/
IEEE TRANSACTIONS ON ELECTRON DEVICES VOL IEEE TRANSACTIONS ON ELECTRON DEVICES VOL

IEEE TRANSACTIONS ON ELECTRON DEVICES VOL - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
422 views
Uploaded On 2014-12-16

IEEE TRANSACTIONS ON ELECTRON DEVICES VOL - PPT Presentation

45 NO 12 DECEMBER 1998 2437 Analysis of SiGe Heterojunction Integrated Injection Logic I L Structures Using a Stored Charge Model Simon P Wainwright Member IEEE Stephen Hall Member IEEE Peter Ashburn Member IEEE and Andrew C Lamb Abstract A ID: 25033

DECEMBER

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "IEEE TRANSACTIONS ON ELECTRON DEVICES VO..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

IEEETRANSACTIONSONELECTRONDEVICES,VOL.45,NO.12,DECEMBER1998AnalysisofSi:GeHeterojunctionIntegratedInjectionLogic(I L)StructuresUsingaStoredChargeModelSimonP.Wainwright,Member,IEEE,StephenHall,Member,IEEE,PeterAshburn,Member,IEEE,andAndrewC.LambAbstractÐAquasi-two-dimensionalstoredchargemodelisdevelopedasanaidtotheoptimizationofSiGeintegratedinjectionlogic(IL)circuits.Themodelisstructure-basedandpartitionsthestoredchargebetweenthedifferentregionsoftheILgate.BoththeNpNswitchingtransistorandthePNploadtransistorarecorrectlymodeledandtheeffectsofseriesresistancesonthegateoperationaretakenintoaccount.Themodelisappliedtosurface-fedandsubstrate-fedvariantsofSiGeLandtheGeanddopingconcentrationsvariedtodeterminetheimportanttradeoffsinthegatedesign.Atlowinjectorcurrents,thesubstrate-fedvariantisfoundtobefasterbecauseoflowervaluesofcriticaldepletioncapacitances.Athighinjectorcurrents,theperformanceofbothvariantsislimitedbyseriesresistances,particularlyintheNpNemitterlayer.Theinclusionof16%Geinthesubstrate-fedILgateleadstoadecreaseinthedominantstoredchargebyafactorofmorethanten,whichsuggeststhatgatedelayswellbelow100psshouldbeachievableinSiGeIevenatageometryof3 N-typeSidopingconcentrationinthesubstrate(usedexclusivelyinC-I L). N-typeSidopingconcentrationintheswitchemit-ter(usedexclusivelyinC-I L). N-typeSidopingconcentrationintheinjectorbase(usedexclusivelyinC-I L). P-typeSidopingconcentrationintheinjectoremit-ter(usedinbothC-I LandSF-I L). p-typeSiGedopingconcentrationintheinjectorcollector/switchbase(usedinbothC-I LandSF- L). N-typeSidopingconcentrationintheswitchcol-lector(usedinbothC-I LandSF-I L). N-typeSidopingconcentrationintheinjectorbase/switchemitter(usedexclusivelyinSF-I ManuscriptreceivedJanuary29,1998.ThereviewofthispaperwasarrangedbyEditorW.Weber.ThisworkwassupportedbytheEngineeringandPhysicalSciencesResearchCouncil.S.P.WainwrightwaswiththeDepartmentofElectricalEngineeringandElectronics,UniversityofLiverpool,LiverpoolL693BX,U.K.HeisnowwithFagorElectronica,Mondragon,Guipuzcoa,Spain(e-mail:swain- Widthoftheswitchemitter(usedexclusivelyin L). Widthoftheinjectorbase(usedexclusivelyin L). Widthoftheinjectorcollector/switchbase(usedinbothC-I LandSF-I L). Widthoftheswitchcollector(usedinbothC-I andSF-I L). Widthoftheinjectorbase/switchemitter(usedexclusivelyinSF-I L). Depthoftheintrinsicstructures(intothepage). Depthoftheextrinsicbaserails(intothepage). UpwardcurrentgainoftheN-p-Nswitchtransistor. UpwardcurrentgainoftheP-N-pinjectortransis- N-p-N(switch)Gummel-Poonforwardtransportcoef cient. P-N-p(injector)Gummel-Poonforwardtransportcoef cient. Forwardcommonbasecurrentgainofswitch. Forwardcommonbasecurrentgainofinjector. Reversecommonbasecurrentgainofswitch. Reversecommonbasecurrentgainofinjector. LParameters Lengthofinjectorbase/switchemittercontact. Spacingbetweeninjectorbase/switchemittercon-tactandedgeofswitchbase/injectorcollector Lengthofswitchbase/injectorcollectorimplanta- Lengthofswitchcollectorcontact. Spacingbetweenswitchcollectorcontactandedgeofswitchbase/injectorcollectorimplantation. Lengthofswitchbase/injectorcollectorcontact. Lengthofswitchcollector . Lengthofactivearea . Lengthoftotalarea . Electronstoredchargeinthesubstrate.(injector1998IEEE IEEETRANSACTIONSONELECTRONDEVICES,VOL.45,NO.12,DECEMBER1998 Holestoredchargeintheinjectorbase/switch Electronstoredchargeintheswitchbase/injector Holestoredchargeintheswitchcollector. Holestoredchargeintheswitchcollectorinjectedfromtheextrinsicbaserails. Electronstoredchargeintheextrinsicbaserails. Switchemitter/base(injectorbase/collector)deple-tioncharge. Switchcollector/basedepletioncharge. Switchcollector/basesidewalldepletion.chargeConventional(Surface-Fed) LParameters Lengthofswitchemittercontactandisolationtoedgeofswitchbase/injectorcollectorimplantion. Lengthofswitchbase/injectorcollectorimplan- Lengthofinjectorbaseregion. Lengthofisolationimplantationbetweeninjectorbaseandswitchcollector. Lengthofswitchcollectorregion. Lengthofswitchbase/injectorcollectorimplan- Lengthofswitchbase/injectorcollectorregion . Lengthofactivearea . Lengthoftotalarea . Holestoredchargeinthesubstrate. Holestoredchargeintheswitchemitter. Electronstoredchargeintheswitchbase/injector Holestoredchargeintheinjectorbase. Holestoredchargeintheswitchcollector. Holestoredchargeintheswitchcollectorin-jectedfromtheextrinsicbaserails. Holestoredchargeintheinjectorbaseinjectedfromtheextrinsicbaserails. Electronstoredchargeintheextrinsicbaserails. Switchemitter/basedepletioncharge. Switchcollector/basedepletioncharge. Injectorcollector/basedepletioncharge. Injectorcollector/basesidewalldepletioncharge. Switchcollector/basesidewalldepletioncharge.I.IIGH-performancebipolarlogiccircuitsareusuallyreal-izedusingemittercoupledlogic(ECL)butthattechnol-ogyfeaturesrelativelylowpackingdensityandhighpowerdissipation.IntegratedinjectionlogicorI L[1],[2]isalowpowerbipolartechnologysuitableforVLSIwhichtraditionallyhassufferedfromarelativelypoordynamicperformance.TheminimumgatedelayofSiI L[3]isprimarilydeterminedbystoredchargeinparasiticdiodesassociatedwiththeextrin-sicbaseregionsoftheI Lgate.Self-alignedcollector-basestructureshavebeenreported[4]whichminimizetheareaoftheseparasiticdiodesanddeliveragatedelayof0.8nsforalayoutgeometryof2.5 mandafan-outof3.Otherparasiticsthatcanin uencethegatedelayareseriesresistanceeffectsinthebaseandchargestorageintheintrinsicbaseofthepnpRecentlytherehasbeenrenewedinterestinI L,motivatedbytheimpressiveperformancereportedforSiGeheterojunc-tionbipolartransistors.InthecontextofI L,SiGetechnologyofferstheprospectofusingbandgapengineeringtominimizethestoredchargeintheparasiticdiodesassociatedwiththe Lgate.ModelingofSiGeI Lhasbeenreportedrecently[5],[6]butwithconsiderablecompromiseinthetreatmentofthepnploadstructureandhencetheomissionofimportantparasiticelementsinthemodels.TheworkofMazhari.[5]representedtheloadasacurrentsource,implementedbyavoltagesourceandresistor,whereasKarlsteenetal[6]representedtheloadwithanidealcurrentsource.Theseapproximationsthereforeprecludeconsiderationofthechargestorageassociatedwiththeloadandalsopredictincorrectlythecurrentdeliveredbytheload;thelatterbecausetheloadtransistoriseitherintheactiveorsaturatedregime,dependingontheprevailinglogiccondition.Moreover,theseapproachesdonotconsidertheinherenttradeoffsinthedesignofthemergedn-p-n/p-n-pdevices,whichplacesevereconstraintsontherelativedopinglevelsofthesemiconductorregionsandtheGeconcentrationofthen-p-nbaselayer,asoutlinedinSectionII.Furthermoretheworkpresentedin[5]onlyconsidersthegatedelayofcircuitswhich,althoughbeingakeypartinthetotaldelay,neglectscomponentsofcapacitanceandlateralseries`access'resistances.TheapproachusedhereisbasedonthemodelofHen-dricksonandHuang[7]andinvolvesdividingthestructureintodiscreteregionsforeachofwhichthechargeinjectionconditionscanbecalculated.Thusthestoredchargecanbeascertainedthroughoutthestructureandforagiveninjectorcurrent,thepropagationdelayoftheinvertercanbecal-culated.Themodelisextendedfromthatdescribedin[7]inthatjunctionvoltagesarecalculatedforagiveninjectorcurrentandloadgate.Thusallterminalcurrentsareknownandaquasi-two-dimensionalapproachisthenemployedtocalculateterminalvoltagesusingsimplespreadingresistancescalculatedfromthesemiconductorlayerparameters,assumingthedepletionapproximation.Themodelisthereforequasi-two-dimensional.Wehavechosentoapplythemodeltothreespeci cSiGeI Ldesigns,oneaconventionalsurface-fedapproach,thesecondsubstrate-fed[8]andthethirdavariantwhichisspeci callyoptimizedforSiGeI Landfeaturesahighdegreeofself-alignment.Thelatterservestodemonstratethe exibilityofthemethodandalsopredictsagatedelayof34ps.ThustheuseofheterojunctionscanaddhighspeedtotheotherwellknownadvantagesofI Ltechnology,namelyhighpackingdensity,lowvoltageandlowpowerdissipation.II.I ATEAschematicdiagramofanI LinverterisshowninFig.1.WeareconcernedherewithtwoformsofI L:substratefedlogic(SF-I L)andconventionalsurfacefedlogic(C-I L)of WAINWRIGHTetal.:ANALYSISOFSi:GeHETEROJUNCTIONINTEGRATEDINJECTIONLOGIC2439 Fig.1.Circuitdiagramofanintegratedinjectionlogicinverter. Fig.2.Schematiccross-sectionalviewofthesubstrate-fedintegratedinjec-tionlogic(SF-IL)gate.Dimensions(m)are,lateral:=10=15.Intrinsicdevicewidth,=12andwidthofextrinsicbaserails,whichthesimpli edcrosssectionsareshowninFigs.2and3.ThesestructureshavebeendesignedtobeconsistentwiththeepitaxialbaseandcollectorprocessesthatareneededforaSiGetechnology.TheoriginalconventionalsurfacefedI Lcircuitsreportedin[1],[2]featuredalateralP-N-Pinjectortransistorwhichwasinef cientindeliveringthebasecurrentfortheverticalswitchingtransistor.ThelateralP-N-Palsoledtothepoordynamicperformanceoftheoriginal