/
Two Algorithms for the Minimum Enclosing Ball Problem Two Algorithms for the Minimum Enclosing Ball Problem

Two Algorithms for the Minimum Enclosing Ball Problem - PDF document

ellena-manuel
ellena-manuel . @ellena-manuel
Follow
406 views
Uploaded On 2015-06-09

Two Algorithms for the Minimum Enclosing Ball Problem - PPT Presentation

Alper Y305ld305r305m May 3 2007 Abstract Given a and 57359 0 we propose and analyze two algorithms for the problem of computing a 1 approximation to the radius of the minimum enclosing ball of The 64257rst algorithm is closely related ID: 83095

Alper Y305ld305r305m May

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Two Algorithms for the Minimum Enclosing..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

alongwithu0.Asimplemanipulationoftheoptimalityconditionsrevealsthat A=(u);(4)whichimpliesthatu2Rmisanoptimalsolutionof(D)andthatstrongdualityholdsbetween(P2)and(D).NotethatthecentercAoftheminimumenclosingballofAisgivenbyaconvexcombinationoftheelementsofAby( 3b ).Inaddition,itfollowsfrom( 3d )thatonlythecomponentsofucorrespondingtothepointsontheboundaryofMEB(A)canhaveapositivevalue. Lemma2.1 LetA=fa1;:::;amg.TheminimumenclosingballofAexistsandisunique.Letu2Rmdenotetheoptimalsolutionof(D).Then,MEB(A)=BcA;A,wherecA=mXi=1uiai;A=p (u):(5)Proof.NotethatAB0;u,whereu:=maxi=1;:::;mkaik.Byaddingtheredundantconstraint (u)2to(P2),thefeasibleregionbecomesaclosedandboundedsetandtheobjectivefunctioniscontinuous,whichestablishestheexistenceofMEB(A).Ifthereweretwodi erentminimumenclosingballs,onecanthenconstructaballofsmallerradiusthatenclosestheintersectionofthetwoballsandhencealsoA,whichisacontradiction.Therelationships( 5 )directlyfollowfromthediscussionsprecedingthelemma. ByLemma 2.1 ,MEB(A)canbecomputedbysolvingthedualproblem(D),whichwillbethebasisofbothofouralgorithmsinthispaper.Weclosethissectionbythefollowingtechnicalresult,whichwillplayanimportantrolein ndingagoodinitialfeasiblesolutioninouralgorithms.Thereaderisreferredto[ 16 ]fortheproofofthisresult. Lemma2.2 LetA=fa1;:::;amgandletMEB(A)=BcA;A.Then,anyclosedhalfspacethatcontainscAalsocontainsatleastonepointaj2Asuchthatkaj�cAk=A.3TheFirstAlgorithmGivenA:=fa1;:::;amgRnand�0,wepresentour rstalgorithmthatcomputesa(1+)-approximationtoMEB(A)inthissection. 5 iseasytoverifythatk=argmax2[0;1]�(1�)uk+e:WeremarkthatAlgorithm 3.1 usesonlythe rst-orderapproximation.Assuch,eachiterationisfairlycheapbutthenumberofiterationsisusuallysigni cantlyhigherthanotheralgorithmsthatusesecond-orderinformationsuchasinterior-pointmethods.However,suchgeneral-purposealgorithmsbecomecomputationallyinfeasibleforlargerproblemssinceeachiterationisusuallymuchmoreexpensive.Thisobservationprovidesoneofourmotivationstodevelopaspecializedalgorithmforthisproblem.3.1AnalysisoftheFirstAlgorithmThissubsectionisdevotedtotheanalysisofAlgorithm 3.1 . Lemma3.1 u02Rmsatis es 0= (u0)(1=3) (u)=(1=3) A,whereu2Rmand Aaretheoptimalsolutionandtheoptimalvalueof(D),respectively.Furthermore,08.Proof.Notethat (u0)=(1=2)(a )Ta +(1=2)(a )Ta �(c0)Tc0;(6a)=(1=4)(a )Ta +(1=4)(a )Ta �(1=2)(a )Ta ;(6b)=(1=4) a �a 2;(6c)whereweusedthefactthatc0=(1=2)�a +a .Theproofisbasedonestablishingthatatleastoneofa anda issucientlyawayfromthecentercAofMEB(A).First,supposethatka1�cAk(1=p 3)A,whereAistheradiusofMEB(A).LetHbethehyperplanepassingthroughcAthatisperpendiculartoa1�cA.LetH+denotetheclosedhalfspacewhoseboundaryisHandwhichdoesnotcontaina1.ByLemma 2.2 ,H+containsapointaj2Asuchthatkaj�cAk=A.Therefore,ka �a1k2ka1�cAk2+(A)2(4=3) A,where A= (u)=(A)2istheoptimalvalueof(D).Itfollowsfrom( 6 )that (u0)=(1=4) a �a 2(1=4) a1�a 2(1=3) (u):Supposenowthatka1�cAk=A,where1=p 3.Inthiscase,ka1�a kka1�cAk+kcA�a k,whichimpliesthatkcA�a k a1�a � a1�cA (1+2)1=2A�A=[(1+2)1=2�]A;whereweagaininvokedLemma 2.2 toobtainalowerboundonka1�a k.Therefore,onemoreapplicationofLemma 2.2 yields (u0)=(1=4) a �a 2;(1=4)�ka �cAk2+(A)2;(1=4)�1+2+2�2(1+2)1=2+1 A;=(1=2)�1+2�(1+2)1=2 A: 7 Proof.Letus rstconsider0.Ateachiterationk0,wehavek&#x-277;1.ByLemma 3.2 , k+1= k1+2k 4(1+k); k(1+1=8):Iteratingthisinequality,weobtain k+1(9=8)k+1 0.ByLemma 3.1 andthefeasibilityofuk+1,wehave A k+1(9=8)k+1 0(9=8)k+1( A=3);whichimpliesthatk+1log(3)=log(9=8)10,orequivalentlythatk9.Therefore,09.Letusnowconsider��1for=1;2;:::.Let:=�1.Ateachiterationkwithk�1=2,wesimilarlyhave k+1= k1+2k 4(1+k); k1+1 22+(2+1):Atiteration,wehave1=2�1.Sincetheballcenteredatcwithradius[(1+) ]1=2enclosesA,itfollowsthat  A(1+) (1+(1=2�1)) .Togetherwiththerepeatedapplicationoftheinequalityabove,wehave A +k 1+1 22+(2+1)k A 1+(1=2�1)1+1 22+(2+1)k;whichimpliesthat��1log�1+1 2�1 log1+1 22+(2+1)1 2�11 22+(2+1)+1 1 22+(2+1)825 24(2+1)17(2);whereweusedtheinequalitieslog(1+x)xforx��1andlog(1+x)x=(x+1)forx��1. Thefollowinglemmaestablishesanupperboundonthenumberofiterationstoobtainaniteratewithk. Lemma3.4 Let2(0;1).Algorithm 3.1 computesaniteratekwithkinatmost9+68=iterations.Proof.Letbeanintegersuchthat1=22=2.Therefore,afteratmostiterations,Algorithm 3.1 computesaniteratekwithk.ByLemma 3.3 ,=0+X=1(��1)9+17X=129+34(2)9+68=: 9 4TheSecondAlgorithmInthissection,wedescribeoursecondalgorithm,whichisamodi cationofAlgorithm 3.1 .Algorithm 4.1 startso withthesameinitialsolutionu0astheonecomputedbyAlgorithm 3.1 .Ateachiteration,thefurthestpointinAfromthecenterckofthetrialballiscomputedasinAlgorithm 3.1 .Incontrast,eachiterationofAlgorithm 4.1 alsoincludesthecomputationoftheclosestpointtockamongallpointsinXkA.Geometrically,thisisequivalenttoshrinkingthecurrenttrialballbythesmallestamountsothattheshrunkenballdoesnotcontainanypointsinXk.Algebraically,thiscorrespondstomovingawayfromthevertexoftheunitsimplexthatminimizesthelinearapproximationto (u)atuk,wheretheminimizationisovertheverticesfej:ukj�0g.Thefeasiblesolutionukisupdatedindi erentwaysbasedonthesetwocomputations.Ifk=+k,thenAlgorithm 4.1 usestheexactsameupdateasinAlgorithm 3.1 .Otherwise,thenewcenterck+1isobtainedbymovingthecurrentcenterckawayfromtheclosestpointa2Xk.Therefore,Algorithm 4.1 isobtainedbyincorporating\away"stepsintoAlgorithm 3.1 .Forawaysteps,itiseasytoverifythatk=argmax2[0;uk=(1�uk)] �(1+)uk�e:(10)Notethattherangeofischosentoensurethatthedualfeasibilityconstraintuk+10issatis ed.4.1AnalysisoftheSecondAlgorithmTheanalysisofAlgorithm 4.1 isverysimilartothatofAlgorithm 3.1 .Asin[ 34 ],wecalliterationkaplus-iterationifk=+k.Ifk=�kandk=(�k)=[2(1��k)],thenwecallitaminus-iteration.Theworkingcoresetremainsunchangedataminus-iteration.Finally,ifk=�kandk=uk=(1�uk),wethencallitadrop-iterationsincethethcomponentofukdropsto0andaisremovedfromtheworkingcoreset.Ouranalysismimicstheanalysisof[ 34 ]forasimilaralgorithmthatcomputesanapproximationtotheminimum-volumeenclosingellipsoidofa nitesetofpoints.Thenextlemmaestablishesalowerboundontheimprovementateachplus-orminus-iteration. Lemma4.1 Ateachplus-orminus-iteration, k+11+2k 4(1+k);k=0;1;::::(11)Proof.Ataplus-iteration,theresultsdirectlyfollowsfromLemma 3.2 .Ataminus-iteration, k+1= �(1+k)uk�ke;= k1+(�k)2 4(1��k): 11 Algorithm4.1Thesecondalgorithmthatcomputesa(1+)-approximationtoMEB(A). Require: InputsetofpointsA=fa1;:::;amgRn;�0. 1: argmaxi=1;:::;mkai�a1k2; argmaxi=1;:::;mkai�a k2; 2: u0i 0;i=1;:::;m; 3: u0 1=2;u0 1=2; 4: X0 fa ;a g; 5: c0 Pmi=1u0iai; 6: 0 (u0); 7:  argmaxi=1;:::;mkai�c0k2; argmini:ai2X0kai�c0k2; 8: +0 ka�c0k2= 0�1;�0 1� a�c0 2= 0; 9: 0 maxf+0;�0g; 10: k 0; 11: Whilek�(1+)2�1,do 12: loop 13: ifk��kthen 14: k k=[2(1+k)]; 15: k k+1; 16: uk (1�k�1)uk�1+k�1e; 17: ck (1�k�1)ck�1+k�1a; 18: Xk Xk�1[fag; 19: else 20: k minn�k 2(1��k);uk 1�uko; 21: k k+1; 22: ifk=uk=(1�uk)then 23: Xk Xk�1nfag; 24: else 25: Xk Xk�1; 26: endif 27: uk (1+k�1)uk�1�k�1e; 28: ck (1+k�1)ck�1�k�1a; 29: endif 30: k (uk); 31:  argmaxi=1;:::;m ai�ck 2; argmini:ai2Xk ai�ck 2; 32: +k  a�ck 2= k�1;�k 1� a�ck 2= k; 33: k maxf+k;�kg; 34: endloop 35: Outputck;Xk;uk;p (1+k) k. 12 Theresulteasilyfollowsfromtheobservationthat(�k)2 4(1��k)(�k)2 4(1+�k);andthat�k=kataminus-iteration. Lemma 4.1 establishesthatAlgorithm 4.1 makesatleastasmuchimprovementasAlgorithm 3.1 ateachplus-orminus-iteration.Atadrop-iteration,itiseasytoshowthat k+1 k.However,wecannolonger ndapositivelowerboundon k+1� k0.Usingasimilarreasoningasin[ 34 ],eachdrop-iterationcanbepairedwithapreviousplus-iterationkatwhichukwasincreasedfrom0,exceptforthe thand thcomponentswhichwerepositiveattheinitialsolutionandmaybedecreasedtozeroforthe rsttime.Therefore,wecandoubletheiterationcount(andaddtwoiterationstoaccountfortheinitialpositivecomponentsofu0)intheanalysisofAlgorithm 3.1 toestablishthatAlgorithm 4.1 cancomputea(1+)-approximationtoMEB(A)inatmosttwiceasmanyiterationsasthatrequiredbyAlgorithm 3.1 .Notethatthisdoesnota ecttheasymptoticiterationboundofAlgorithm 3.1 .Furthermore,eachiterationstillrequiresO(mn)operations,whichimpliesthattheasymptoticoverallcomplexityofAlgorithm 4.1 alsoremainsthesameasthatofAlgorithm 3.1 .Finally,theasymptoticboundonthesizeofthecoresetisalsouna ected.However,weremarkthatAlgorithm 4.1 hasthepotentialtocomputeevensmallercoresetsthanthosereturnedbyAlgorithm 3.1 duetothepossibleinclusionofminus-anddrop-iterations.Wesummarizetheseresultsinthefollowingtheorem. Theorem4.1 GivenA:=fa1;:::;amgRnand2(0;1),Algorithm 4.1 computesa(1+)-approximationtoMEB(A)inO(mn=)operations.Furthermore,upontermination,XAisan-coresetandjXj=O(1=),whereistheindexofthe naliteratecomputedbyAlgorithm 4.1 .5ExtensionsInthissection,weestablishthatthealgorithmicframeworksofSections 3 and 4 canbeusedtocomputeanapproximationtotheminimumenclosingballofmoregeneralinputsets.Whilethecostofeachiterationofthecorrespondingalgorithmsmaydependontheinputset,theiterationcomplexityandtheasymptoticsizeofthecoresetremainunchanged.Therefore,theexistenceofan-coresetofsizeO(1=)extendstomoregeneralsetsincludingthosewithuncountablymanyelements.Notethatbothofthealgorithmsinthispapercomputetheinitialfeasiblesolutioninasimilarfashion.Thiscomputationentails ndingthefurthestpointintheinputsetfroma xedpoint.Inaddition,similarfurthestpointcomputationsareperformedateachiterationofbothofthealgorithms.Therefore,theextentofinputsetswhichareamenabletothesealgorithmshighlydependsontheeciencywithwhichsuchcomputationscanbeperformed.Inaddition,eachiterationofAlgorithm 4.1 requiresthecomputationoftheclosestpoint 13 inXkfroma xedpoint.SinceXkisalwaysa niteset,thiscomputationcanalwaysbeecientlyperformed.Forinputsetswithin nitelymanypoints,notethatthedimensionofthevectorsukgeneratedbyeitherofthetwoalgorithmsisnolonger xedandmayincreasebyoneateachiteration.AnotherkeyobservationisthatLemma 3.1 ,whichestablishesthequalityoftheinitialfeasiblesolutioncomputedbyeachofthetwoalgorithms,extendstomoregeneralsets.ThisfollowsfromthefactthatLemma 2.2 remainstrueforarbitraryinputsets.TheproofofLemma 2.2 isbasedontheargumentthatanenclosingballofsmallerradiuscanbeconstructedbymovingthecenterawayfromthehalfspaceinthedirectionofthenormalvectoroftheboundinghyperplaneifthehypothesisofLemma 2.2 isnotsatis edbythathalfspace.Therefore,thequalityoftheinitialsolutionisindependentoftheinputset.Wenowspecifyseveralinputsetsforwhichsimilaralgorithmicframeworkscanbeapplied.5.1SetofBallsLetA=fB1;:::;BmgRnbeasetofmballs.GivenBc;andx2Rn,thefurthestpointinBc;fromxisgivenbyx=c+(c�x)=kc�xk,whichcanbecomputedinO(n)operations.Therefore,eachiterationofAlgorithm 3.1 stillrequiresO(mn)operations,whichimpliesthatAlgorithm 3.1 computesa(1+)-approximationtoMEB(A)inO(mn=)operationsandreturnsan-coresetofsizeO(1=).Inadditiontocomputingthefurthestpointateachiteration,Algorithm 4.1 alsorequiresthecomputationoftheclosestpointina niteset.ThesizeofthissetisboundedabovebyO(1=),whichimpliesthateachiterationcanbeperformedinO(mn+n=)operations.Therefore,Algorithm 4.1 cancomputea(1+)-approximationtoMEB(A)inO(mn=+n=2)operationsandreturnsan-coresetofsizeO(1=).5.2SetofEllipsoidsLetA=fE1;:::;EmgRnbeasetofmellipsoidsgivenbyEi:=fx2Rn:(x�ci)TQi(x�ci)1g,whereci2RnandQi2Rnnissymmetricandpositivede nitefori=1;:::;m.Thefurthestpointinanellipsoidfromagivenpointcanbecomputedusingatightsemide niteprogrammingrelaxationwitha xednumberofconstraintsinO(nO(1))operationsintherealnumbermodelofcomputation[ 37 ],whereO(1)denotesauniversalconstantgreaterthanthree.Therefore,Algorithm 3.1 computesa(1+)-approximationtoMEB(A)inO(mnO(1)=)operationsandreturnsan-coresetofsizeO(1=).Similarly,Algorithm 4.1 cancomputea(1+)-approximationtoMEB(A)inO(mnO(1)=+nO(1)=2)operationsandreturnsan-coresetofsizeO(1=).5.3SetofHalfEllipsoidsHissaidtobeahalfellipsoidifitisgivenbytheintersectionofanellipsoidwithahalfspace.LetA=fH1;:::;Hmg,whereHi:=fx2Rn:(x�ci)TQi(x�ci)1;(fi)Tx!ig,whereci2Rn;fi2Rn;!i2R,andQi2Rnnissymmetricandpositivede nitefori=1;:::;m. 14 time,Algorithm 4.1 hasasigni cantlybetterperformancethanAlgorithm 3.1 andtheBCalgorithm,bothofwhichhavesimilarrunningtimes.Allthreealgorithmscomputedverysmallcoresetsofsimilarsizes.Algorithm 4.1 alwaysreturnedthesmallestcoresetsforeachinputset.ThecoresetscomputedbyAlgorithm 3.1 andtheBCalgorithmhavesimilarsizeswiththeformerbeingslightlybetterthanthelatter.Intermsofthenumberofiterations,Algorithm 4.1 onceagainsigni cantlyoutperformstheothertwoalgorithms,bothofwhichexhibitasimilarperformance.AcloseexaminationofthecomputationalresultsrevealsthatAlgorithm 4.1 resultedinreductionsof73%to88%intermsofrunningtimeandof74%to90%intermsofnumberofiterationsincomparisonwiththeothertwoalgorithms.ThisimprovedbehaviorofAlgorithm 4.1 resultingfromtheincorporationofawaystepsintoAlgorithm 3.1 wasanalyzedbyAhipasaoglu,Todd,andSun[ 1 ],whoestablishthelinearconvergenceofthisalgorithmicframeworkunderfairlygeneralassumptions.Furthermore,duetoallowingpointstobedroppedfromtheworkingcoreset,thesizesofthecoresetscomputedbyAlgorithm 4.1 areabout10%to30%smallerthanthosereturnedbytheothertwoalgorithms.Thenextdatasetweconsideredistheverticesoftheunitsimplex.BadoiuandClarkson[ 3 ]establishatightupperboundofd1=eonthesizeofthecoresetforsuchaninputsetundertheassumptionthatnb1=c.Inanattempttoassesstheperformancesofthethreealgorithmsonsuchadataset,weconsideredtheverticesoftheunitsimplexwithn=1000using2f1;:1;:01;:001g.TheresultsofthisexperimentarepresentedinTable 2 ,whichisorganizedsimilarlytoTable 1 . Time CoreSetSize Iterations  A1A2BC A1A2BC A1A2BC 1 .010.01 222 001 .1 .03.03.02 111111 9910 .01 1.851.861.84 101101101 9999100 .001 183.06181.97182.48 100010001000 998998999 Table2:Verticesoftheunitsimplex(n=1000) AsillustratedbyTable 2 ,allthreealgorithmshavesimilarperformancesontheverticesoftheunitsimplexinRnwithn=1000.Notethatboththesizeofthecoresetandthenumberofiterationsgrowproportionallyto1=.Theseresultsareinagreementwiththetightcoresetboundof[ 3 ].ThisexampleillustratesthattheasymptoticboundsonthecoresetsizeandthenumberofiterationsforAlgorithms 3.1 and 4.1 ingeneralcannotbeimproved.However,allthreealgorithmscomputedtheexactminimumenclosingballfor=10�3(andforany10�3).Therefore,theupperboundofd1=eonthesizeofthecoresetisnolongertightfornb1=c. 17 7ConcludingRemarksInthispaper,weproposedandanalyzedtwoalgorithmsthatcomputeanapproximationtotheminimumenclosingballofagiven nitesetofvectors.Bothalgorithmsexploittheunderlyinggeometricstructureoftheproblem.Eachofthetwoalgorithmsisespeciallywell-suitedforlarge-scaleinstancesoftheminimumenclosingballproblemforwhichamoderateapproximationsuces.Bothalgorithmscancomputeasmallcoresetwhosesizedependsonlyontheapproximationparameter.Wehavediscussedhowouralgorithmscanbeextendedtomoregeneralinputsetswithoutsacri cingtheiterationcomplexityandhencethesizeofthecoreset.Inparticular,severalclassesofinputsetsadmitsmalland nitecoresets.Ourcomputationalexperimentsrevealthatbothofouralgorithmsarecapableofquicklycomputingagoodapproximationtotheminimumenclosingballofa nitesetofvectors.Algorithm 4.1 ,whichisobtainedbyincorporatingawaystepsintoAlgorithm 3.1 ,seemstoexhibitasigni cantlybetterperformancethanother rst-orderalgorithms.Thesizesofthecoresetscomputedbyouralgorithmsareusuallyfairlysmall.Theexamplethatconsistsoftheverticesoftheunitsimplexillustratesthatouranalysisingeneralcannotbeimproved.Whilethediscoveryofecientalgorithmssuchasinterior-pointmethodsrevolutionizedconvexoptimization,thecomputationalcostofeachiterationofsuchalgorithmsquicklybecomesprohibitiveasthesizeoftheproblemsincreases.Therefore,itseemsdesirabletodesignspecializedalgorithmsforlarge-scaleproblemsthatexploittheunderlyingspecialstructureoftheproblem.Wehavedevelopedtwosuchalgorithmsfortheminimumenclosingballprobleminthispaper.Weintendtocontinueourworkondevelopingspecializedalgorithmsforotherclassesoflarge-scalestructuredoptimizationproblemsinthenearfuture.References [1] D.Ahipasaoglu,P.Sun,andM.J.Todd.Linearconvergenceofamodi edFrank-Wolfealgorithmforcomputingminimum-volumeenclosingellipsoids.TechnicalReportTR1452,CornellUniversity,SchoolofOperationsResearchandIndustrialEngineering,CornellUniversity,Ithaca,NewYork,2006. [2] M.BadoiuandK.L.Clarkson.Smallercore-setsforballs.InProceedingsofthe14thAnnualSymposiumonDiscreteAlgorithms,pages801{802,2003. [3] M.BadoiuandK.L.Clarkson.Optimalcore-setsforballs.Unpublishedmanuscript,2006. [4] M.Badoiu,S.Har-Peled,andP.Indyk.Approximateclusteringviacore-sets.InProceedingsofthe34thAnnualACMSymposiumonTheoryofComputing,pages250{257,2002. 18 [32] J.J.Sylvester.Aquestioninthegeometryofsituation.QuarterlyJournalofPureandAppliedMathematics,1(79),1857. [33] J.J.Sylvester.OnPoncelet'sapproximatelinearvaluationofSurdforms.PhilosophicalMagazine,xx:203{222,1860.FourthSeries. [34] M.J.ToddandE.A.Yldrm.OnKhachiyan'salgorithmforthecomputationofminimumvolumeenclosingellipsoids.DiscreteAppliedMathematics,2007.Toappear. [35] E.Welzl.Smallestenclosingdisks(ballsandellipsoids).InH.Maurer,editor,NewResultsandNewTrendsinComputerScience,volume555ofLectureNotesinComputerScience,pages359{370.Springer-Verlag,1991. [36] S.Xu,R.M.Freund,andJ.Sun.Solutionmethodologiesforthesmallestenclosingcircleproblem.ComputationalOptimizationandApplications,25(1{3):283{292,2003. [37] E.A.Yldrm.Ontheminimumvolumecoveringellipsoidofellipsoids.SIAMJournalonOptimization,17(3):621{641,2006. [38] G.Zhou,K.C.Toh,andB.Sun.Ecientalgorithmsforthesmallestenclosingballproblem.ComputationalOptimizationandApplications,30(2):147{160,2005. 21