/
INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.E INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.E

INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.E - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
408 views
Uploaded On 2016-08-03

INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.E - PPT Presentation

CorrespondencetoMilanJirasekLaboratoryofStructuralandContinuumMechanicsLSCSwissFederalInstituteofTechnologyEPFLCH1015LausanneSwitzerlandEmailMilanJirasekEPFLchgrantsponsorSwissCommis ID: 431640

Correspondenceto:MilanJirasek LaboratoryofStructuralandContinuumMechanics(LSC) SwissFederalInstituteofTechnology(EPFL) CH-1015 Lausanne SwitzerlandE-mail:Milan.Jirasek@EPFL.chgrantsponsor:SwissCommis

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "INTERNATIONALJOURNALFORNUMERICALMETHODSI..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

INTERNATIONALJOURNALFORNUMERICALMETHODSINENGINEERINGInt.J.Numer.Meth.EngngEmbeddedcrackmodel.PartII:CombinationwithsmearedcracksMilanJirandThomasZimmermannLaboratoryofStructuralandContinuumMechanicsDepartmentofCivilEngineeringSwissFederalInstituteofTechnology,CH-1015LausanneThepaperinvestigatesthebehaviourof niteelementswithembeddeddisplacementdiscontinuitiesthatrepresentcracks.Examplesoffracturesimulationsshowthatanincorrectseparationofnodesduetoalocallymispredictedcrackdirectionleadstoaseverestresslocking,whichproducesspurioussecondarycracking.Asapossibleremedythepaperadvocatesanewconceptofamodelwithtransitionfromasmearedtoanembedded(discrete)crack.Anadditionalimprovementisachievedbyreformulatingthesmearedpartasnon-local.Variouscriteriaforplacingthediscontinuityarecompared,andtheoptimaltechniqueisidenti ed.Remarkableinsensitivityoftheresultingmodeltomesh-induceddirectionalbiasisdemonstrated.Itisshownthatthetransitiontoanexplicitdescriptionofawidelyopeningcrackasadisplacementdiscontinuityimprovesthebehaviourofthecombinedmodelandremediescertainpathologiesexhibitedbyregularizedcontinuummodels.Copyright2001JohnWiley&Sons,Ltd.KEYWORDS:fracture;damage;cracking;localization;embeddeddiscontinuities;non-localcontinuum;stresslocking1.MULTIPLEEMBEDDEDCRACKSInPartIofthispaper[1]wehavedevelopedthetheoreticalformulationandnumericalalgo-rithmsfortriangular niteelementswithembeddedcracks(strongdiscontinuities)describedbyadamage-typetraction-separationlaw.Theseelementsshallnowbetestedonseveraltypicalfrac-tureproblems,andtheresultsshallbecomparedtothoseobtainedwithsmearedcrackmodelsimplementedintostandardconstant-straintriangularelements(CST).Asthe rstexample,considerthethree-point-bendspecimeninFigure1(a).Theload{displacementdiagraminFigure1(b)andthecrackpatternsinFigures1(c)and1(d)show Correspondenceto:MilanJirasek,LaboratoryofStructuralandContinuumMechanics(LSC),SwissFederalInstituteofTechnology(EPFL),CH-1015,Lausanne,SwitzerlandE-mail:Milan.Jirasek@EPFL.chgrantsponsor:SwissCommissionforTechnologyandInnovation,contractgrantnumber:CTI-3201.1InFigures1(c)and1(d),thethicknessoflinesrepresentingcracksisproportionaltotheinelasticstrain,inordertoshowwhichcracksdominate.Received9November19982001JohnWiley&Sons,Ltd.Revised5February1999 M.JIRASEKANDT.ZIMMERMANN Figure1.Three-point-bendspecimen:(a)geometryandloading;(b)load{displacementdiagrams;(c)crackpatternforstandardelementsandsmearedrotatingcrack(RC)model;(d)crackpatternforstandardelementsandsmearedrotatingcrackmodelwithtransitiontoscalardamage(RC-SD).theresultsobtainedwithordinaryCSTelementsusing,respectively,thestandardrotatingcrack(RC)model[2]andtherotatingcrackmodelwithtransitiontoscalardamage(RC-SD),recentlyproposedbyJirasekandZimmermann[3].Thedimensionsandmaterialparameterscorrespondtotypicalconcretefracturespecimens;theirexactvaluesarenotimportant,becausethepurposeofthisexampleistodemonstratecertainpathologicalfeaturesthatareofageneralnature.AsexplainedinReference[4],unlessthemeshisalignedsuchthatthemacroscopiccrackcanprop-agateinabandrunningparalleltothemeshlines(sidesof niteelements),theRCmodelleadstoseverestresslocking.Atypicalconsequenceisanunrealisticload{displacementdiagramwithanon-negligibleresistingforceevenatverylatestagesofthedegradationprocess,whenthecrackshouldbealmostcompletelystress-free.Spuriousstressestransferredbythecrackingbandleadtoadditionalcrackingonbothsidesofthebandandthustoanoverestimatedenergydissipation.Thepresenttypeoflockingcanbealleviatedbytransitiontoascalardamagemodelinthoseelementswherethecrackopeninghasreachedacertaincriticalvalue.ThisisdocumentedbytheimprovedperformanceofthecombinedRC-SDmodel,forwhichtheload{displacementdiagramhasareasonableshapeandcrackingoccursonlyinonezig-zaglayerofelements(seeFigure1(d)).Theproblemhasbeenre-analysedusingtheelementswithembeddedcracksdescribedinPartIofthispaper.AsillustratedinFigure2(a),theorientationofthediscontinuitylinepredicted2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng EMBEDDEDCRACKMODEL.PARTII Figure2.Evolutionofcrackpatternforathree-point-bendspecimen:(a),(b)elementswithembeddedcracks(EC)anddiscontinuouscrackpath;(c)elementswithembeddedcracks(EC)andcontinuouscrackpath;(d)elementswithdelayedembeddedcracks(DEC;tobedescribedinSection2).fromthelocalcriterionofmaximumprincipalstressisnotalwayswellalignedwiththeactualmacroscopiccrack.Sometimestheembeddedcracksfailtoproperlyseparatenodesthatshouldbeontheoppositesidesofthebandofcrackingelements.ThisisthecaseforexampleforthetopmostcrackinFigure2(a),whichshould(butdoesnot)separatethenodesmarkedbycircles.Inamodelwithonlyoneembeddeddiscontinuityperelementthisleadstoaseverelockingbecausethemacroscopiccrackcannotopenproperly.Itisthereforeessentialtoallowtheformationofanotherdiscontinuitylinewithinthesameelementifthemaximumprincipalstressexceedsthetensilestrengthandtherotationofthecorrespondingprincipalaxiswithrespecttotheprimarydiscontinuityexceedsacertainthresholdangle.Iftheprimaryembeddedcracklocks,thesecondaryonecanreleasespuriousstressesbycorrectlyseparatingthenodesandallowingthepropagationofthecrackingbandinthecorrectoveralldirection.Typically,thesecondarydiscontinuitydominates InFigure2,alllinesrepresentingembeddedcrackshavethesamethickness,independentofthecrackopening.2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng M.JIRASEKANDT.ZIMMERMANNthefailureprocesswhiletheoriginaloneformedinawrongdirectioneitherclosesoratleastdoesnotopenveryfast.Figure2(b)showsthattheproblemwithincorrectseparationofnodesmaylaterreappearinanotherelement.Whenmultiplecrackingisallowed,themodelcanreproducetheoverallfracturepatterninasatisfactoryway.Noexcessivespuriousstresstransferoccurs,andtheload{displacementdiagramisveryclosetothatobtainedwiththeRC-SDmodel;seethecurvewithlabelembeddedcrack(EC)inFigure3.However,theintroductionofasecondarycrackis(inthepresentcontext)onlyanarti cialremedy|itrelaxesthestressinasituationthatwouldotherwiseleadtolocking.Thesecondarycrackhasnothingtodowiththephysicalnatureoftheprocessbecauseitappearsonlyifthedirectionoftheprimarycrackismispredicted.Multiplecrackingcomplicatesthenumericalalgorithmandhasanadversee ectonitsrobustness.Notethatenforcementofacontinuouscrackpathwouldnotremedytheproblem.Infact,inthepresentexamplethecrackseparatingnodesincorrectlywouldappearevenearlier(seeFigure2(c)).2.DELAYEDEMBEDDEDCRACKS2.1.TransitionfromsmearedtoembeddedcrackThedirectionofanembeddeddiscontinuity,onceintroduced,isnormallykept xed.Recently,someresearchershaveproposedmodelswithrotatingdiscontinuities[5{7].Itisquestionablewhethersuchformulationscanleadtoecientandrobustnumericalalgorithms.Accordingtothepresentauthors'experience,thepassageofanodefromonesideofthediscontinuitytotheothergeneratesnumericalinstabilities,andaspecialtreatmentisrequiredtohandlesuchsitua-tions.Also,somedoubtshavebeenraisedregardingthethermodynamicadmissibilityofarotatingdiscontinuity.Nevertheless,thisideacertainlydeservesafurtherinvestigation.Inthepresentstudyweshallexploreanalternativewayofallowinganadjustmentofthecrackpath.Observingtheevolutionofthecrackpatternsimulatedwithasmearedcrackmodel,e.g.withtheRC-SDmodel,wenotethattheinitialmispredictionofthecrackdirectionisoftencorrectedasthecrackgrows,becausetheoverallevolutionofthecrackingbandforceseachindividualcracktorotateintoapositioninwhichitseparatesnodescorrectly(cf.Figure1(d)).Soitcanbeexpectedthattheresolutionofthemacroscopiccrackshallbeimprovedifwedonotintroducethedisplacementdiscontinuityimmediatelyattheonsetofcrackingbutwestartwithasmearedcrackdescriptionandactivateanembeddedcrackonlyafteracertaincriticalcrackopening,say,hasbeenreached.Foreasyreference,letuscallsuchanapproachthedelayedembeddedcrackmodel(DEC),asopposedtothe`pure'embeddedcrackmodel(EC)withdisplacementdiscontinuitiesintroducedrightattheonsetofcracking.TheDECmodelcanbedescribedasasmearedcrackmodelwithtransitiontoanembeddedcrack.Ateverymaterialpoint,theinitialstageofcrackingismodeledinasmearedmanner,i.e.intermsofcrackingstrain.Whenthecrackopening(de