprobabilitylawsassociatedwithdisturbances,hasbeenactivelydevelopedinthepastdecade[1][3].ThistheorycoversproblemsofrobustLQGcontrolandltering,andalsononlinearcontrolsystems[1],[3],controllability,ob-servability,andperformanceaspectsofrobustcontrollersandlters[4],[5].Thetheoryishoweverlimitedinthatitonlyappliestosystemssub-jecttoGaussiandisturbances.Inthispaper,weexpandtheboundariesofthistheorytoincludenonlinearhybridstochasticsystemsgovernedbyadiscrete-stateuncertainmodeprocess.Inaddition,dynamicsofeachmodeofthesystemaresubjecttodisturbances.Theprobleminthefocusofthispaperisthatofnonlinearrobustswitchingcontroldesignviaoptimizationoftheworst-caseperfor-manceofanuncertainstochasticsystemdrivenbyanuncertainnoiseandsubjecttoabruptchangesofsystemparameters.Wewishtondastate-feedbackswitchingcontrolsolutiontotheworst-caseperfor-manceoptimizationproblemsup u;Q u;Q):=limsup T T0EQ dt:isthestateprocessanddescribesadiscrete-eventrandommechanismofmodechanges.Bothprocessesevolveunderanuncer-tainprobabilitymeasure,andhaveuncertainprobabilitydistribu-tionssubjecttotheconstraintisagivenset.WerefertoSectionIIforrigorousdenitions.Acontrollersoughtisallowedtoac-cessbothThemajornoveltyofthispaperisthehybriduncertaintymodelwhichcombinestheuncertaintiesinthediscrete-eventandcontinuous-statecomponentsofthesystem.Indeed,inahybridsystem,plantmod-elingerrorsmaydependonthestateofthemodeprocess.Also,proba-bilitiesofswitchingfromoneoperationmodetoanothermodemayde-ManuscriptreceivedJune28,2005;revisedJune5,2007.CurrentversionpublishedAugust29,2008.RecommendedbyAssociateEditorH.Hjalmarsson.ThisworkwassupportedbytheAustralianResearchCouncil.PartofthisworkwasdoneduringthesecondauthorsvisittotheAustralianNationalUniversity.J.J.FordiswiththeSchoolofEngineeringSystems,QueenslandUniversityofTechnology,Brisbane,Australia(e-mail:j2.ford@qut.edu.au).V.A.UgrinovskiiiswiththeSchoolofInformationTechnologyandElectricalEngineering,theAustralianDefenceForceAcademy,CanberraACT2600,Australia(e-mail:v.ougrinovski@adfa.edu.au).DigitalObjectIdentier10.1109/TAC.2008.9289110018-9286/$25.00©2008IEEE isasymmetricpositivedeÞniteconstantinertiamatrixofthebodywithrespecttothe0018-9286/$25.00©2008IEEE IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.53,NO.6,JULY2008UnitQuaternion-BasedOutputFeedbackfortheAttitudeTrackingProblemAbdelhamidTayebi,SeniorMember,IEEEInthisnote,weproposeaquaternion-baseddynamicoutputfeedbackfortheattitudetrackingproblemofarigidbodywithoutvelocitymeasurement.Ourapproachconsistsofintroducinganauxiliarydynam-icalsystemwhoseoutput(whichisalsoaunitquaternion)isusedinthecontrollawtogetherwiththeunitquaternionrepresentingtheattitudetrackingerror.Roughlyspeaking,thenecessarydampingthatwouldhavebeenachievedbythedirectuseoftheangularvelocitycanbeachieved,inourapproach,bythevectorpartoftheerrorsignalbetweentheoutputoftheauxiliarysystemandtheunitquaterniontrackingerror.Theresultingvelocity-freecontrolschemeguaranteesasymptoticstability   ,where isthesetofunit-quaternion.Furthermore,theclosed-loopsystemhasfourequilibriumpoints(threerepellerequilibriaandoneattractor)thataremathe-maticallydifferentbutrepresentthesamephysicalattitudeoftherigidbody.Alltrajectoriesstartingin   