/
gener gener

gener - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
394 views
Uploaded On 2015-08-18

gener - PPT Presentation

AMS MOS classifications ID: 109679

AMS (MOS) classifications

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "gener" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

gener­ating functions a background reader. a a a ad hoc picture a a a AMS (MOS) classifications © a R a G R = C[x..., x a R n G. A G R F = R a a R a G R a a priori a R a Ra RF RF Q(R a N P C [n] n) n E T c S T a T =0 T = S, V © W V W, V V • • ,yj)y ,y V x a V. M: V-*V. x x m X m R x..., x R = x..., x R V. M G V) VR, x ƒ R, (Mf)(x) = x = x\ Mf(x = x V2 x X\ i jLX\Xy* G R Mf = ƒ M G c absolute invariant, G. G R, R algebra R G R:Mf f G X = G. G R R T a R x £ R* isotypical isotypic) G R. R% R = R R e T f E R,�T-fT ƒ R c R a C f B R = x(M)f A G R x relative invariant, semi-invariant, X"^ tf^y G R a ƒ G X(G). G R R A a degree G c m = V order of G to \G\ If G has degree then there exist but not m +algebraically {over Equivalently, R Krull di­ • Let G have and C by not more than ( • A R R (\/g)lL ƒ( x a R a a R R R a Let x £ Then R aIn fact, RD degrees a N-graded a B a B © * * B k C B B nth B, ƒ E B homogeneous degree n n. R = C[x..., x a R = R R R • • • , R n, ƒ Mf G R M G G c R R tff © • • •R£ R R R R B Z-graded a A U Bi&j C A A = U (R R a R A a B B A a Hubert junction A H(A, ri) = HubertPoincaré A H(A,n)\ A a = R Molien F = F(RMolien series G F = F(R G F G R 2 R H(R n\ H(R ri) (R A F Let G be a of and let G X(G). the Molien ! where x & ^e conjugate W Ha h. W% x H W. h M(EH M E G c p p M my p G R nth R. y ? ' . ,y%» n M R p%". M • +a ± S E PV---P p M= piX) g = a R£ ^0. to M m X = FR° G = M = G FcW-i 9R£, 0 Rf, E Rf E R p(0 + q(9 q C[x R © c[9 = e © C[9 0 x\ + x\ t\ R G V). 0 .. d.., d G R i\ e . . , e R S = 0 © i\ © • ®r\ F F Oj. G G F R C[0 some F R 0j G R R 0/s m 0 . . , 0 R a free C[0 B = B B • • B Krull dimension B B k. B a F(Bm = B 0 0 m a homogeneous of parameters B a k[0 0 0 0 0 0 B/(0.., 0 a k. A Noether normalization lemma, B Let B be as let..., 9 an h.s.o.p. for B. The following two B is a free module k[9 9other words, there exist t\ B (which may be chosen to be homo- For every h.s.o.p. \}/., B, B is a free k[^..., \p (and holds, then the..., v\ B satisfy if and only if their images in B/(9 — , 9 form a vector space Q A B a Cohen-Macaulay R G c V)! For G c R a R * R U, U ƒ e R $(f) = Reynolds &#xj000; = E R a R integral R R a R R R ƒ e R, P = ïï M(f)). P M(f)%R P P = 0 t - ƒ a Pj(t). ƒ R 0 R R C[9..., 9 R R R . 9 9..., 9 R. x R R a C[x., R aC[9.., R = R U R/(9 ...,0 = R 9 0 U/(9 + • • • +9 a r}.., % R/(9.., 9 % a R., 9 fj., % aU/(9 • • • +9 rjj a R 1 i / a U t + 1 i s. R = . . . , so R • 9 R a a \p \p R R a R a Let B an N-graded let 0j B positive C = k[0 0\. B/(0 for 0 i j — Moreover, a free C-module, then = m. j = 0 = 0 W a B 0B. a B B = W + 0W + 0 + • • • , B a W). / - B a k[0 B a k[0 B/(0., a j = m y B (0.., 0 B = u 0., Y Y D Y = D fu B� 0 u 0., 0 m B. • f V ¥" f V G. V a f distinct f H G a = fj R (and is a free a R/fyi* • • • Y, Zj G Y G p = f R ha,vef \f/ p. 7 G f c F G n = • D \p \p R \p g R F P - P a R G 0 0 G a + • • • + x\. x • • • + x a polynomial G a G a G = M = e x R R X x + R C[x + ®xl). F = * + = 1 -• F F - G 4 V = (x x x x x x x x x x x x x f x x f x x x X T ^ \ * + + + +(x xf4 x d a R 0 e 0 = e e • • • e a e Let o be the G o(M) = as rational functions we have = 1 ^ 1 8 g ~= D Let R • • = 0 = e • • • e Let be the least the least ƒ G R = M)~ for all Then m 2 - -i F = - \ = d • • • + rf = m + • notation, we have e if and G G M = M e • R R R a Cohen-Macaulay Let 0 an h.s.o.p.for R x £ X(G). Let . . , be R the R • • • + 0 a C-basisfor S Then obtained R = R U. R = UR a rj..., fjR/(0.., 0 SR 0 • R j 0 a R 0 R m G m X m a R C[a a a elementary symmetric function, = 'SXJXJ • • • x1 • • • R 0 a G a V) M M a pseudo- M Le/ G be a finite m independent that RC[0 6 if a be called G R G. a G G reflections a a a Let G be V) of and let r be the number of G. Then the LaurentA begins F = *r \r = 7 2 a m 1 \)~ M = I - a m — M a - - X) - p = M. P Gp = P. - P a P ~ p For G c let an h.s.o.p.for d Let R homogeneous Let g = \G\ and let r be theG. Then tg = d • drt + 2(e • • • +e = + • • • +d + If R . . with d then g = d r = / = 1 e Q Let \f/ xp homogeneous algebraically independent polynomials in R = C[x . x Let 0 in R which are polynomials in the xfr/s (so 0j E . Then there is a of m such that ^ all i E [m], equality all i if and only if = ^ fym \p • a T 9.., 9 ^ = k k am i E • R d H G G. R C[\p ip R R a \pe ^ d r G H. e d = d \G\ = \H| G = H. • Let G c GL{V) be f.g.g.r., let b the M with exactly i to one. Suppose R ...,0 with d 0 Then m 2 bji' = + « - D 1 g = 7Hd r = a R G a A % c V a reflecting I E G a% G % a C P s x( P%f. Sy{x) x % P L % % = {a E V: Lyfjx) = f T[ V. ƒ a R^% R£ a Let G c be an let x be a linear R R ƒ , i.e., M)~f Let G G be an let o be the linear by o(M) = My C[0 9 let J(0..., = (dOt/dxj), Jacobian matrix of 9 x some 0 ^ a E C we have af J(0 0 • G m X mR C[a.., a ax x transpositions a i = • m = mlr = 0 + 1 + • • • + = a M = (m^) vr m] ir(i) =j nty = M a = 0 + W + • + - m) m — a s{m group G a = = A alternating f G R, x = x IT. R% = . . , x A = discriminant. a + • • • R det(xj- = A(x a Let, 6 an h.s.o.p.for R is of Set d 0 t = d -d Then the action of G on the quotient ring S = R/{0 0 is t times the regular G. (I.e. multiplicity of x in S is equal to S xG S. H*{ri) x G n S S = H S S * g X = x S = D Let G be an fg-g.r. with R Then the action of G on R/(0., 0 is the G. D H Let G be the all m X mand let x be the G the partition of m. Then H is equal to the m) of such that n is equal to the sum of of Y for a the left of i + • G T = R/R+, R° = Rf © Rf © T R R a T x a linear G a T 1 R a Let x be a linear character of G, and define f {Though is anf.g.g.r., the sense for any G.) Then R a free R {of rankand f R£, in R% =f Q a f g a g — = 1 ^ S{g) right-hand a 2 T\ ' g w — all F group G g f a S{g) = G a F x = x y = G x b E N 0 c g R R a a xy. n\ 1 + - • + a = a co =£ =S = 23g 5 •S = (g S 2k gx g 2 = 1 2 X n C a X error-correcting C self-dual,C = {v e X: v • w = 0 w Ev • n = C r W(x,y) = C W((x + y)/V2 , - y)/V2 ) - a w E C w w =W(x,y) GG a a G R C[0 0 6 6 0 + = x _ a a = G P a a n without = + + ++ + + + + P a a X \j*i. 2 2 Pn(«)W= V = V • • • © V V G c Mx G V M G G x G V V e x G V x..., x a V R = C[x 1 i 1 j V, R = R R Ilij x$ a 1 i G R R R R R R F = 2 R 2 M V M V s n, R = 1 i 1 j group &„ [n] V a T ® s c C c A 2 = • X[y - 1 = 0 0 = P a T a = a • • • + a a a « = a a n a R£\ /� aN R B aj(x x G G [n], 0 je*.R % ^ e We have (\ - \fit\~ V QnW*" ' where Q is a • Q A distinct + R^ x T Abelian V/ E [m]. M G G x V a V I a R a x F = a F R 7 2 ô M = s RX\\ • • • 9 d R x£»] x£ 0 fa i E d g. aR a ô a = 0 ô \ = R G G 1 + ! - X - - - + ! 