nedasthecrackingstrainmultipliedbythee ectiveelementsize[82])reachesacriticalvalue,adisplacementdiscontinuityisintroducedintotherespective niteelement.Fromthatmomenton,damageinthebulkofthematerialisfrozen,andfurtherdegradationisdescribedbydamageattheembeddedinterface.Thismeansthat,aftertransitiontotheembeddedcrack,thebulkmaterialisconsideredaslinearelastic,however,withamaterialsti nessmatrixthatcorrespondstothesecant(unloading)sti nessofthesmearedmodelatthetimeoftransition.Ofcourse,itisnecessarytotuneupthematerialparametersof2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng EMBEDDEDCRACKMODEL.PARTII Figure3.Load{displacementdiagramsforthethree-point-bendspecimen.Thecurveshavebeenobtainedwiththede-layedembeddedcrackmodel(DEC),smearedrotatingcrackmodelwithtransitiontoscalardamage(RC-SD),andembeddedcrackmodel(EC).Figure4.Matchingofmateriallawsforthesmearedanddiscreteparts.bothcomponents|thecontinuumlawforthesmearedpartandtheinterfacelawforthediscretepart|suchthatthetransitionissmoothandthetotalenergydissipationiscorrect.ThematchingoftheconstitutiverelationsisillustratedinFigure4.ThediagraminFigure4(a)correspondstothestress{separationlawexploitedbythesmearedmodel.Toconstructthestress{strainlaw,thecrackopening,,istransformedintothecrackingstrain,,whereisthee ectiveelementsize.Thisistheusualtechniqueappliedinsimulationsoflocalizationduetostrainsofteninginordertoavoidpathologicalsensitivitytotheelementsize[89].AstandardsmearedcrackmodelwouldfollowthecompletesofteningcurveA{B{C;theareaunderthiscurvecorrespondstothefractureenergyofthematerial.ThesmearedpartofaDECmodelfollowstheinitialpartA{Bofthesofteningcurve,butatpointBthedi usedamageisfrozen,i.e.thesmearedcracksarenotallowedtogrowanymore.Thebulkofthematerialisnowtreatedaslinearelasticwithareducedsti ness,andthedependencebetweenthesmearedcrackingstrainandthestressnormaltothecracksisdescribedbythestraightlineO{B{E.Atthesametime,adiscretecrackisembeddedintotheelement,governedbythetraction{separationlawplottedinFigure4(b).ThesofteningcurveBisconstructedasthedi erencebetweencurveB{CandstraightlineB{Ointhetopdiagram.Consequently,curvedtrianglesOBCandOexactlythesamearea,andtheenergydissipatedbytheembeddedcrackisequaltothedi erencebetweenthefractureenergy(areaofOABC)andtheenergydissipatedbythesmearedcrack(areaofOAB).Asthetractiontransmittedbytheembeddedcrackdecreases,thestressnormaltothesmearedcrackmustalsodecrease,andthesmearedpartofthemodelfollowsthesegmentB{OratherthanB{E.Strictlyspeaking,alltheseconsiderationsareexactonlyinthesimpleuniax-ialcase,butnumericalexperienceshowsthattheresultsarereasonableeveninmorecomplex2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng M.JIRASEKANDT.ZIMMERMANN Figure5.Wedge-splittingtest:(a)specimengeometryandloading;(b)load{displacementdia-grams;(c)crackpatternforelementswithembeddedcracks(EC);(d)crackpatternforelementswithdelayedembeddedcracks(DEC).2.2.ResultsofsimulationsThecrackpatterninFigure2(d),obtainedwiththeDECmodel,indicatesthatthedelayindeedleadstoanimprovementintheorientationofindividualdiscontinuities.Thecompletefailurepatternhasformedwithoutanysecondarycracking,withasinglecrackperelement.Theload{displacementdiagraminFigure3isverysimilartothoseobtainedwiththeRC-SDmodelandwiththe(multiple)ECmodel.Thesimulationshavebeenrepeatedforawedge-splittingspecimentestedbySlowik[10].Thematerialparametersforthesmearedmodels(RCandRC-SD)havebeentakenfrom[3]:Young's=50GPa,Poisson'sratio2,tensilestrength9MPa,andfractureenergy=70Nm.Theembeddedcrackmodelhasusedthesamebasicpropertiesandthesametypeofsofteninglaw(bilinear)asthesmearedmodel.Theratioofreferencesti nesseshasbeentakenas1,andfortheDECmodeltransitiontookplaceatcrackopening=16m.Figure5showstheload{displacementdiagramsforvariousmodelsandthecrackpatternsforECandDECelements.Again,weobservethattheembeddedcracksalleviatestresslocking,eventhoughtheECmodelstillgivesasomewhattoosti responseinthelatestagesofsoftening.TheDECmodelleadstoamoreregularcrackpatternwithalesssigni cantamountofsecondarycracking.2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng EMBEDDEDCRACKMODEL.PARTII Figure6.Four-pointsheartest:(a)specimengeometryandloading;(b)load{displacementdia-grams;(c)crackpatternforelementswithembeddedcracks(EC);(d)crackpatternforelementswithdelayedembeddedcracks(DEC).Figure6showstheresultsofasimulationofthefour-pointshearspecimentestedbyArreaandIngra ea[11].Thematerialparametersforthesmearedmodels(RCandRC-SD)havebeentakenfromReference[3]:=30GPa,5MPa,andfractureenergy=140NTheembeddedcrackmodelhasusedthesamebasicproperties.Theratioofreferencesti nesseshasbeentakenas1,andfortheDECmodeltransitiontookplaceatcrackopening=26m.Inordertoavoidtroubleswithmesh-induceddirectionalbiaswehaveusedameshthato ersthecrackanopportunitytopropagatethroughalayerofelementsarrangedalongasmoothcurvewhichapproximatelycorrespondstotheexperimentallyobservedtrajectory(dashedcurveinFigure6(a)).Theload{displacementdiagraminFigure6(b)con rmsthattheembeddedcrackmodelsdonotexhibitlockingevenifthemacroscopiccracktrajectoryiscurved.ThecrackpatternsareshowninFigures6(c)and6(d).TheECandDECelementsgivealmostidenticalresultsbutconvergenceproblemsappearfortheECapproachduetomultiplecrackingatlatestagesoftheloadingprocess.TheDECapproachismorerobustandallowstocontinuethesimulationuptotheformationofacompletecrack.2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng M.JIRASEKANDT.ZIMMERMANN Figure7.Four-pointsheartestsimulatedonalessfavourablemesh:(a)crackpatternforstandardelementsandsmearedrotatingcrackmodel(RC);(b)crackpatternforelementswithdelayedembeddedcracks(DEC).3.NON-LOCALFORMULATION3.1.MotivationThemodelcombiningtheembeddedcracktechniquewiththesmearedcrackapproachreducestheamountofsecondarycrackingbutstillsu ersbymesh-induceddirectionalbias.ThisisillustratedinFigure7,whichshowsthe nalcrackpatternsforthefour-pointsheartestsimulatedonalessfavourablemesh.Inthiscase,themeshwasgeneratedwithouttakingintoaccounttheexpectedcracktrajectory,andthecrackbandcannotpropagatealongasmoothcurve.Initially,thebandofcrackingelementsstartsfromthenotchandfollowsthepreferredmeshlinesthatareclosetothecorrectdirection.However,intheregionwherethemeshisnotalignedwiththeactualcracktrajectory,thecomputationalcrackisattractedbymeshlinesrunningapproximatelyintheverticaldirection.Forthestandardrotatingcrackmodel(RC),thisisaccompaniedbyseverestresslocking,becausetheinitialbranchhastoopeninamixedmode,whichisnotcorrectlyreproducedbythestandard niteelementkinematics.Duetolocking,secondarycrackingisproducedandthecrackingbanddevelopsadditionalbranchesthatareclearlynon-physical(Figure7(a)).TheDECmodel,usingthesmearedrotatingcrackatearlystagesandexplicitlymodelleddisplacementdiscontinuityembeddedinto niteelementsatlatestagesofthefractureprocess,doesnotsu erbylockingandprovidesacleancrackingband(Figure7(b)),butthedirectionofthebandisobviouslybiasedbythe niteelementmesh.Dependenceofthecracktrajectoryontheorientationofmeshlinescanbealleviatedifthesmearedpartofthemodelisreformulatedasnon-local.Inallexamplesbelow,thesmearedpartisrepresentedbyanon-localisotropicdamagemodel.3.2.Descriptionofnon-localmodelThemateriallawexploitedhereisamodi edversionofthenon-localdamagemodelproposedbyPijaudier-CabotandBazant[12].Thestress{strainlawiswritteninthecompacttensorialnotationas=(1=(12001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng              7 3 ,%" , 3$  $ % %1     %,$ $8)* +9*$+#" & & $ "$5 *+% :%"%$     #" & & $ "$5)* +#& % *,+&1 %  *$+#&% :%"%$               -; &  #  %)* +%   *,+& % %  *$+9*&+#" & $ $8 *$3"&   % 8* +,  $ +              . $5#%    & $ $ $8%   $% $ " %,& % *$3"&   % 8 -* +,   $ +            EMBEDDEDCRACKMODEL.PARTIIisascalardamageparameter,andisthee ectivestress.InReference[12],theevolutionofdamagewascontrolledbythedamageenergyreleaserate,2.Thisbasicversionoftheisotropicdamagemodelisnotappropriateforconcrete,whichhasverydi erentpropertiesintensionandincompression.Werestrictourattentiontopredominantlytensilefailureandassumeunlimitedcompressivestrength.Theevolutionofdamageisdrivenbytheequivalent Ep wheretheMcAuleybracketsdenotethe`positivepart'operator.Forascalar,thepositivepartisde nedas=max(0).Forasymmetricsecond-ordertensor,thepositivepartisawiththesamepricipalaxesasandwithprincipalvaluesobtainedbyextractingthe(scalar)positivepartofthecorrespondingprincipalvaluesofInitially,thedamageparameterisequaltozero,andtheresponseofthematerialislinearelastic.Whentheequivalentstrainreachesacertainthresholdvalue,,thedamageparameterstartsgrowing,whichre ectsthegraduallossofintegrityofthematerial.Duetothespecialchoiceoftheexpressionforequivalentstrain(2),theelasticdomainintheprincipalstressspaceissimilartotheonedescribedbytheRankinecriterionofmaximumprincipalstress,withasmoothround-o