ÐexceptthethreerepellerequilibriaÑwillconvergetotheuniqueattractorequilibrium.Formoredetailsaboutthetopologicalobstructiontocontinuousglobalstabilizationofrotationalmotion,thereaderisreferredto[2]. IEEETRANSACTIONSONAUTOMATICCONTROL,VOL.53,NO.6,JULY2008whoseoriginisatthecenterofmass.Thevectoristhetorqueappliedtherigidbody,consideredastheinputvector.Thematrix( )isaskew-symmetricmatrixsuchthatforanyvector ,wheredenotesthevectorcross-product.Ourobjectiveistodesignafeedbackcontroller,withoutve-locitymeasurement,forthestabilizationoftheequilibriumpoint),whereisthedesiredorienta-tionandisthedesiredangularvelocity.III.UUATERNIONTheorientationofarigidbodywithrespecttotheinertialframecanbedescribedbyafour-parametersrepresentation,namelyunit-quater-nion[11].Aquaternioniscomposedofascalarcompo- andavector .Thesetofquaternion isafour-di-mensionalvectorspaceoverthereals,whichformsagroupwiththequaternionmultiplicationdenotedby.Thequaternionmultiplica-tionisdistributiveandassociativebutnotcommutative[11].Themul-tiplicationoftwoquaternionisdeas[11],[13]p;qandhasthequaternionastheidentityelement.Notethat,foragivenquaternion,wehave=(1Thesetofunit-quaternion isasubsetof suchthat u= Q02  3jq20+qTq Notethatinthecasewhere ,theunit-quaternioninverseisgivenbyArotationmatrixbyanangleabouttheaxisdescribedbytheunitvector ,canbedescribedbyaunit-quaternion suchthat 2 =cos 2 TherotationmatrixisrelatedtothequaternionthroughtheRo-driguezformula[7],[13])+2Algorithmsallowingtheextractionoffromarotationmatrix,canbefoundin[13],[14].Inthisnote,insteadofusingtherotationmatrixtodescribetheorientationoftherigidbody,wewillusetheunit-quaternion.Thedy-namicequation(2)canbereplacedbythefollowingdynamicequationintermsoftheunit-quaternion[7],[13]: 2(7)whereQ02 =(0 .Inthesequel,wewillusetodenotethequaternion.Wealsodenetheunit-quaternionerror,whichdescribesthediscrepancybetweentwounit-quaternion,asfollows:=(Notethattheunit-quaternioncoincideif=(1Itisalsoimportanttomentionthattheequilibriumpoint =0)for(1)and(2)isequivalenttotheequilibriumpoint =0)for(1)and(7).Sincecorrespondstocorrespondsto,itisclearthatspondtothesamephysicalpoint.Hence,thetwoequilibriumpoints =0)areinrealityauniquephysicalequilibriumpointcorrespondingto =0)IV.MESULTSAssumethatthedesiredorientationtobetrackedisgivenby 2Qd isthedesiredangularvelocity,whichisassumedtobeboundedaswellasitsrstandsecondtime-derivatives.Letusdenetheunit-quaterniontrackingerror,whichdescribesthediscrepancybetweentheactualunit-quaternionandthedesired,asfollows::=(.There-fore,wehaveDifferentiatingbothsidesoftheaboveequationwithrespecttotime,wehaveUsing(7)and(9),theerrorquaterniondynamicsisgivenby 2Q +1 2Qe=1 2Qe?(Qe)1 +1 Usingthefactthat =Q ,withisobtainedfrom(6)bysubstituting,wehave 2Qe = 1 2(qe)T~ ;1 2(qe0I+S(qe))~ :=(_Letusintroducethefollowingauxiliarysystem: (0)=( =(0 ,wheretheof(12)willbedesignedlater.Wedenetheunit-quaternion=(~ describingthediscrepancybetweentheunit-quaterniontrackingerrorandtheauxiliaryunit-quaternionNow,wecanstatethefollowingtheorem.Theorem1:Considersystem(1)underthefollowingcontrollaw