/
Note Where is the Commutation Relation Hiding in the Path Integral Formulation Yen Chin Note Where is the Commutation Relation Hiding in the Path Integral Formulation Yen Chin

Note Where is the Commutation Relation Hiding in the Path Integral Formulation Yen Chin - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
510 views
Uploaded On 2014-12-12

Note Where is the Commutation Relation Hiding in the Path Integral Formulation Yen Chin - PPT Presentation

Graduate Institute of Astrophysics 2 Leung Center for Cosmology and Particle Astrophysics National Taiwan University Taipei Taiwan 10617 The path integral formulation of quantum mechanics has an advantage over the canonical quan tization approach na ID: 22618

Graduate Institute Astrophysics

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Note Where is the Commutation Relation H..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2integral,andforthatmatter,mostofquantum eldthe-ory;althoughasaphysicist,Iknowhowtousethemandtowavemyhandsasnecessary,deepdownIamdeeplytroubled.Toseewhypathintegralisproblematic,notethatinEq.(1),theintegrationismoreappropriatelydenotedbyZ�D where :[ti;tf]!Rdisanypathconnectingtheendpoints (ti)=qiand (tf)=qf,and�isthespaceofsuchpaths.HereD shouldbethoughtofasaLebesgue-typemeasureonthespace�ofpaths.Unfortunately,thisLebesgue-typemeasuresimplydoesnotexist.Thisfollowsfromthewell-knownresultinfunctionalanaly-sisthata[nontrivial]translationalinvarianceLebesgue-typemeasurecannotbede nedonin nitedimensionalHilbertspaces.However,evenbeforeFeynman,thereal-readyexistssimilarideasofpathintegration,albeititisformulatedtodealwithBrownianmotioninsteadofquantummechanics.ThisistheWienerintegral,formu-latedbyAmericanmathematicianNorbertWienerwhomademajorcontributionstostochasticandnoisepro-cessesaswellascybernetics[Infact,theone-dimensionalversionofBrownianmotionisknownastheWienerpro-cess,wewillreturntothislater].FeynmanhowevermadenomentionofWiener'sworksinhispaper.TheWienermeasureisnottranslationallyinvariance,andonewondersiftheFeynmanpathintegralcanbeunderstoodinasimilarway.Itturnsoutthattheanswerisno:in1960,Cameronprovedthatitisnotpossibletoconstruct\Feynmanmeasure"asaWienermeasurewithacomplexvariance,i.e.aslimitof nitedimensionalapproximationsoftheexpressionei ~Rt0m 2_ (s)2dsD Rei ~Rt0m 2_ (s)2dsD (3)astheresultingmeasurewouldhavein nitetotalvari-ation,evenonboundedsetsinpathspace.ThisisnotthecasefortheusualLebesguemeasureonRd,whichhas nitetotalvariationonboundedmeasurablesubsetsofRd.Morediscussionsontheattemptstomakemath-ematicalsenseofthepathintegralformulationcanbefoundinthe rstchapterof[8].Onerelativelysimplewaytomakepathintegralmoresensibleistodoa\Wick-rotation"byanalyticcontinuationandconsiderinsteadadampingfactore�SinsteadofoscillatoryoneeiS,whereS=Rt0dtL(q;_q).OnethengetspreciselyaWienerpathintegration,whichdoesmakesense.Aftercalculationhasbeenperformed,onecanthenWick-rotatebackandreado the nalanswer.Unfortunately,therearesubtletiesinvolvedinthisapproachandnotallFeynmanpathin-tegralsallowWick-rotation.ItmustbeemphasizedthatFeynmanhimselfwasawareofthelackofrigorinhiswork,asevidencedfromhispaper[5]inwhichhewrotethat:[...]onefeelslikeCavalierimusthavefeltcalculatingthevolumeofapyramidbeforetheinventionofthecalculus.Ioftenfeelthatthisremarkisinasensetoomodest.Amoreappropriateanalogywouldbethatofcalculusinitsearlydays,morespeci