oftheedgesandvertexcorrespondingtobiaxialandtriaxialtension.Forgeneralapplications,coveringalsocompressivefailure,itwouldbenecessarytore nethemodel,e.g.usingtheideasfromReference[13].Duringunloading,characterizedbyadecreasingvalueof~,thedamageparameterremainsconstant.Thiscanbetakenintoaccountbymakingdependentonasofteningparameter,~whichisde nedasthemaximumvalueof~reachedintheprevioushistoryofthematerialuptothecurrentstate.Thedamageevolutionisthendescribedbytheexplicitrelation)(3)andfunctioncanbeidenti edfromtheuniaxialtensilestress{straincurve.Herewetakeasimplelaw[14]0if~ ~�~0 if~whichcorrespondstolinearelasticbehaviouruptothepeakstress,,followedbyexpo-nentialsoftening.Theparametera ectsductilityoftheresponseandisrelatedtothefractureenergyofthematerial.Inthenon-localversionofthemodel,the`local'equivalentstrain,~,isreplacedbyitsweightedaverageoveracertainneighbourhoodofthegivenpoint,Thenon-localweightfunctionisusuallyde nedas 2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng M.JIRASEKANDT.ZIMMERMANN if00ifisabell-shapedfunctiondecayingwiththedistancebetweenpoints.For,thesupportof)(i.e.closureofthesetofpointsatwhich)isnon-zero)isacircleorsphereofradiuscenteredat.In(6),thescalingfactorensuresthatthenormalizingcondition=1(9)holdseveninthevicinityoftheboundary,wherethesupportof)protrudesoutsidethe.Parametercanbecalledtheinteractionradiusbecausethenon-localstrainatagivenpointisa ectedonlybypointscloserthan.Theinteractionradiusisdirectlyrelatedtothenon-localcharacteristiclengthofthematerial,whichinturndependsonthemicrostructure,e.g.onthesizeandspacingofmajorinhomogeneities.3.3.SimplesimulationsNumericalsimulationsperformedwiththenon-localdelayedembeddedcrackmodelhaverevealedtheimportanceofthecriterionforplacingthediscontinuityline.Thedirectionofthediscontinuitylineisassumedtobeperpendiculartothedirectionofmaximumprincipalstressorstrain.However,theexactpositionofthediscontinuityisnotfullydeterminedevenwhenthedirectionisknown.Itisnecessarytosupplyanadditionalpieceofinformation,e.g.selectonepointofthediscontinuityline.Inprinciple,thiscouldbeanypointofthecorresponding niteelement.Consider rstthecasewhenthepositionofeachembeddedcrackisdeterminedbytheelementcentreandwhenthecrackisperpendiculartothedirectionofmaximumprincipalstress(whichcoincideswiththedirectionofmaximumprincipallocalstrain)atthetimeoftransitionfromsmearedtoembeddedcrackformulation.Inthiscase,thecracksegmentsinneighbouringelementsingeneraldonotformacontinuouspath.Plate1(a){(c)showstheevolutionofthefractureprocesszoneinathree-point-bendspecimenfromFigure1(a).Themeshissomewhat nerthanintheoriginalexamplefromFigure1,tomakesurethatthenon-localinteractionisproperlycaptured(thedistancebetweenneighbouringintegrationpointsmustbesmallerthantheinteractionradiusofthenon-localmodel).Onlytheopeningembeddedcracksareexplicitlyvisualizedasdiscontinuities(whitelines)whilethedi usedamageinthecontinuouspartofthemodelisrepresentedbythecolorscale.Severestresslockingisobservedatlaterstagesoftheloadingprocess.Thisis NotethatPlate1displaystherawresultsdirectlyobtainedfromthe niteelementinterpolation.Astheelementsareconstantstraintriangles,thestressstateandthedamageparameterineachelementareconstant,withjumpsbetween2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng EMBEDDEDCRACKMODEL.PARTII Figure8.(a)Incorrectand(b)correctseparationofnodes.documentedinPlate1(d),whichshowsthedistributionofthemaximumprincipalstressinthestatecorrespondingtoPlate1(c).Thesourceoflockingisrevealedintheclose-upinFigure8(a)|theembeddedcracksdonotseparatethenodescorrectly.Thetwonodesmarkedby lledcirclesareobviouslyonthesamesideofthebandofcrackingelementswhilethenodemarkedbyanemptycircleisontheoppositeside.However,thediscontinuitylineinthecorrespondingelementfailstoseparateoneofthe lledcirclesfromtheemptycircle,andthemacroscopiccrackcannotopenproperly.Paradoxically,thealleviationofmeshbiashasratheranadversee ect.Thesmearedcracksdonotrotateintoapositioninwhichtheywouldseparatethenodescorrectlybecausetheyremainalignedwiththemacroscopiccracktrajectory.Theremedyistoenforcecontinuityoftheembeddedcrackpath.Insteadofplacingeachdiscontinuitylineintothecentreofthecorrespondingelement,itischeckedwhetheroneoftheneighbouringelementsalreadyhasanembeddeddiscontinuitythatintersectsthecommonside.Ifthisisthecase,thenewdiscontinuitylineisplacedsuchthatitintersectsthecommonsideatthesamepoint.Figure8(b)demonstratesthatthistechniqueproperlyseparatesthenodes,sothatthecrackcanopenwithoutanyspuriousstresstransfer.Whencontinuityofthecrackpathisenforced,lockingdisappearsandtheoverallcrackdirectioniscorrectbutlocallythecrackistortuous;seeFigure9(a).Meshre