/
COMS6830-CryptographyOctober16,2009Lecture14:TrapdoorpermutationsandZe COMS6830-CryptographyOctober16,2009Lecture14:TrapdoorpermutationsandZe

COMS6830-CryptographyOctober16,2009Lecture14:TrapdoorpermutationsandZe - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
367 views
Uploaded On 2015-11-19

COMS6830-CryptographyOctober16,2009Lecture14:TrapdoorpermutationsandZe - PPT Presentation

1PublickeyencryptionReviewDenition1PublickeyencryptionschemeGenEncDecisapublickeyencryptionschemeifthefollowinghold1GenisaPPTalgorithmpksk Gen1k2EncisaPPTalgorithmc Encpkm3DecisaPPT ID: 198530

1Publickeyencryption-ReviewDenition1.(Publickeyencryptionscheme){Gen Enc Dec}isapublickeyencryptionschemeifthefollowinghold1.GenisaPPTalgorithm:pk Gen(1k)2.EncisaPPTalgorithm:c Encpk(m)3.DecisaPPT

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "COMS6830-CryptographyOctober16,2009Lectu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

COMS6830-CryptographyOctober16,2009Lecture14:TrapdoorpermutationsandZero-knowledgeintroductionInstructor:RafaelPassScribe:SrivatsanRavi 1Publickeyencryption-ReviewDenition1.(Publickeyencryptionscheme){Gen,Enc,Dec}isapublickeyencryptionschemeifthefollowinghold1.GenisaPPTalgorithm:pk,sk Gen(1k)2.EncisaPPTalgorithm:c Encpk(m)3.DecisaPPTalgorithm:m Decsk(c)4.8m{0,1},Pr[pk,sk Gen(1jmj:Decsk(Encpk(m))=m]=1Denition2.(SecurePublickeyencryptionscheme){Gen,Enc,Dec}issaidtobesinglemessagesecureif8non-uniformPPTmachinesD,thereexistsanegligiblefunction"suchthat8nNandm0,m1{0,1}n,Ddistinguishesthefollowingdistributionswithprobability6"(n){pk,sk Gen(1n):(pk,Encpk(m0))}{pk,sk Gen(1n):(pk,Encpk(m0))}ThedenitionsofCPA/CCA1/CCA2securitycanextendedtopublickeycryptosystemsIfanencryptionschemeissingle-messagesecure,thenitisalsomulti-messagesecureAnencryptionschemewithadeterministicalgorithm(evenwithstate)wouldnotbesecurebecauseanadversarycansimplyencryptthemessagem0withpkandcomparetheencryptionofm0withthechallengeciphertext(whichistheencryptionofeitherm0orm1).2RSAExampleDenition3.(RSACollection)DenetheRSAcryptosystemasfollows1.G(1k)correspondstothefollowingalgorithm:(p,q)PRIMESandarek-bitseach.Letn=pq,e Z'(n),d=e1mod'(n),Mk=Zn.pk=(n,e),sk=(d,n)'(n)isEuler'sTotientfunctiondenedasthenumberofpositiveintegerslessthannthatarecoprimeton2.c=Epk(m)=memodn3.Dsk(c)=cdmodn2.1WhatisRSA?Considerthescenarioiffactoringwaseasyi.e(p,q)canbeeasilyobtainedandknowingthat'(n)=(p-1)(q-1)whenn=pq,invertingtheRSAfunctionbecomeseasy.Assumingfactoringishard,theRSAfunctionisone-way.WecangeneralizethisasRSAbelongingtoacollectionofone-waypermutationswiththeadditionalpropertythattheinverseiseasytoobtainwiththeknowledgeofthisfunction(atrapdoor)whichallowsitspossesortoecientlyinvertitatanypointinthedomainofitschoosing.2.2RSAassumptionDenition4.Letn=pq;(p,q)PRIMESandjpj=jqj=k.ThenforeveryPPTmachineAandnegligiblefunction",Pr[A(n,e,RSAn;e(x))=x](k)RSAExample1 UndertheRSAassumption,theRSAfamilyoftrapdoorpermutationsformsasecurepublickeyencryptionschemewithsecurityparameterksinceinvertingEncishardforanadversarythatknowsthepublickey,butnotthesecretkey.3TrapdoorfunctionsandcollectionsAcollectionofone-waypermutationswiththeadditionalpropertythattheinverseiseasytoobtainwithsomespecialinformationiscalledacollectionoftrapdoorpermutations.Denition5.AcollectionoftrapdoorpermutationsisasetF={fi:Di!Di}iIwhereIisasetofniteindicesandfiisapermutation8iIs.t1.