callywhenitwasstillplaguedbyin nitesimals{averysmallquantitywhichisgreaterthanzeroyetlessthananypositivenumber,ifyouwill.Sometimeswestillthinkinthisway,especiallyinphysics(butthisisbecausewealreadyknowthatifwewish,wecouldalwaysmakeitrigorous).ThephilosopherBerkeleywasthe rstonetochallengethefoundationofcalculus.Heremarked:Theyareneither nitequantitiesnorquan-titiesin nitelysmall,noryetnothing.Maywenotcallthemtheghostsofdepartedquan-tities?Itwasduetocriticismlikethisthat nallyledtorig-orousformulationofcalculusintermsofandnowdreadedbybeginningmathematicsstudents[7].Never-theless,calculushasyieldedmanyamazingresultseversinceitwasinventedbyNewtonandLeibniz,despitelackingrigorousfoundationuntilBerkeley'sobjection.Thisispreciselythestatewearecurrentlyinforpathintegrationformulationofquantummechanics.III.REVIEWOFPATHINTEGRALFORMULATIONInviewofthediscussiononthemathematicaldi-cultiesininterpretingFeynmanpathintegration,wewillmakeWick-rotationbysetting=it=~andcalculateinsteadtheEuclideanpropagatorK(qi;qf;)=qf e�^H NN qi(4)=Dqf e�^He�^H qiE;= N(5)(6)WecannowinsertN�1copiesofthecompletenessre-lationZRdqijqiihqij=1(7)intothepropagatorandobtain 3K(qi;qf;t)=ZRdqN�1ZRdq1Dqf e�^H qN�1EDqN�1 e�^H qN�2EDq1 e�^H qiE:(8) NoweachfactorDqi+1 e�^H qiE=ZRdpDqi+1 e�^H pEhpjqii(9)=e�V(qi)ZRdpe�p2 2m"eip(qi+1�qi) ~ 2~#(10)=e�V(qi) 2~"r 2m e�(qi+1�qi)2 (2=m)~2#(11)=1 2~r 2m e�m 2~2(qi+1�qi)2e�V(qi)(12)N()eL;(13)whereN()1 ~r m 2;(14)andL=�m 2~2qi+1�qi 2�1 2[V(xi+1)+V(xi)];(15)wherewehaveusedthemid-pointprescriptiontothepo-tentialtermdiscretization.Inthesecondequalityabovewehaveusedthefactthathxjpi=1 p 2~eipx ~;(16)whileinthethirdlinewehaveevaluatedtheGaussian-typeintegralviathestandardformulaZR(e�1 2ax2+iJx)dx=r 2 ae�J2 2a:(17)Hence,withq0=qiandqN=qf,wehaveK(qi;qf;)=ZRN�1Yn=1dqnN�1Yn=0Dqn+1 e�^H qnE(18)=ZRN�1Yn=1dqnN�1Yn=0N()eL(qn+1;qn)(19)=ZRN�1Yn=1dqnm 2~2N 2ePN�1n=0L(xn+1;xn):(20)Thus,K(qi;qf;)ZDqe�S(21)whereZDqZRN�1Yn=1dqnm 2~2N 2;(22)andS=N�1Xn=0m 2~2qn+1�qn 2�N�1Xn=0V(qn):(23)Takingformallimit!0,S!Z0m 2~2dq d2+V(q):(24)UponWick-rotatebacktoMinkowskitimewe nallyob-tainK=ZDqeiS=~;S=Zt0"m 2dq dt2�V(q)#dt(25)IV.WHEREISTHECOMMUTATIONRELATIONHIDING?Wenowbegintotrackdownthecommutationrelation.ThissectionisbasedontheusefulAppendixAof[9]aswellasontheoriginalpaperofFeynman[5].Forsimplicitywe rstset~=1.Withoutlossofgeneralitywecantaketi=0andtf=T.Thenintheequationhqf;Tjqi;0i=Zdqhqf;Tjq;tihq;tjqi;0i:(26)Onemaywriteeachoftheamplitudesasapathintegralandthus nds 4Z[dq]qf;Tqi;0eiRT0dtL=ZdqZ[dq]qf;Tqi;teiRTtdtLZ[dq]qf;tqi;0eiRt0dtL;Tt0:(27) Thatis,thepathintegralon[0;T]breaksupintoseparatepathintegralson[0;t]and[t;T]andanordinaryintegraloverq(t).Considernowapathintegralwiththeadditionalin-sertionofafactorofq(t),where0tT.ThenwehaveZ[dq]qf;Tqi;0eiSq(t)=Zdqhqf;Tjq;tiqhq;tjqi;0i(28)=Zdqhqf;Tj^q(t)jq;tihq;tjqi;0i(29)=hqf;Tj^q(t)jqi;0i:(30)Thereforeweseethat:q(t)inthefunctionalinte-graltranslatesinto^q(t)inthematrixelement.Simi-larlywecanshowthatforaproductoftwoinsertionsq(t)q(t0)[which,beingvariablesofintegration,isequaltoq(t0)q(t)],wheret;t02[0;T],wehaveZ[dq]qf;Tqi;0eiSq(t)q(t0)=hqf;TjT[^q(t)^q(t0)]jqi;0i;(31)whereTdenotesthetime-orderedproductT[^A(t)^B(t0)]=(t�t0)^A(t)^B(t0)+(t0�t)^B(t)^A(t);(32)wheredenotestheHeavisideStepFunction.Thatis,Theorderoftermsinamatrixoperatorproductcorre-spondstoanorderintimeofthecorrespondingfactorsinthepathintegral.Indeed,duetothewaythepathintegralisconstructedoutofsuccessivein