nementdoesnotalwayshelp,asisclearfromthebottompartofthe gure.Aperfectlystraightcracktrajectoryinexactlythecorrectdirectionisobtainedifthecrackpathcontinuityisenforcedandif,inaddition,thedirectionofthecracksegmentineachelementistakenasorthogonaltothedirectionofmaximumstrain;seeFigure9(b).Theresultsarecon rmedbysimulationona nemeshwithaclearlymarkedpreferreddirectiondeviatingonlyslightlyfromthecorrectcracktrajectory.ThebottompartofFigure9(b)demonstratesaremarkableinsensitivityofthesimulatedtrajectorytotheorientationofthemesh.Theevolutionofthefractureprocesszoneandthegradualtransitionfromacontinuousrep-resentationofcrackingtoadiscontinuousoneisillustratedinPlate2.TheresultsshowninPlate2(a),(c)havebeenpostprocessedbyasmoothingprocedure.Thecolorscorrespondtovar-iouslevelsoftotaldamageinthebulkofthematerial(Plate2(a))andofthemaximumprincipalstress(Plate2(c)).Plate2(b)providesinformationontheincrementsofdamage(notpostpro-cessed).Theredcolorindicatesgrowingdamage(non-zeroincrements)whiletheregionwheredamageremainsconstantisplottedinblue.Itisobviousthatthebulkmaterialinthewakeoftheembeddedcrackisunloading.Di usedamagekeepsgrowinginalimitedregion,whichissituatedmainlyaheadoftheembeddedcracktip.Intheremainingpartofthefractureprocesszone,thedamageparameterdoesnotevolveanymore.Thepresentmodelisthereforecapableof2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng M.JIRASEKANDT.ZIMMERMANN Figure9.Embeddedcracktrajectoryforamodelwithenforcedcontinuityofthecrackpath,withdirectiondetermined:(a)fromthelocalstrain;(b)fromthenon-localstrain.describingthetransitionfromdi usetohighlylocalizeddamage.Letusemphasizethat,atanystageoftheloadingprocess,themodelcontainssimultaneouslyadiscretecrack(embeddedin -niteelements)andregionswithgrowingandclosingsmearedcracks.Thisconceptismore exibleandbetterre ectstheactualphysicalprocessesthantheapproachpreviouslyproposedbyMazarsandPijaudier-Cabot[1516],whichjumpsfromthecontinuumrepresentationtothediscreteone(orviceversa)atallmaterialpointssimultaneously.3.4.ApplicationexampleTheprecedingexamplesclearlydemonstratethatthenon-localformulationofthesmearedpartofthemodelsubstantiallyimprovestheinsensitivityofthe nalembeddedcracktotheorientationofthe niteelementmesh.However,itisnotclearyetwhethertheincorporationofembeddeddiscontinuitiesintothecombinedmodelhasalsosomebene ciale ectonitsoverallperformance.Originally,theembeddeddiscontinuitiesweremotivatedbybetterresolutionofthekinematicsofawidelyopeningcrack.Sincestresslockingdoesnotseemtobeaseriousproblemfornon-localcontinuummodels(unlessitisinducedbyaninappropriatenon-localformulation,seeReference[17]),onemaybetemptedtothinkthatthetransitiontoembeddedcracksisonlyanelegantbutdispensableadditiontotheconventionalapproach.However,thereareanumberofsituationsinwhichtheimprovedrepresentationofhighlylocalizedfractureisindeedessential.Oneofthem2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng EMBEDDEDCRACKMODEL.PARTIIisdescribedinthe nalexample,whileanotherhasbeendiscussedatarecentconference[18].Thegrowthandcoalescenceofmicrocracksinthefractureprocesszoneeventuallyleadtotheformationofastress-freemacroscopiccrack.Thisistosomeextentre ectedbytheevolutionofthesimulatedprocesszoneiftheunderlyingmodelisbasedonnon-localdamagemechanics.InReference[19]itwasshownthatthezoneofincreasinglocalstraingetsthinnerastheloadingprocesscontinues,whilethezoneofincreasingnon-localstrainkeepsanapproximatelyconstantwidth.Thesecantmaterialsti nessandtheresidualstrengthtendtozeroina nitezonewhosethicknessisequaltothesupportdiameterofthenon-localweightfunction(twicetheinteraction).Thiszonemustalwayscontainseveral niteelements,otherwisethenon-localinteractionwouldnotbeproperlycapturedbythenumericalmodel.Thecompletedegradationoftheresidualstrengthinabandcontainingseveralelementsacrossitsthicknessiscertainlynotrealisticanditcausesseriousnumericalproblemsifthestructureissubjectedtodistributedbodyforces.Thisisthecase,e.g.intheanalysisofgravitydams,wherethee ectofgravityforcesisessentialandcannotbeneglected.Thepresenceofgravityforcesinsidethefractureprocesszoneleadstospuriousshiftingofthecentreofthezoneand nallytothedivergenceoftheequilibriumiterationprocess,documentedinPlate3.Agravitydamwithdimensionscorrespondingtothewell-knownKoynaDam(struckbyanearthquakein1967)isloadedbyitsownweight,fullreservoirpressure,andanincreasinghydro-staticpressureduetoreservoirover ow(Plate3(a)).Thecomputationalmesh,consistingof4295lineartriangularelements,isshowninPlate3(b).Inasimulationusingthenon-localrotatingcrackmodel[3]withexponentialsofteningandparameters=25GPa=1MPa,and=1m,theinitiallydi usecrackingzoneattheupstreamface(Plate3(c))eventuallylocalizesandpropagatesintotheinteriorofthedam(Plate3(d)).Theclose-upregiondepictedinPlate3(c){(f)ismarkedinPlate3(a)byasmalldottedrectangle.ThelargerdashedrectanglecorrespondstotheregionthatshallbeshowninPlate4.Blueandredrectanglesrepre-sentopeningandclosingsmearedcracks,respectively.Whenthemouthofthemacroscopiccrackopenssucientlywide,thematerialbecomestooweaktoresistthe(constant)bodyforces.Theequivalentnodalforcesstartpullingdownthenodessurroundedbytheweakestmaterialaroundthecentreoftheprocesszone,whichclosesthecracksinthebottompartofthezoneandaccel-eratesopeningofthecracksinthetoppart.Bynon-localinteraction,theopeningcrackslocatedclosetotheupperboundaryoftheprocesszoneinducedamageintheoriginallysanemateriallayerlocatedjustabovetheprocesszone.Byadominoe ect,theactivepartofthezonetravelsupwards(Plate3(e),(f))untilconvergenceislost.Needlesstosay,thismechanismthatshiftsthenumericalcrackperpendiculartoitstrajectoryiscompletelynon-physicalandhasitsoriginintheassumptionofaconstantnon-localinteractiondistance.Anelegantremedyisagradualtransitionfromasmearedtoadiscretedescriptionofmaterialfailure.Itcanbearguedthat,asfractureprogresses,long-rangeinteractionbetweenmaterialpointsbecomesmoredicultand nallyimpossible.Thiswouldbebestre ectedbyanon-localmodelwithanevolving(decreasing)characteristiclength.However,suchamodelwouldbecomputa-tionallyveryexpensive,sincetheinteractionweightsforallinteractingpairsofintegrationpointswouldhavetobecontinuouslyrecomputed.Theapproachproposedinthepresentpapercanbeconsideredasareasonableapproximation,withaconstantinteractionradiusatlowlevelsofdam-ageandadiscretecrackdescription(correspondingtoazerointeractionradius)athighlevelsofThesimulationofagravitydamhasbeenrepeatedusingthemodelwithtransitionfromnon-localrotatingcrackstoembeddeddisplacementdiscontinuities(discretecracks).Thetransition2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng M.JIRASEKANDT.ZIMMERMANNtakesplacewhenthecrackingstrainreachesacertaincriticalvalue,inthepresentexampletakenas500,andthesofteninglawsdescribingthesmearedanddiscretepartsofthemodelarematchedsuchthatasmoothtransitionandcorrectenergydissipationareensured.Theinitialcrackingpatternisthesameasbefore,butsoonafterlocalizationthe rstdiscretecrackappearsandpropagatesalongthecenterofthefractureprocesszone(seethewhitecurveinPlate4).Thepartiallydamagedmaterialinthewakeofthediscretecrackunloads,anditsresidualstrengthdoesnotdiminishanymore.Therefore,thecorrectcracktrajectorycanbecapturedwithoutanynumericalinstabilities.Notethatthematerialinthewakeoftheembeddedcrackisingeneralunloading,becausethetractioncarriedbythediscontinuityisrelievedasthedisplacementjumpincreases.However,aclusterofactive(opening)smearedcracksfarbehindthetipofthediscretecrackcanbedetectedinPlate4(d).Thisisnotaspuriouse ectproducedbystresslocking,butanaturalindicationofincipientbranchingoftheprimarymacroscopiccrack.Thisphenomenonhasalreadybeenobservedinsimulationsusingapurenon-localrotatingcrackmodel[20]andhasalsobeendiscussedandillustratedinReference[21,p.375andfrontcover].4.CONCLUDINGREMARKSNumericaltestinghasrevealedthattheconventionalembeddedcrackapproach,whichintroducesadisplacementdiscontinuityrightattheonsetofcracking,oftenleadstoamispredictionofthedis-continuitydirection.Asthedirectionhastoremain xed,thereisnochanceforitsadjustment.Thisinevitablyleadstostresslockingthatmustberelaxedbyasecondarycrackinthesameelement.Multiplecrackingcomplicatesthenumericalalgorithmandcanleadtoconvergenceproblems.Ithasthereforebeenproposedtouseacombinedmodelthatrepresentstheearlystageofcrackinginasmearedmannerandintroducesadiscontinuityonlywhenthecrackopenssucientlywide.Ifthesmearedpartismodeledbytherotatingcrackapproach,thecrackhasachancetoreadjustitsdirection,andthereisnoneedforsecondarycracking.Thecombinationofthesmearedandembeddeddescriptionsofcrackingisappealingfromthephysicalpointofview.Itisintuitivelyclearthatdi