(Easytosamplefunction):ThereexistsaPPTGenwhichoninput1noutputs(i,ti)wheretiisthetrapdoorofi2.(Easytosampledomain):ThereexistsaPPTwhichoninputiIoutputsxDi3.(Easytoevaluatefunction):ThereexistsaPPTAwhichoninputsiIandxDi,computesA(i,x)=fi(x)4.(Hardtoinvert):ForeveryPPTAandlargeenoughk,9negligiblefunction"s.tPr[fi(z)=y:i I:x Di:y fi(x);z A(i,y)]6"(k)5.(Easytoinvertwhentrapdoorisknown):ThereexistsaPPTBs.tB(i,ti,fi(x))=xItiseasytoseethatRSAdenesacollectiontrapdoorpermutationswithindexset(n,e);tbeing(n,d)overthedomainZns.ted=1mod'(n)Lemma6.(Trapdoorpredicate)FortheRSAscheme,thereexistsaPPTalgorithmAandaneg-ligiblefunction"suchthatPr[A(n,e,xemodn)=LSB(xemodn)]61/2+"(k)i.egivenn,e,xemodn;itishardtoguessthehardcorebitwithnon-negligiblylargerprobabilitythan1/2Denition7.PickarandomX{0,1}nandb{0,1}.Then{Gen,Enc0={Xemodn,bP(X)},Dec0={cP(cdmodn)}}issinglebitsecureencryptionschemewherePisthetrapdoorpredicateforRSA(TheLSBbit)Proofoutline:Assumethisencryptionschemeisnotsecure.ThenforsomePPTalgorithmAandanegligiblefunction",PthetrapdoorpredicateforRSA,Prbf0;1g[A(Encpk(x),bP(x),pk)=b]�1/2+"(n)ConsiderthealgorithmA0(y,pk)whichforrandomc{0,1}returnscA(y,c,pk)Pr[A0(Encpk(x),pk)=P(x,pk)]=Pr[A(Encpk(x),c,pk)=cP(x,pk)]=Prbf0;1g[A(Encpk(x),bP(x,pk),pk)=b]�1/2+"(n)whichisacontradiction)Theencryptionschememustbesecure4Zeroknowledge4.1IntroductionGoalofthistopicistoredeneencryptionschemesusingknowledgebasedapproachesWhatisknowledge?Itisabehavioralapproach,knowingistheabilitytoperformataskDenition8.Zeroknowledge(Informal):ConsideraProverwhoknowstheproofforaproblemPandaVerierwhoneedstobeconvincedoftheproof.AZKproofconvincestheVerieroftheexistenceoftheproof,butdoesnotrevealanynewinformationabouttheproof2Section4 Considerthefollowingexample:AJournalistwantstoknowmoreinformationaboutamurderthatwascommited.AllthePolicerevealisthatsomeonehasbeenmurderedwhenthejournalistqueriesthePolice.Thus,nonewinformationhasbeenrevealedtothejournalist,butthePolicehasconrmedthatamurderhasoccured.AvariantofthesamewouldbewhenajournalistcallsupthePolicetoqueryaboutthemurder.Thepoliceipsafaircoinandhangsuporsays'someonehasbeenmurdered'withequalprobability.Again,thejournalisthasobtainednonewinformationthathehimselfcouldnothaveinferredbyippingacoinAxiom9.Knowledgeassumptions:1.Randomnessisfree2.PolytimecomputationisfreeDenition10.(ZKencryption){Gen,Enc,Dec}issaidtobe(comp)ZKencryptionif9PPTsimulatorSand8nuPPT'sD,thereexistsanegligiblefunction"s.tDdistinguishes{Enck(m):k Gen(1n)}andS(1n)withutmost"(n)probabilityTheorem11.(equivalenceofsecureandZKencryption){Gen,Enc,Dec}isasecureencryptionschemeiitisaZKencryptionaswellZeroknowledge3

Related Contents


Next Show more