Lcircuitsasaresultofexcessivechargestorageinthevicinityoftheemitteroftheswitchingtransistorwhichismergedwiththebaseoftheinjectortransistor.TheSiGeversionofC-I LshowninFig.3hasaverticalP-N-p(upper-casedenotesSi,lower-caseSiGe),whichhasthepotentialtoovercometheproblemofpoordynamicperformancebecausetheheterojunctioncanlimittheholeinjectionbackintothebaseoftheP-N-pinjectortransistorandalsointotheN-substrate.TheSiGecollectoroftheinjectortransistorismergedwiththebaseoftheN-p-NswitchingtransistorandtheN-substrateformstheemitteroftheswitchingtransistor.IntheSF-I Lvariant[8],showninFig.2,theemitteroftheinjectortransistorisassignedtothesubstrate,therebyensuringanef cientsupplyofbasecurrentfortheswitchingtransistor. Fig.3.Schematiccross-sectionalviewofthesurface-fedintegratedinjectionlogic(C-IL)gate.Dimensions(m)are,lateral:=15=10=30=10=10.Intrinsicdevicewidth,=15widthofextrinsicbaserails,Clearly,thesubstratefedversionhashigherpackingdensityandinherentlylowercapacitancethanthesurfacefed,butattheexpenseofmorecomplexdevicedesigntradeoffs.TheinherentadvantagesofthedesignsshowninFigs.2and3are rstlythattheheterojunctionemitter/basestructureoftheN-p-Nswitchingtransistorproduceshigh forimproveddynamicfan-out.Secondlytheheterojunctioncollector/basestructurefortheinjectortransistorreducesholeinjectionintothebaseoftheinjector(alsotheemitteroftheswitchinSF-I L)reducingchargestorageinthatregion.Thirdlymodernlowtemperaturegrowthtechniques(MBEorLPCVD)ensureexcellentcontrolofepitaxiallayerthicknesses.ThisisespeciallyimportantfortheSF-I LN-p-Nemitterlayerwhichhasastrongin uenceondynamicperformanceandwasamajordrawbackoftheoriginaltechnology.Finally,epitaxialSiGebasesaremorereadilyscalable,whichisanimportantadvantageoverSiI A.DesignConstraintsAnanalyticalmodeloftheI LinverterhasbeenpresentedbyKlaassen[9]whichallowstheconditionsforachievinginverteractiontobede ned.ReferringtoFig.1,physically,therequirementisthatthemergedP-N-p(injector)andN-p-N(switch)transistorsshouldbedesignedsuchthatthevoltageassociatedwithalogic1onthebaseoftheN-p-N besuf cientlylowerthanthepowerrailvoltage, ,sothattheP-N-pinjectorisabletosupplysuf cientcurrent,thatistosay,theP-N-pmustnottotallysaturate.Thereisalsoalimittotheªupwardºgain, ,oftheN-p-Nswitchtransistor.Thesetwoconditionscanbesummarizedas (1) (2)where istheGummel-Poonforwardsaturationcurrent,thesubscriptsªNºandªPºrefertotheN-p-NandP-N-pdevicesrespectivelyand (3) IEEETRANSACTIONSONELECTRONDEVICES,VOL.45,NO.12,DECEMBER1998 electroniccharge; emitter-basejunctionarea; diffusioncoef cientofminoritycarriersinthebase; intrinsiccarrierconcentration,dependentonboththeGeconcentrationandband-gapnarrowingintheheav-ilydopedbase; basewidth; dopingconcentrationofthebase,whichisassumedReferringto(3),wenowlisttheimportantdesigntradeoffsassociatedwiththeratioof which guresin(1)and1)IncreasingtheGeconcentrationincreases duetoareductioninbandgapandhastheaddedadvantageofdeferringthehighinjectionconditioninthebaseoftheN-p-Nswitchingtransistortoahigherbiasvalue.HowevertheexcesschargestorageinthebaseoftheN-p-Nswitchingtransistorisincreasedwhichaffectsthedynamicperformance.2)ReducingtheSiGedopingcausesanetincreasein ,asthebandgapnarrowingandotherdependenciesareweaker,in(3)thanthatof .Reducing howeverhastheadverseeffectsofincreasingtheseriesresistanceandchargestorageinthebaseoftheN-p-Nswitchingtransistoraswellasreducingthebiaslevelfortheonsetofhighinjection.3)Increasing (P-N- basewidth)directlydecreases butalsoadverselyincreasesthechargestorageintheinjectorbase.Alarger hastheadvantageofreducingtheseriesresistanceinthebaseoftheP-N-pandalso,fortheSFvariant,intheemitteroftheN-p-Ndevice.Thisisanimportantadvantage,asthecurrentisthislayerwillbehighwithalogic1attheinput.4)Increasingtheinjectorbasedopingreduces decreasesseriesresistanceandincreasesthebiaslevelfortheonsetofhighlevelinjection.ThereisalsoadisadvantagefortheSF-I Lvariant,asitalsoincreasesthebase-emittercapacitancefortheswitchingtransistorwhichlimitsswitchingspeeds.TheseimportantdesigntradeoffsplacesevereconstraintsontheGeconcentrationanddopinglevelsbutarevitaltotakeintoaccountinarealisticappraisalofI L.Inparticular,spreadingresistance,especiallyintheN-p-Nemitterlayercanpreventinverteraction[10].FurthercommentisdeferredtothediscussioninSectionV.III.TInthissectionandtheassociatedappendix,wedescribethemodelwhichallowscalculationoftheaveragetimetoswitchchargebetweentwologiclevels,asafunctionofinjectorcurrent.Thedeviceisdividedintodiscretechargestorageregionsassociatedwithquasineutralanddepletedregions.Thedetailedexpressionsforthechargestorageineachregionconsideredarepresentedintheappendixandcanbeunderstoodbyreferringtothelistofsymbolsandtheregionalde