usedamageatearlystagesofmaterialdegradationisadequatelydescribedbyamodeldealingwithinelasticstrain,whilehighlylocalizedfractureisbetterrepresentedbyadisplace-mentdiscontinuity.Examplesofsimulationsoffracturespecimensdemonstratethepotentialofthedevelopedtechnique.Asanadditionalimprovement,thesmearedpartofthecombinedmodelhasbeenreformulatedasnon-local.Itturnsoutthatforthealleviationoflockingitisessentialtoenforcecontinuityoftheembeddedcracktrajectory.Optimalperformanceintermsofinsensitivitytomesh-induceddirectionalbiasisobtainediftheorientationoftheembeddedcrackisineachelementdeterminedfromtheprincipaldirectionsofnon-local(ratherthanlocal)strain.Transitiontotheexplicitdescriptionofacrackasadisplacementdiscontinuityturnsouttobeanecientremedytopathologicalshiftingoftheprocesszone,exhibitedbythenon-localdamagemodelwithaconstantcharacteristiclength.Tosummarize,theembeddedcrackapproachseemstobeaveryappealingtechniquethatcertainlyhasanumberofimportantadvantagescomparedtomoretraditionalapproaches.Ofcourse,alargeamountofworkstillremainstobedone.Forexample,achallenginggoalwouldbeanextensionofthemodeltothreedimensions.2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng EMBEDDEDCRACKMODEL.PARTIIFinancialsupportoftheSwissCommissionforTechnologyandInnovationunderprojectCTI.3201.1isgratefullyacknowledged.1.JirasekM,ZimmermannTh.Embeddedcrackmodel:I.Basicformulation.InternationalJournalforNumericalMethodsinEngineering,thisissue.2.RotsJG.Computationalmodelingofconcretefracture.Ph.D.Thesis,DelftUniversityofTechnology,Delft,TheNetherlands,1988.3.JirasekM,ZimmermannTh.Rotatingcrackmodelwithtransitiontoscalardamage.JournalofEngineeringMechanicsASCE1998;:277{284.4.JirasekM,ZimmermannTh.Analysisofrotatingcrackmodel.JournalofEngineeringMechanicsASCE1998;842{851.5.TanoR.Localizationmodellingwithinnersofteningband niteelements.LicentiateThesis,LuleaUniversityofTechnology,Sweden,August,1997;26.6.TanoR,KlisinskiM,OlofssonTh.Stresslockingintheinnersofteningbandmethod:astudyoftheoriginandhowtoreducethee ects.InComputationalModellingofConcreteStructures,deBorstR,BicanicN,MangH,MeschkeG(eds).Balkema:Rotterdam,1998;329{335.7.SluysLJ,BerendsAH.2D3Dmodellingofcrackpropagationwithembeddeddiscontinuityelements.In:ModellingofConcreteStructures,deBorstR,BicanicN,MangH,MeschkeG(eds).Balkema:Rotterdam,1998;399{408.8.PietruszczakS,MrozZ.Finiteelementanalysisofdeformationofstrain-softeningmaterials.InternationalJournalforNumericalMethodsinEngineering9.BazantZP,OhBH.Crackbandtheoryforfractureofconcrete.eriauxetConstructions10.SlowikV.BeitragezurexperimentellenBestimmungbruchmechanischerMaterialparametervonBeton.MaterialsReportsNo.3,ETHZurich,1995.11.ArreaM,Ingra eaAR.Mixed-modecrackpropagationinmortarandconcrete.DepartmentofStructuralEngineering81-13,CornellUniversity,Ithaca,NY,1981.12.Pijaudier-CabotG,BazantZP.Nonlocaldamagetheory.JournalofEngineeringMechanicsASCE1987;13.SaouridisC,MazarsJ.Predictionofthefailureandsizee ectinconcreteviaabi-scaledamageapproach.:329{344.14.OliverJ,CerveraM,OllerS,LublinerJ.Isotropicdamagemodelsandsmearedcrackanalysisofconcrete.InAidedAnalysisandDesignofConcreteStructures,BicanicN,MangH(eds).PineridgePress:Swansea,UK,1990;945{957.15.MazarsJ,Pijaudier-CabotG.Fromdamagetofracturemechanicsandconversely:acombinedapproach.JournalofSolidsandStructures16.BodeL,TailhanJL,Pijaudier-CabotG,LaBorderieCh,ClementJL.FailureanalysisofinitiallycrackedconcreteJournalofEngineeringMechanicsASCE1997;:1153{1160.17.JirasekM.Nonlocalmodelsfordamageandfracture:comparisonofapproaches.InternationalJournalofSolidsand:4133{4145.18.Jirasek,M.Nonlocaldamagemodels:practicalaspectsandopenissues.Proceedingsofthe13thASCEEngineeringMechanicsDivisionSpecialtyConference,JohnsHopkinsUniversity,Baltimore,13{16June1999.(CD-ROM)19.Jirasek,M.Comparisonofnonlocalmodelsfordamageandfracture.LSCInternalReport02,SwissFederalInstituteofTechnologyatLausanne,Switzerland,1998.20.JirasekM,ZimmermannT.Rotatingcrackmodelwithtransitiontoscalardamage:I.Localformulation,II.Nonlocalformulationandadaptivity.LSCInternalReport01,SwissFederalInstituteofTechnologyatLausanne,Switzerland,21.BazantZP,PlanasJ.FractureandSizeE ectinConcreteandOtherQuasibrittleMaterials.CRCPress:BocaRaton,2001JohnWiley&Sons,Ltd.Int.J.Numer.Meth.Engng