1 - - J + R © © x^xj). xf R a a^ViPi(^\y • • • Fr}/$ a R syzygies. y R R a y d F = \ syzygies of the first A F \ S • 9 0 a = f. F = X F = ~ XS; = S S S 0 syzygiesthe second aF F = - 2X + -Hilbert syzygy theorem s F -\ s F R F a R a Aa G R R G R x + x A S = S F = - - - F a kth a B = B B • • • a y B, d� y ,y A A = k[y ,y A A • • • = dj. A B y J = yJƒ e B. B 1 y B a B a A/1 of A, ƒ a A I I Throughout paper, A, and B = A/1 a A Ph PO 0^M� M h s M a free A a finite free B A M A M d M d. Af a d d a F{B F(B, X) = j=\ F(B, ft.j module1 i h. M M M a M a minimal a minimal free B A Bunique, M Nj ^ h = j A M Ph , , PO 0 M M 0 N N� N N 5 M d a rank) M Betti B P?(B). • • • y minimal B a fi d B, fi pf(B) y.., y problem fi BA p = A = 0 B a B B • • • h h /3^(B) homological dimension B hd B y y A m = B B = A/1 A = k[y s B s. B = s - m B Let G be a finite C[y let R A/1 as hd = s- m. D R 0 G pj (j� r X s r = Mj s = Mj_ M A. pj 0 pj a k. R a y y F a d^ dj/s F a Suppose the is generated by elements.., y of the same degree e that F(B = + pX - X by Lemma we have + p)g = e B = R Then in the of B (with y have that h = p and that the i E [p] a basis i(^+l) + • Suppose that the N-graded k-algebra B is a Cohen-Macaulay of the same degree e, and that F(B, = + pX X - X by Theorem we have + p)g = e = R the minimal free of B (with respect to y have that h =p and that the i e [p — has + l W + 1 / elements of + while M one element of + 2). U G A = C[y = y Q^A� � A-R [y\ — y\y by?\. M A 0 B) = A 8 y\ - y\y 4y A). - - R/i = h G 23 R Ji x x ^^ a + = + - R 3 M 6 M 8 M 3 += ��0-A*$A**A*2A-*R = = y y\y-. y y 0 0 0 y* y y* 0 -y% ,-y\ �-yl -ytfs -y - y^y* 0 0 y 0 0 -y -y 0 y 9 0 0 0 0 y 0 •y y 0 0 0 -y y 0 y* y 0 -y\ 0 0 0 y\ y -y* -y 0 -y\ 9 y ( -yt 0 Pi G - - F \ + + - R x i j R fl . . , fa) = fa = group G3F = + - . . . , fi - R R A R R A R R fa(R R hd s - A a ring A =... = A), A A-*A. a A u( +&#xj000; u =&#xj000; (uf)) u E e A. a a uf i»f: ty.) AA A . . , v / X q A. A f u Evf,..., * transpose a B y y A =.. ,y y y B A) = pf a BÜ Ü = A ti Ati canonical B. B = A,Q A, & a a ti A B = A/I I ti ti a B a y y A. E Ü ti A a fi B, A, type B, B. a B. 6 BT = k[0 0 B = ViTîoY E B. t T) rj* fy.&#xt000; (gf) ƒ E&#xt000; B E g EHom Q(B) a T) a B a ti(B) s T) Hom (T/T+) ® Hom T T 0 S = a t\ socle S S S ƒ B positive B = S. ti(R Let G be finite and let be the given o(M) = Then ti(R s R B a a F(ti(B) q E ti(R s R G e R C[x =x*y © xy Ü(R Q(R = E R:y) ti(R a xy a + b = 1 Q(R R xy. Ü(R = xR yR C[x\y xY). Q(R RS = R a x*y S x^ S = R = y xy A = R 0-^A A yi -y A, y\ ] y\yA-yl yxyi-yiy* 2 = R �0-A —� A\ [y\y4-y3y2y3-y4yiy2-y3y4] r yi y* [~y* y A ] y\ ~y* J ti(R s A J A (y x y, 2(R s T = a = xy x*y. T) = = 7)*x = y*x = = \*^ y*^ _ = = 0 = = = (x^)i*y nn*y = - (x = 0 = fy*y T) = Si(R ti(R Ü(R » R fc-algebra B Gorenstein =B Q(B) » B a B. MP*-i h. B M B tf = Q s-m. = p£ ptf (B) = pf i = 0 B F(B, B B a F(B, B m, F(B, l/X) = (-l) / E a B = i\ik[0.., 0 d 9 e 0 = ee • • • + = 1 / t. m l P(X) = \ B sufficient, B a B = R G a R aR F a / = m + r, m = V r G. R R R f R f R, o = Let G be a finite Let o be the = M)~ Let % % a reflecting V, and define the L R by % = {a E V: Lc^a) = Let c the order of the (cyclic) subgroup of G which fixes % pointwise, and define f J[c over all in V. (This the preceding when Then the R X 1 - XM) - XM) ' where is the G. f R which case we have R • If G c (i.e., M = for all M E G), then R G C r = 0 • If r = 0 and RG r = X = 0 g = G M a = a G 3 6 - - e R x = x = x R = x y y xyz, xy\ xY. R 7 = a y\ - - y\ - - ~ - - ~ = = P ft + fifio = = fi a G G x..., xjfr.G c x^" R R xffc) ax^~ x%-\ R R a R R a a y B, B = A/I A = k[y y ofy A m� s - pf (B). /3f (B) A s s - m B a complete a A y a B A B z a = (1?(B). a Pfi Pi P\ Po �0-M� M M a {S: S = M A). M M ft 1 ft({öi, • • a,}) = 2 iy*.., â, • • • a ^ a ftp,., = Koszul complex B z$ I. 0 ± a a B a B is a intersection and thecomplex is the free • B a (B) = = s — B, B B = B R B. S M S = 2 e e eej = Zj. d y X) V S SCZ[J3] 1 1 B a F F(B, a G 6 f e R r) = x\, y x%, y x^x^ y x il = 5 = 2 R a 0-+A R z z = y y z a = - - - - - - - a G 4 - - - y x\ x\ x A = = =� *i = = X\X y RG = ƒ z 7 - 4 = R a ~ = -Z 0 0 ^ 0 A* FG(V = - + - - + + + - - - - a s — m = B a ring) y yminimal B fi = 1 B = a unique B. B a hypersurface. A y y = m + = P(y y t� 2 P a y y y B = • • • • © © 7s + a ring G R R a H' c G c H, H H ' H. G c V) R a a I Let m = V = 2 G is a finite Then R a • a G c R a H = G n a G ail m X m R ƒ (x x E R. a a discriminant A = - Xj). R a . . . , aP(a a P. R a Suppose H = G n G c is an the index [G : H] is a prime power, then R a complete [G : H] is a prime p, then R a C[0..., 0 = f the = (as defined preceding then R © • • • 0 • V = V • • • © M (V) = MEG. MEG MEG a m = m M(V = V^y V 1 / = m). x a V M x V a monomial a A G a monomial M-*m a G % [m]. G c V) ax.. x If M E G, C a TTC = c = i / - tf = ot i / M(x = y = a \c\ - ƒ = a ƒ a = ) R R = x a. a M a a a MR R R R? = R R U R a a R„R? R R a L (X... ) » 2 a = (o a R„ a V. Let G c be a finitea V) of Then = 7 2 + + + Ö C ranges all M E G C m C C = aflW(tf/) = / / - *n = = i / = a = a R a M R a u E R M(u) = au a u = ( n E Mu = Û (t a \C t \C o Xf fi + + y + • a G = L I = M M 0 : + • • • ) , - \\ + \l - + • • • - • • • f 3 0 : - - + • • • - + - = + 2 + 2 + 2 W i = l i = l Ki xf + the Xj xfxf, x[x{ + x{x i x[x{ / permutation groups, all m X m M[m] M x^ C[x xM(x e % ƒ ~ ƒ MgMEG. patterns. ƒ g f(m) type, type a a a a, 8 GRf 8 R„ E a, Let be a Let the patterns f : N of Define Then a Fc(» l 2 S C where • a a a I Decompositions exterior and of in and relations to invariants, The theory Introduction Some results theWeyl Gleason's theoremself Groupes Lie, 5 Pólya's Theory Invariants finite generated by Finite reflection 9 Advanced Representation theory finite and associative Invariants finite groups Two Permutation statistics Problem solution, Der Modul eines Ueber die Theorie der Algebraischen Cohen-Macaulay theperfection Polynomial invariants finite groups two Fine Dualitàt und New for , Calculation the Molien function A the a Generalization On the a Theory finite Uber die Invarianten der Kombinatorische und Polynomial point The theory of An Combinatorial Groupes , Algèbre Finite 6 Error-correcting and invariant theory: New a Dimension Invariants finite , Partition A Regular elements of finite , Invariant Relative finite , Hilbert Invariants finite On , A the , Complete of the Equations Certain , Certain The Partitions of 7 Commutative Current