nitionsinFigs.2and3.Theprincipleisdemonstratedbyconsiderationofthefollowingtwoequationswhichdescribetheswitched(free)chargeassociatedwithaquasi-neutralregionboundedbyinjectingandcollectingjunctions: andthatfortheswitchedchargeassociatedwithadepletion (5)where electroniccharge; area; intrinsiccarrierconcentrationofthesemiconductor; dopingconcentrationoftheregion; thicknessoftheepitaxiallayer(orthediffusionlengthifnecessary); appliedjunctionvoltage; built-injunctionvoltage; thermalvoltage.Thevoltagetermsinexpressions(4)and(5)accountforthedifferenceinjunctionvoltageatlogicª1ºandlogicª0ºandarede nedas: (6) wherethesubscriptsª1ºandª0ºrelatetohighandlowlogicconditionsrespectively.Theaveragetimetoswitchbetweenthetwologiclevelsasafunctionofinjectorcurrentisfound AlsoincludedinthemodelarethespreadingresistancesofeachregionwhichwhencombinedwiththeEbers-Mollmodelscanbeusedtocalculatetheterminalvoltagesasfollows.Theoperatingconditions ,foragiveninjectorcurrent,aredeterminedbythefollowingiter-ativeprocedure.First,thecommonemitter andcommon currentgainsandthespreadingresistancesofthedifferentlayers,arecalculatedfromthedopinglevelsandthicknessesofthevariousregions,ignoringdepletionregions.Bothreverseinjectionandneutralbaserecombinationareconsideredasmechanismsforbasecurrent.Dopingdependentdiffusioncoef cientsandband-gapnarrowingaretakenintoaccountusingtheempiricalexpressionsincludedin[11]and[12].TheeffectofGeconcentrationontheintrinsiccarrierconcentrationistakenfrom[13].Junctionvoltagesandcur-rentsarethencalculatedusingtheEbers-Molltransportmodeltogivetheemitter-basevoltageoftheswitchtransistor,as (9) WAINWRIGHTetal.:ANALYSISOFSi:GeHETEROJUNCTIONINTEGRATEDINJECTIONLOGIC2441andthebase-collectorvoltageoftheinjectortransistoras: ReferringtoFig.2,theemittercurrentfortheinjectortransis-toroftheSF-I Lversiononlyis Thefactorª ºin(11)isanestimateofthefractionoftheemittercurrentthatiscollectedinthebaseoftheswitchtransistor.ThecollectorcurrentsoftheN-p-NswitchtransistorofthegateunderconsiderationandtheP-N-pinjectortransistorofthefollowinginverterareequal ,andsowecanwrite Theactivevaluefor isusedin(12)becausetheinjectortransistoroftheloadinggateisunsaturatedwithalogiczeroontheoutputofthetestgate.Wecanalsowrite Now,recognisingthat ,(9)and(10)areequatedandrearrangedtoallowcalculationof the rstinverterandhence canbefound.Thejunction canalsobefoundfromtheappropriateequationoftheformof(10).Allcurrentscanthusbedeterminedintheªintrinsicºinverterandhencethevoltagedropacrosstheswitchemitterlayerwithseriesresistance, ,canbecalculatedas fortheSF-I Lstructure fortheC-I Lstructure Similarlythevoltagedropacrossthecollectorseriesresistance, ,canbecalculatedusingthefollowingexpressions: Thisenablesthevoltagestobefound.Thesevaluesforterminalvoltagearethenusedtogiveªworstcaseºestimatesofdepletionregionwidthsanddependentparam-etersandtheterminalvoltagesarere-calculatedusingad-justedvaluesofquasineutralregions.Finallythevariouschargecomponents arecalculatedusing(A1)±(A13)or(A14)±(A28)andthepropagationdelay ,fortheinverterswitchingbetweenthetwologiclevels,foragiveninjectorcurrentiscalculatedfrom(8).Theinjectorrailvoltagecanbecalculatedfrom (16)where istheseriesresistanceassociatedwiththeemitteroftheinjectortransistor.Thevalueofinjectorvoltageob-tainedfrom(16)allowsthecalculationoftheaveragepower Fig.4.ValidationofthechargestoragemodelbyacomparisonofthepredictedswitchingtimeasafunctionofinjectioncurrentwiththemeasuredresultsofTangetal.[4].IV.RESULTSA.ValidationoftheModelingTechniqueTheself-alignedSiI LstructureofTangetal.[4]wasimplementedinthemodeltoprovideexperimentalvalidationoftheanalysismethod.Averagevaluesforimpuritylevelsofdiffusedregionswereused,deducedfromthesheetresistancevaluesgivenandtakingintoaccountdopingdependenceofmobilitybasedontheaveragevalues.Thereported,measuredvaluesfortransistorcurrentgains wereused.TheresultsareshowninFig.4anddespitetheapproximationsmade,verygoodagreementisobtainedbetweentheexperimentaldatapointsandthesimulatedswitchingtime,whichprovidescon denceinthemodelingtechniqueusedhereforpredictivesimulations.Itisworthnotingthattheassumptionofconstant,averagedopingconcentrationismoreappropriateforthecaseoftheepitaxialSiGestructuresconsiderednext.B.SiGeI LSimulationsTherearetwoaspectsofI Loperationthatmustbeconsid-ered; rstlythefactthatdimensionsanddopingconcentrationsshouldsatisfytheconditionsforinvertingaction,andsecondly,withinthoserestrictions,thattherelativeparametersshouldbeoptimizedtoobtainthebestpossibletransientperformance.Theparametersneededtosatisfytheinvertingactioncondi-tionsweredeterminedbytwo-dimensional(2-D)simulation(MEDICI)fromwhichtheSPICEdcmodelparameterswereextracted.Theresultsofthisprocess[10]identi edtheim-portanceofminimizingspreadingresistance,particularlyintheswitchemitter,inadditiontotherequirementssetby(2)and(3).ThematerialparametersthatarerequiredtoallowinvertingactionaregiveninTableI.UsingthedopingconcentrationsinTableIitwasfoundthata16%molefractionofGewasrequiredtoensureinvertingaction.Thevaluesforswitchemitterdopingconcentrations, and ,needtobehighinordertoreducespreadingresistances.Usingthesepreliminaryresultsthechargestoragemodelcanbeutilizedtodeterminetheswitchingdelaytime,thepower- IEEETRANSACTIONSONELECTRONDEVICES,VOL.45,NO.12,DECEMBER1998 (a)(b)Fig.5.Calculatedcomponentsofstoredchargeasafunctionofasafunctionofinjectioncurrent:(a)substrate-fedIntegratedInjectionLogic(SF-and(b)surface-fedintegratedinjectionlogic(C-ITABLEIUMMARYOFTHEATERIALANDSEDINTHEALCULATIONS delaycharacteristicsandtoidentifywhichchargestorageregionlimitsperformance.Wepresentresultsfor2.5 designrules,unlessotherwisestated,inordertoalloweasycomparisonwiththeliterature.Fig.5showsthemagnitudeofthechargecomponentsasafunctionofinjectorcurrent, ,foreachstructureusingtheparametersinTableI.Itcanbeseenthatinbothsubstratefed[Fig.5(a)]andsurfacefed[Fig.5(b)]variantsthemostsigni cantelementsofchargearethoseassociatedwiththedepletionregions(the Toreducethesechargeelementsthestructuraldimensionsand/orthedopingconcentrationsoftheseregionshavetobereduced.Unfortunatelythislattermodi cationwillcauseanincreaseincriticalseriesresistancesintheassociatedregionsandasaresultthereistradeoffbetweendepletioncapacitanceandseriesresistance,aswillbediscussedlater.TheeffectofintroducingSiGeintothebaseoftheswitchtransistorisillustratedusingthespeci cexampleofthetwolargestexcesschargetermsinthesubstratefedstructure, (holesstoredintheswitchemitter)and (electronsstoredintheswitchbase).Theresultsareshownin Fig.6.Storedholechargeintheswitchemitterandstoredelectronchargeintheswitchbaseasafunctionofinjectioncurrentforsubstrate-fedintegratedinjectionlogicgates(SF-IL)with0%Geand16%Fig.6foraSiGe(16%Ge)baseandapureSibase(0%Ge).ItisobservedthattheinclusionofSiGe(16%Ge)inthebaseoftheswitchtransistoreffectivelyreduces,foragivencurrentlevel,thereverseinjectionofholesfromthebasetotheemitter bymorethananorderofmagnitudebyvirtueoftheheterojunctionaction.AdisadvantageofintroducingSiGeistheincreaseinelectronstorageintheswitchbase totheincreaseinintrinsiccarrierconcentrationinthereducedbandgapSiGebase.Thebene tsofSiGeclearlyovercomethedisadvantagesinastructurewithadequatedimensions,astheincreaseinelectronstorageinthebaseislittlemorethanafactorofthree.Thedifferenceinsize,dopinglevelsandspreadingresistancesbetweenthetwostructuresexplainsthefactthatthisstoredelectronchargeisgreaterintheC-I LthanintheSF-I L.TheseresultsimplythataproperlyoptimizedSiGeI LtechnologycouldpotentiallydeliveraswitchingtimethatwasmorethantentimesfasterthanitsSiequivalent. WAINWRIGHTetal.:ANALYSISOFSi:GeHETEROJUNCTIONINTEGRATEDINJECTIONLOGIC2443 Fig.7.Calculatedswitchingtimeasafunctionofinjectioncurrentforthesubstrate-fed(SF-IL)andsurface-fed(C-IL)integratedinjectionlogicgates. Fig.8.Calculatedpower-delayproductasafunctionofinjectioncurrentforthesubstrate-fed(SF-IL)andsurface-fed(C-IL)IntegratedInjectionLogicTheswitchingdelaytimes,powerdelayproductandin-trinsicandterminalvoltage(logic)levelscanbeseeninFigs.7±9,respectively.ThelinearnatureofthedelaytimecurveobservedinFig.7con rmsthattheswitchingattheseinjectioncurrentlevelsislimitedbydepletioncharge.Thepowerdelay-productofSF-I Lcanbeseen,inFig.8,tobeapproximatelyafactorofthreelowerthanthatofC-I whichisconsistentwiththeswitchingdelaytimesshowninFig.7.ThepredictedlogiclevelsofthesubstratefedversionareshownasafunctionofinjectioncurrentinFig.9.Theterminalvoltagelevelscanbeseentodepartfromtheintrinsicpotentialsathigherinjectioncurrentsduetoparasiticpotentialdropsacrosstheseriesresistances.ThemostimportantcomponentofseriesresistanceisthatassociatedwiththeNepitaxiallayerthatformstheemitteroftheswitch(NpN)andthebaseoftheinjector(PNp).ThemagnitudeofthisaccessresistancecausesdebiasingoftheNpNtransistorathighcurrentlevelswhicheventuallyprohibitscircuitaction.Thecessationofcircuitfunctionalitycanbeseeninthiscasetooccurataninjectioncurrentof1mA. Fig.9.Predictedlogiclevelasafunctionofinjectioncurrentforthesubstrate-fed(SF-IL)integratedinjectionlogicgate.Alsoshownaretheintrinsiclogiclevelswhicharethelogiclevelsattheterminalsoftheintrinsicdevice(i.e.logiclevelsintheabsenceofseriesresistances). Fig.10.Calculatedswitchingtimeasafunctionofinjectioncurrentforasubstrate-fed(SF-IL)andasurface-fed(C-IL)integratedinjectionlogicgatedesignedwithagatedesignruleof1um.Alsoshownforcomparisonarethegatesthatweredesignedwithadesignruleof2.5um.V.DTheresultsinFigs.5±9indicatethatanumberoftradeoffsareinvolvedinthedesignofSiGeI Lgates.Wewillbeginbyconsideringthetradeoffsatlowinjectioncurrentswherethechargesinthedepletionregions dominatethegatebehavior.Itisclearthattoimprovetheswitchingtimeatlowinjectioncurrents,thedominantdepletionchargeshouldbereduced.FortheSF-I Lstructure,theswitchcollectordopingconsiderationshouldbedecreaseduntiltheswitchcollector/basedepletioncharge islowerthantheswitchemitter/basedepletioncharge [Fig.5(a)].Itisnotpossibletoreducetheswitchemitterdopinginordertoreduce ,becauseoflimitationsimposedbyseriesresistanceintheswitchemitter.FortheC-I LstructureinFig.5(b),thechargesthatneedtobeminimizedarethechargeintheinjectorcollector/basedepletionregion andintheswitchcollector/basedepletionregion, .Thiscanbeachievedbyreducingthedopinginthecollectorsofthe IEEETRANSACTIONSONELECTRONDEVICES,VOL.45,NO.12,DECEMBER1998 Fig.11.Schematiccross-sectionalviewofthesecondgenerationsurface-fedintegratedinjectionlogicgate.Layerwidths(m)are,nepi-layer,selectiveepi(inoxidewindows)045poly-silicon0.195,selectiveepi.ComponentsDEParespeci ctothisstructurebutarecalculatedusingthesameformofequations. Fig.12.Calculatedcomponentsofstoredchargeasafunctionofinjectorcurrentfortheself-alignedstructureofFig.11.injectorandswitchtransistors.Inthecaseoftheformer,thereisatradeoffwithseriesresistance,becausethecollectoroftheinjectortransistorisalsothebaseoftheswitchtransistor.Onceagain,itisnotdesirabletoreducetheswitchemitterdopingconcentrationduetolimitationsimposedbyseriesresistance.Theaboveconsiderationssuggestthat,atlowinjectioncurrentsthedirectbene tsofSiGearemarginalduetothedominanceofthedepletioncharge.Asmallbene tisobtained,whichismainlyduetothedecreasedchargeintheswitchemitter/baseandcollector/basedepletionregions.Atlowinjectioncurrents,themosteffectivewayofreducingthepropagationdelayistoreducetheareaofthedepletionregions,eitherbyreducingthegategeometryorbyemployingself-alignedfabricationschemestoreducetheextrinsicareasofthegate.Inscalingthedevicegeometry,SiGeislikelytobeofindirectbene t,sincetheincreasedgainoftheSiGeswitchtransistorwouldallowscalingtosmallergeometriesthancouldbeachievedusingapureSiI Ltechnology.Fig.10illustratestheeffectsofscalingthegategeometryontheswitching Fig.13.Calculatedswitchingtimeasafunctionofinjectorcurrentfortheself-alignedstructureofFig.11.time.Areductionofthegatedesignrulesfrom2.5 mto1.0leadstoadecreaseintheswitchingtimebyafactorofapproximately6forbothC-I LandSF-I L.Thebene tsofreducingtheextrinsicareasofthegatecanbeseeninthedifferenceinperformanceofC-I LandSF-I Lgates.TheoverallareaoftheSF-I Lgateissmallerthanthatofthe Lgatebecauseoftheuseofaninjectorinthesubstrate(Fig.2).Asaresult,thecriticaldepletioncapacitorsinthe LgatearesmallerthanthoseintheC-I Lgate.Evenfurtherbene tswouldbeobtainedifself-alignedfabricationschemeswereusedtoreducedepletionchargeandeliminatetheexcesschargeassociatedwiththeextrinsicbaserails[4].Suchastrategyhasachievedaswitchingtimeof290psinapureSiI Lgate[14]atagategeometryof3 mandoneforSiGeI Lispresentedinthenextsection.VI.ASSiGeI Wehaveseenthatthebiggestbene tsofSiGearetobefoundathighinjectioncurrentswherethestoredcharges and dominatetheswitchingtime.Minoritycarrierstored WAINWRIGHTetal.:ANALYSISOFSi:GeHETEROJUNCTIONINTEGRATEDINJECTIONLOGIC2445chargeincreaseswithinjectioncurrent(Fig.5)andhencedominatesthegateswitchingtimeatthehighspeedendofthespeed-powercharacteristic.Anotherfactorwhichhastobetakenintoaccountinthisregionofoperationisseriesresistances,whichlimittheachievableswitchingspeeds.Acarefuloptimizationofthegatelayoutandarchitectureisneededtooptimizetheswitchingspeed,andthisisaddressedinthestructureofFig.11.Thestructurefeaturesaself-alignedSiGeHBTwhichminimizestheareaoftheextrinsicbaserails,andalateralpnpinjectorforcompatibilitywithmainstreamSiGetechnology.Seriesresistancesareminimizedbyincludingann buriedlayerwithasheetresistanceof20 sq.andap polysiliconextrinsicbasewhichissilicidedwithasheetresistanceof2 /sq.ThechargecomponentsfromapplicationofthestoredchargemodelareshowninFig.12anddelaycharacteristicinFig.13,whereamaximumdelayof34psispredictedusing1.4microndesignrules.Incalculatingthesecurves,aGeconcentrationof16%wasusedandbase,emitterandcollectordopingconcentrationsof4 10 cm 3 10 cm and1 10 cm OptimumperformanceatthehighestachievablecurrentlevelwasachievedbyensuringthatthedepletionandstoredchargecomponentsinthevicinityoftheNpNbaseareequal.Thepredictedgatedelayof34psis8.5timeslowerthanthereportedexperimentalvalueof290psfor3micronpureSiI gates[14],whichclearlydemonstratesthepotentialofSiGe L.Inaddition,thereisundoubtedlyscopeforimprovingonthegatedelaybyscalingthedevicegeometryandfurtheroptimisingthegatelayout.VII.CThepaperhaspresentedamodi edchargestoragemodelforuseintheinvestigationanddesignofSiGeI Lgates,takingaccountofthedetailedarchitectureofthegate.Themodi edchargestoragemodelallowsidenti cationofthedominantchargestorageregionsintheI Lgateandrepresentsapowerfulaidinoptimization.Themodelisstructure-based,includesbothswitchandloaddevicesandallowsforappro-priateloadingofinputandoutputofagiveninverter.Theimportanceofd.c.designconstraintshasbeenemphasisedsothatrealisticvaluesforparametersareused.Furthermore,theeffectsofseriesresistanceswhichprecludeoperationtohigherinjectorcurrents,isinherentinthemodelandisshowntobeaveryimportantaspectofI Lgatedesign.Atlowinjectorcurrents,theuseofSiGehasbeenshowntoofferonlymarginalbene ts,sincetheswitchingspeedisdominatedbydepletionregioncharge.ThemostimportantadvantageofSiGeatthesecurrentlevelsislikelytobeim-provedscalabilityofI Ltechnology.Athighinjectorcurrents,wheretheswitchingspeedisdominatedbystoredminoritycarriercharge,theuseofSiGeinI Ltechnologyhasbeenshowntohaveimportantbene ts.Areductionbyafactorofmorethanteninthestoredchargeisobtainedwhen16%Geisincorporatedintothebaseofthenpnswitchresistor.Themodelhasbeenappliedtoaself-alignedstructurewhichisspeci callyoptimizedforSiGeI Landaswitchingspeedof34psispredictedevenatageometryof1.4micron.Thisdelaywillbefurtherreducedwithafullyoptimized,scaleddesign.TORAGEQUATIONSFollowingtheapproachin[7],one-dimensional(1-D)ex-pressionscanbewrittenfortheexcessstoredchargeswitchedbetweenthetwologiclevelssetbytheinjectorcurrent,ineachoftheindividualregions.Referenceshouldbemadetothelistofsymbolsandtheregionalde nitionsinFigs.2and3.SUBSTRATEFEDI Electronchargestoredinthesubstrate(injector whichconsistsofexcesselectronsintheinjectorHolechargestoredintheinjectorbase/switch whichconsistsofholesfromtheinjectoremitter(substrate)andtheswitchbase(SiGe).Thelatterissuppressedbytheheterojunctionaction.Electronchargestoredintheswitchbase/injector whichconsistsofelectronsfromtheswitchemitter(injectorbase)andswitchcollectorwhensaturated.Holechargestoredintheintrinsicswitchcollector whichconsistsofholesfromtheSiGebasewhentheswitchissaturated.Thiscomponentofstoredchargeissuppressedbytheheterojunctionaction.Holechargestoredintheswitchcollectorinjectedfromtheextrinsicbaserails whichconsistsofholesinjectedfromtheextrinsicbaserailsintotheswitchcollector.Electronsintheextrinsicbaserails (A6) IEEETRANSACTIONSONELECTRONDEVICES,VOL.45,NO.12,DECEMBER1998whichconsistsofholesinjectedfromtheextrinsicbaserailsintotheswitchcollector.Switchemitter/base(injectorbase/collector)deple-tioncharge Thiselementofchargeisde nedbytheactivearea.Switchcollector/basedepletioncharge Thiselementofchargeisde nedbytheswitchcollectorarea.Switchcollector/basesidewalldepletioncharge ThiselementofchargeaccountsfortheverticalsidewallsformedbytheP implantationsdowntotheSiGelayer.Thedepletionchargeintheemitter/basejunctionoftheinjectortransistorwasassumedtobenegligible.Thevoltagetermsincludedineachchargedifferenceexpressionaccountforthedifferenceinvoltagesatlogicª1ºandlogicª0.ºThefullexpressionsusedaregivenbelow: (A10) (A11) (A12) Theterms relatetohigh(1)andlow(0)logicconditionsand istheappropriatejunctionbuilt-involtage.SURFACEFEDI Holechargestoredinthe substrate Holechargestoredintheswitchemitter Electronsstoredintheswitchbase/injectorcollec- Holesstoredintheinjectorbase Holesstoredintheintrinsicswitchcollector Holesstoredintheswitchcollectorinjectedfromtheextrinsicbaserails Holesstoredintheinjectorbaseinjectedfromtheextrinsicbaserails Electronsstoredintheextrinsicbaserails Switchemitter/basedepletioncharge Switchcollector/basedepletioncharge Injectorcollector/basedepletioncharge Injectorcollector/basesidewalldepletioncharge (A25) WAINWRIGHTetal.:ANALYSISOFSi:GeHETEROJUNCTIONINTEGRATEDINJECTIONLOGIC2447Switchcollector/basesidewalldepletioncharge Thehigh-lowjunctionthatresultsifthesubstratedoping, ,isdifferentfromtheswitchemitterdoping, hasbeentreatedusingasimpli edversionoftheanalysispresentedbyDuttonandWhittier[16]whode neablocking ,as: Theparameter [see(A2)]isthenwrittenas Physically,thisimpliesthatforalargerswitchemitterdoping thatthejunctionisªcollectingºandforasmallerswitchemitterdopingconcentration thatthejunctionisªre ecting.º[1]K.HartandA.Slob,ªIntegratedinjectionlogic:AnewapproachtoIEEEJ.Solid-StateCircuits,vol.SC-7,pp.346±351,1972.[2]H.H.BergerandS.K.Wiedmann,ªMerged-transistorlogic(MTL)ÐAlow-costbipolarlogicconcept,ºIEEEJ.Solid-StateCircuits,vol.SC-7,pp.340±346,1972.[3]H.H.BergerandK.Helwig,ªAninvestigationoftheintrinsicdelay(speedlimit)inMTL/IIEEEJ.Solid-StateCircuits,vol.SC-14,pp.327±337,1979.