PPT-Permutations and Combinations
Author : ellena-manuel | Published Date : 2018-09-22
Discrete Structures Fall 2011 Permutation vs Combination Permutations Combinations Ordering of elements from a set Sequence does matter 1 2 3 is not the same as
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "Permutations and Combinations" is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Permutations and Combinations: Transcript
Discrete Structures Fall 2011 Permutation vs Combination Permutations Combinations Ordering of elements from a set Sequence does matter 1 2 3 is not the same as 3 2 1 Collection of element from a set. Definition of Combination. An . arrangement. . of objects in which the . order. . of selection . does NOT matter. .. . Ex: You have to visit three out of your four friends houses: Andrew (A), Betty (B), Carlos (C), Dave (D). What are the different ways to select the 3 houses to visit?. Permutations with Repetition. Theorem 1: . The number of . r-permutations. of a set of . n. objects with repetition allowed is . n. r. . .. Example 1:. How many strings of length . r. can be formed from the English alphabet?. Urn models. We are given set of n objects in an urn (don’t ask why it’s called an “. urn. ” - probably due to some statistician years ago) .. We are going to pick (select) r objects from the urn in. Section 6.. 2. The Pigeonhole Principle. If a flock of . 20. pigeons roosts in a set of . 19 . pigeonholes, one of the pigeonholes must have more than . 1. pigeon.. Pigeonhole Principle. : If . Permutations with Repetition. Theorem 1: . The number of . r-permutations. of a set of . n. objects with repetition allowed is . n. r. . .. Example 1:. How many strings of length . r. can be formed from the English alphabet?. and Subsets. ICS 6D. Sandy . Irani. Lexicographic Order. S a set. S. n . is the set of all n-tuples whose entries are elements in S.. If S is ordered, then we can define an ordering on the n-tuples of S called the . with Repetitions. ICS 6D. Sandy . Irani. Permutation Counting. How many ways to permute the letters in the word “BAD”?. BAD. BDA. ABD. ADB. DAB. DBA. Permutation Counting. How many ways to permute the letters in the word “ADD”?. DM. 13. The Fundamental Counting Theory. A method for counting outcomes of multi-stage processes. If you want to perform a series of tasks and the first task can be done in (a) ways, the second can be done in (b) ways, the third can be done in (c) ways, and so on, then all the tasks can be done in a x b x c…ways . Generating Permutations. Many different algorithms have been developed to generate the n! permutations of this set.. We will describe one of these that is based on the . lexicographic . (or . dictionary. Random Things to Know. Dice. . (singular = “die”). Most cases: 6 sided. Numbers 1,2,3,4,5,6. Special Cases: . 4 sided. 8 sided. 10 sided. 12 sided. 20 sided. . Random Things to Know. Cards. Typical Deck: 52 cards. AII.12 The student will compute and distinguish between permutations and combinations and use technology for applications. . Fundamental Counting Principle. The Meal Deal at . Bananabee’s. allows you to pick one appetizer, one entrée, and one dessert for $10.99. How many different Meal Deals could you create if you have three appetizers, six entrées, and four desserts to choose from?. Permutations. Objectives. Use the Fundamental Counting Principle to count permutations.. Evaluate factorial expressions.. Use the permutation formula.. Find the number of permutations of duplicate items.. Permutations vs. Combinations Warm up- Group Study You have 5 kinds of wrapping paper and 4 different bows. How many different combinations of paper and a bow can you have? Permutation (pg.681 Alg1) 11-1 Permutations and Combinations Holt Algebra 2 Warm Up Lesson Presentation Lesson Quiz Warm Up Evaluate. 1. 5 4 3 2 1 2. 7 6 5 4 3 2 1
Download Document
Here is the link to download the presentation.
"Permutations and Combinations"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents