/
Comparison of different VMI fitting formulas/procedures Comparison of different VMI fitting formulas/procedures

Comparison of different VMI fitting formulas/procedures - PowerPoint Presentation

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
346 views
Uploaded On 2018-10-20

Comparison of different VMI fitting formulas/procedures - PPT Presentation

HRH 29714 This is a comparison between different fitting procedures of anisotopy parameters for peaks D amp G in the E0 state of HBr 1 I1 b 2 P 2 cos q 2 I 1 b 2f ID: 690691

peak cos fit cosq cos peak cosq fit parameter fitting 621 fits b2f 2ph b2ph 2php2 values fitted constant

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Comparison of different VMI fitting form..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Comparison of different VMI fitting formulas/procedures

HRH – 29/7/14Slide2

This is a comparison between different fitting procedures of anisotopy parameters for peaks D & G in the E(0) state of HBr.

1) I=1+

b

2

P

2

(cos

q

)

2)

I=(

1+

b

2f

P

2

(cos

q

))

(

1+

b

2ph

P

2

(cos

q

)+

b

4ph

P

4

(cos

q

)),

b

2f

=-0,621

3

) I =(1+

b

2f

P

2

(cos

q))

(1+

b

2ph

P

2

(cos

q

)+

b

4ph

P

4

(cos

q

)),

b

2ph

=2

4) I=(1+

b

2f

P

2

(cos

q

)+

b

4

P

4f

(cos

q

)) (1+

b

2ph

P

2

(cos

q

)+

b

4

P

4ph

(cos

q

)),

b

2f

=-0,621

5)

I=(

1+

b

2f

P

2

(cos

q

)+

b

4

P

4f

(cos

q

)) (

1+

b

2ph

P

2

(cos

q

)+

b

4

P

4ph

(cos

q

)),

b

2ph

=2Slide3

Peak D – fit 1

I=1+

b

2

P

2

(cos

q

)Slide4
Slide5

Peak G – fit 1

I=1+

b

2

P

2

(cos

q

)Slide6
Slide7

As we can see from the first fitting formula, the fit is okay for the low J‘s, namely J‘=1, 2. However, the fit gets progressively worse with increasing J‘s. We can assume that the fitting formula may therefore be alright for transitions that are solely parallel in character, but with perpendicular increments in the nature of the transition, the fit gets worse.Slide8

J‘

b

2

(Peak D)

Db

2

b

2

(Peak G)

Db

2

1

1,736

0,0438

1,4957

0,0621

2

1,7794

0,0686

1,3848

0,044

3

1,285

0,121

0,95699

0,0985

4

1,3288

0,0596

0,75156

0,083

5

1,3399

0,163

0,96959

0,0729

6

1,3663

0,108

0,86906

0,104

7

1,1234

0,114

0,82279

0,125

8

1,264

0,115

0,93651

0,103

9

0,94178

0,128

0,82183

0,104Slide9

Peak D – fit 2

I=(1+

b

2f

P

2

(cos

q))

(1+b2ph

P2(cosq)+b

4phP4(cosq)),

b2f=-0,621Slide10
Slide11

Nota bene: The „f“ & „ph“ labellings were accidentally switched in the figures.Slide12

Peak G

– fit 2

I=(1+

b

2f

P

2

(cos

q))(1+

b2phP2(cosq)+

b4phP4(cosq

)), b2f=-0,621Slide13
Slide14

As opposed to the first fit. This fit crumbles a bit for J‘=1,2. However, for the the higher J‘s, the fit becomes progressively better, again, as opposed to the first fit. However, in almost all cases for the D peak, the

b

2

ph

parameter, had to be held constant at 2, so the fits may potentially be better if the

b

2

f

parameter would be a little higher, e.g. -0,5.

Therefore, a second fitting procedure with the same formula is performed, only the b2ph parameter is held constant at 2, while the

b2f parameter

is fitted for in order to asses uncertainties in the b2f parameter.Slide15

J‘

b

2

ph

(D)

Db

2

ph

b

2

ph(G)

Db

2ph

b4ph(D)

Db

4

ph

b

4

ph

(G)

Db

4

ph

1

2

0,4

2

0,3

0,66733

0,0921

0,80455

0,0957

2

2

0,5

2

0,2

0,85066

0,104

0,76978

0,0738

3

2

0,1

1,8209

0,0466

0,38389

0,0782

0,19826

0,0571

4

2

0,1

1,6595

0,0778

0,65814

0,05

0,31288

0,0942

5

2

0,2

1,8662

0,0564

0,61404

0,133

0,48108

0,0665

6

2

0,2

1,7319

0,0777

0,69863

0,107

0,20313

0,0965

7

1,9693

0,09

1,6239

0,0601

0,65144

0,106

-0,07881

0,0798

8

2

0,1

1,7294

0,0575

1,0183

0,105

0,093789

0,075

9

1,8054

0,114

1,7059

0,112

0,78424

0,143

0,40065

0,135Slide16

Peak D – fit 3

I =(1+

b

2f

P

2

(cos

q))

(1+b2ph

P2(cosq)+b

4phP4(cosq)),

b2ph=2Slide17
Slide18

Peak G

– fit 3

I =(1+

b

2f

P

2

(cos

q))(1+

b2phP2(cosq)+

b4phP4(cosq

)), b2ph=2Slide19
Slide20

The fits for the D peak give rather promising results. It may be indicative of a „true“ parallel nature of the D peak, where the

b

2

ph

parameter is held constant at

2. Also, this supports the theory that

b

2f may be a bit higher than -0.621.

The fits for the G peak, are good for the low J‘s (where the G peak exhibits the greatest paralell nature), but they get worse for higher J‘s, which stands to reason because the G peak exhibits a greater blend of a parallel and perpendicular transition with increasing J‘s, which has already been established.Slide21

J‘

b

2

f

(D)

Db

2

f

b

2

f

(G)

Db2f

b4ph

(D)

Db

4

ph

b

4

ph

(G)

Db

4

ph

1

-0,28962

0,0329

-0,38481

0,0483

0,27967

0,0558

0,50603

0,0969

2

-0,27523

0,0495

-0,46083

0,0333

0,39473

0,0866

0,55499

0,0739

3

-0,51094

0,0481

-0,67907

0,0263

0,17107

0,121

0,35664

0,079

4

-0,53672

0,0228

-0,67928

0,0429

0,52906

0,0559

0,51031

0,145

5

-0,51832

0,0782

-0,55389

0,0904

0,42582

0,201

0,55389

0,0904

6

-0,48471

0,0634

-0,68386

0,044

0,50461

0,145

0,39142

0,133

7

-0,63412

0,0436

-0,78454

0,0323

0,68301

0,124

0,32558

0,0963

8

-0,5415

0,046

-0,71418

0,0364

0,8816

0,135

0,33409

0,0996

9

-0,68071

0,0485

-0,61516

0,0681

0,94286

0,151

0,46706

0,205Slide22

The average of the fitted values for

b

2

f

is -0.50±0.14(standard deviation). The previously calculated REMPI value of

b

2

f

is -0.621, so it falls just inside the standard deviation of the fitted values. Using the value of b

2f is -0.621 is therefore totally justifiable for the next fitting procedures where the

b4f parameter is added to increase the quality of the fits themselves. Slide23

Peak D – fit 4

I=(1+

b

2f

P

2

(cos

q

)+b4

P4f(cosq)) (1+b

2phP2(cosq)+

b4P4ph(cosq)),

b2f=-0,621Slide24
Slide25

Peak G – fit 4

I=(1+

b

2f

P

2

(cos

q

)+b4

P4f(cosq)) (1+b

2phP2(cosq)+

b4P4ph(cosq)),

b2f=-0,621Slide26
Slide27

As expected, upon addition of the

b

4

f

parameter, the fits have become exemplary. As before, the D peak exhibits a very pure parallel nature, while the G peak becomes more blended with increasing J‘s.

To exemplify the justification of the the value of the REMPI calculated

b

2

f parameter, a last fitting procedure is performed, where the b2ph

parameter is held constant at 2, in order to assess the b2f parameter, and compare with the results from fitting procedure #3.Slide28

J‘

b

2

ph

(D)

Db

2

ph

b

2

ph

(G)

Db2ph

b4

ph

(D)

Db

4

ph

b

4

ph

(G)

Db

4

ph

b

4

f

(D)

Db

4

f

b

4

f

(G)

Db

4

f

1

2

0,3

2,0033

0,0574

0,31722

0,0944

0,3315

0,0975

0,2231

0,0431

0,2423

0,0379

2

2

0,4

1,9815

0,0465

0,42925

0,115

0,40623

0,078

0,2107

0,0434

0,18096

0,0291

3

2,0581

0,0821

1,7373

0,0559

0,22512

0,132

0,004815

0,0978

0,071208

0,0404

0,086301

0,0384

4

2

0,1

1,3865

0,0814

0,52362

0,0612

-0,32186

0,162

0,066419

0,021

0,29685

0,0819

5

2

0,1

1,7627

0,0661

0,44456

0,193

0,24716

0,112

0,070767

0,0576

0,08921

0,0376

6

2,0174

0,109

1,4352

0,0859

0,4414

0,179

-0,50398

0,169

0,13451

0,0639

0,35508

0,094

7

1,9663

0,109

1,5345

0,0765

0,64474

0,173

-0,29621

0,144

0,002815

0,0555

0,12284

0,0732

8

1,9921

0,112

1,5614

0,0583

0,81411

0,174

-0,30951

0,111

0,076525

0,0458

0,23343

0,0582

9

1,7519

0,142

1,2646

0,0888

0,6697

0,234

-0,66099

0,186

0,052254

0,0822

0,56668

0,127Slide29

Peak D – fit 5

I=(1+

b

2f

P

2

(cos

q

)+b4

P4f(cosq)) (1+b

2phP2(cosq)+

b4P4ph(cosq)),

b2ph=2Slide30
Slide31

Peak G – fit 5

I=(1+

b

2f

P

2

(cos

q

)+b4

P4f(cosq)) (1+b

2phP2(cosq)+

b4P4ph(cosq)),

b2ph=2Slide32
Slide33

Again, the fits are very good although the assumption that

b

2

ph

=2, is not a very good assessment for all the J‘s in peak G. We will thusly calculate the average of the fitted values of the

b

2

f

parameter, solely from the D peak, as we did with the results from the 3rd fitting procedure.Slide34

J‘

b

2

f

(D)

Db

2

f

b

2

f

(G)

Db

2

f

b

4

f

(D)

Db

4

f

b

4

f

(G)

Db

4

f

b

4

ph

(D)

Db

4

ph

b

4

ph

(G)

Db

4

ph

1

-0,21128

0,00491

-0,5899

0,0533

-0,10205

0,0461

0,22174

0,0464

0,3507

0,0624

0,33117

0,0763

2

-0,14125

0,0786

-0,6153

0,0421

-0,1568

0,0648

0,16884

0,0383

0,53006

0,0968

0,42822

0,061

3

-0,57352

0,0822

-0,81928

0,0391

0,056482

0,066

0,15737

0,0392

0,15732

0,117

0,28638

0,0611

4

-0,52464

0,0451

-1,0146

0,0387

-0,0134

0,0423

0,33497

0,0374

0,53768

0,0628

0,35472

0,0686

5

-0,50259

0,159

-0,79558

0,047

-0,01483

0,132

0,15652

0,0432

0,43238

0,218

0,46425

0,0741

6

-0,60582

0,1

-0,93997

0,051

0,12935

0,0918

0,28921

0,052

0,4244

0,144

0,24457

0,0849

7

-0,65523

0,0924

-0,93937

0,0442

0,02394

0,0933

0,21515

0,0538

0,66815

0,138

0,23746

0,0722

8

-0,61602

0,0954

-0,92887

0,0345

0,070867

0,0814

0,28525

0,0401

0,82272

0,146

0,21492

0,0559

9

-0,83022

0,0903

-1

0,1

0,17213

0,0967

0,38531

0,0264

0,82612

0,153

0,25587

0,09Slide35

The averaged values of the fitted

b

2

f

values give -0,52±0.20, i.e. similar results as from the 3rd fitting, only with a larger standard deviation. We can therefore conclude that the use of the REMPI calculated value of

b

2

f

=-0.621 is justifiable in the fits including b4f

for improved fitting curves.