[4]D.D.Tang,T.H.Ning,R.D.Isaac,G.C.Feth,S.K.Wiedmann,andH.N.Yu,ªSubnanosecondselfalignedIL/MTLcircuits,ºIEEEJ.SolidStateCircuits,vol.SC-15,pp.444±449,1980.[5]B.MazhariandH.Morkoc,ªIntrinsicgatedelayofSi/SiGeinte-gratedinjectionlogiccircuits,ºSolid-StateElectron.,vol.38,no.1,pp.189±196,1995.[6]M.KarlsteenandM.Willander,ªImprovedswitchtimeofILatlowpowerconsumptionbyusingaSiGeheterojunctionbipolartransistor,ºSolid-StateElectron.,vol.38,no.7,pp.1401±1407,1995.[7]T.E.HendricksonandJ.S.T.Huang,ªAstoredchargemodelforestimatingILgatedelay,ºIEEEJ.Solid-StateCircuits,vol.SC-12,pp.171±176,1977.[8]V.Blatt,P.S.Walsh,andL.W.Kennedy,ªSubstratefedlogic,ºJ.Solid-StateCircuits,vol.SC-10,pp.336±342,1975.[9]F.M.Klaassen,ªDevicephysicsofIntegratedInjectionlogic,ºTrans.ElectronDevices,vol.ED-22,pp.145±152,1975.[10]S.P.Wainwright,S.Hall,andP.Ashburn,ªTheuseofMEDICIandSPICEinthedesignofsurfaceandsubstratefedintegratedinjectionlogic(IL)structuresincorporatingSiColloq.PhysicalModelingofSemiconductorDevices,pp.4/1±4/6,Apr.[11]S.E.Swirhun,Y.H.Kwark,andR.M.Swanson,ªMeasurementofelectronlifetime,electronmobilityandbandgapnarrowinginheavilydopedp-typesilicon,ºinIEDMTech.Dig.,1986,p.24.[12]J.delAlamo,S.Swirhun,andR.M.Swanson,ªSimultaneousmeasure-mentofholelifetime,holemobilityandbandgapnarrowinginheavilydopedn-typesilicon,ºinIEDMTech.Dig.,p.290,1985.[13]S.S.Iyer,G.L.Patton,J.M.C.Stork,B.S.Meyerson,andD.L.Harame,ªHeterojunctionbipolartransistorsusingSi-Gealloys,ºTrans.ElectronDevices,vol.36,pp.2043±2064,Oct.1989.[14]T.Nakamura,K.Nakazato,T.Miyazaki,M.Ogirima,T.Okabe,andM.Nagata,ª290psecILcircuitsusing ve-foldself-alignment,ºinIEDMTech.Dig.,1982,p.684.[15]R.W.DuttonandR.J.Whittier,ªForwardcurrent-voltageandswitchingcharacteristicsofp(epitaxial)diodes,ºIEEETrans.Electron,vol.ED-16,pp.458±467,May1969. SimonP.Wainwright(S'91±M'95)wasborninNewcastle-Under-Lyme,U.K.,in1969.HereceivedtheB.Eng.(hons.)degreeinelectronicengineeringin1991andthePh.D.degreein1995fromtheUniversityofLiverpool,U.K..HisthesiswasbasedonSOItechnologyandincludedmaterialscharac-terization,devicephysicsandthedesignofverylowvoltage,lowpowercircuits.In1994hestartedstudyingtheSiGemateri-alssystemprimarilymodelingSiGeHBT'sandoptimisingtheircharacteristicsforinclusioninin-tegratedinjectionlogiccircuits.In1996,hemovedtoSpaintojointheUniversityoftheBasqueCountry(UPV/EHU)asaLecturer,whereheworkedonlowpowercircuitdesign.InMarch1998,hemovedintothesemiconductorindustrywithFagorElectronicaS.Coop.,Guipuzcoa,Spain,workingondiscretepowerdevices.Dr.WainwrightisamemberoftheInstituteofPhysicsandisaChartered StephenHall(M'93)receivedthePh.D.degreefromtheUniversityofLiverpool,U.K.,in1987,forworkonanewformofintegratedinjectionlogicintheGaAs/AlGaAsmaterialssystem.Hethenjoinedthelecturingstaff,UniversityofLiverpool,wherehebeganworkonSOImateri-alscharacterizationanddevicephysicsandsubse-quentlyobtainedfundingtoworkintheseareasontheSIMOXandoxidisedporousSisystems,withU.K.universityandindustrialcollaborators.OtherareasofactivityconcernedfabricationandelectricalassessmentofcobaltdisilicideSchottkydiodestogetherwithsilicon-germaniummaterialscharacterizationanddevicephysicsforbipolartransistorandMOSFETappplication.TheSiGeworkcurrentlyconcernshighperfor-manceanaloguebipolarandnewformsofintegratedinjectionlogicwithparticularinterestinmodelingandassociatedmaterialscharacterization.CurrentSOIworkisintheareaoflowvoltage/lowpowerintegratedcircuitswhichaimstoaddressthistopicfromdevicesandtechnologythroughlogiccircuitstylestoarchitecturesandalgorithms,incollaborationwithotherU.K.universitiesandindustry. PeterAshburn(M'89)wasborninRotherham,U.K.,in1950.HereceivedtheB.Sc.degreeinelectricalandelectronicengineeringin1971,andthePh.D.degreein1974,bothfromtheUniversityofLeeds,U.K.Hisdissertationtopicwasanexperi-mentalandtheoreticalstudyofradiationdamageinsiliconp-njunctions.In1974,hejoinedthetechnicalstaffofPhilipsResearchLaboratories,Redhill,U.K.,andworkedinitiallyonion-implantedintegratedcircuitbipolartransistors,andthenonelectronlithographyforsubmicronintegratedcircuits.In1978,hejoinedtheacademicstaffoftheDepartmentofElectronicsandComputerScience,UniversityofSouthampton,Southampton,U.K.,asaLecturer.Currently,heisaProfessoratthesameuniversity,wherehispresentareasofresearcharenpnandpnppolysiliconemitterbipolartransistors,Si/SiGeheterojunctionbipolartransistors,highspeedbipolarandBiCMOSprocesses,andsilicononinsulatortechnology.Hehasauthoredandcoauthoredover100papersinthetechnicalliteratureandhasauthoredabookonbipolartransistors. AndrewC.LambreceivedtheB.Eng.degreeincomputerandmicroelectronicsystemsfromtheUniversityofLiverpool,U.K.,inJuly1996,whereheiscurrentlyaResearchAssistantpursuingthePh.D.degree.HisresearchinterestsincludeSiGeheterojunctionbipolartransistors.