nitesimaltimeslices,twoormorein-sertionsinthepathintegralwillalwayscorrespondtothetime-orderedproductofoperatorsinthematrixelement.Now,theequationofmotionisobtainedviatakingthefunctionalderivativeS q(t)=0:(33)Indeed,wehave,viaintegrationbypart,Z[dq]qf;Tqi;0eiSS q(t)F=�iZ[dq]qf;Tqi;0 q(t)eiSF(34)=iZ[dq]qf;Tqi;0eiSF q(t):(35)Thus,forinitialstate tand nalstate f,wehave,uponrestoring~, f F qk t=�i ~ f FS qk i:(36)Therefore,weseethattwodi erentfunctionalsmaygivethesameresultforthetransitionelementbetweenanytwostates.Wesaythattheyareequivalentandsymbol-izetherelationby�~ iF qkS !FS qk:(37)HerethesymbolS !emphasizesthefactthatfunctionalsequivalentunderoneactionmaynotbeequivalentunderanother.Now,discretizing,wehaveS=PS(qi+1;qi)sothat�~ iF qkS !FS(qk+1;qk) qk+S(qk;qk�1) qk:(38)Thisequationiscorrecttozeroand rstorderin.InthisequationhidestheNewtonianequationsofmotion,aswellasthecommutationrelation.Werecallfromtheprevioussectionthatintheone-dimensionalquantummechanicalproblem,S(qk+1;qk)=m 2qk+1�qk 2�V(qk+1);(39)soweobtainS(qk+1;qk) qk=�m(qk+1�qk) ;(40)andS(qk;qk�1) qk=m(qk�qk�1) �V0(qk)(41)whereV0isthederivativeofthepotential,i.e.[minusof]force.Therefore,�~ iF qkS !F�mqk+1�qk �qk�qk�1 �V0(qk):(42)IfFdoesnotdependonqk,thisgivesNewton'sequa-tionsofmotion.SincetheLHSisnowzero,weget,upondividingbothsidesby,0S !�m qk+1�qk �qk�qk�1 �V0(qk);(43)i.e.V0(qk)S !�m qk+1�qk �qk�qk�1 :(44)Inotherwords,thetransitionelementofmasstimesac-celerationbetweenanytwostatesisindeedequaltothe 5transitionelementofforce�V0(qk)betweenthesamestates.Now,ifFdoesdependuponqk,sayF=qk,thenweget�~ iS !qk�mqk+1�qk �qk�qk�1 �V0(qk):(45)Neglectingtermsoforder,onehasmqk+1�qk qk�mqk�qk�1 qkS !~ i:(46)Takingextracareofthetimeorderingwhengoingbacktooperatorformulation,thisispreciselythecommutationrelation^p^q�^q^p=~ i:(47)V.AWIENERPROCESSAPPROACHTOWARDSNON-COMMUTATIVITYWenowbrie yexplainanothermethodtoextractthecommutationrelationoutofthepathintegral,whichislargelybasedon[10].InsteadoftheFeynman'spathin-tegral,letusconsidereditsWick-rotatedversion,inter-pretedasaWienerintegral.ConsidertheWienerpro-cess,whichisjustaone-dimensionalrandomwalk,withthe[Euclidean]actionS=�Zdq dt2dt:(48)Thepathq(t)is uctuating,withderivativede nedasthelimitofdiscretedi erence:q t=q(t+)�q(t) :(49)Theproductq_qisactuallyambiguous:itdependsonthediscretization,sothatitcanbeinterpretedaseitherq(t)q(t+)�q(t) ;(50)orasq(t+)q(t+)�q(t) :(51)The rstcorrespondsto^q(t)^p(t)whilethesecondonerepresents^p(t)^q(t)sincetheoperatororderisthetimeorderingaswehavepreviouslydiscussed.Fromtheper-spectiveofStochasticcalculus,thevelocityisaforwarddi erenceintheItosense,andthereforeisalwaysslightlyaheadintime.Thedi erenceofthetwoyields(q(t+)�q(t))2 :(52)Inordinarycalculus,thedi erencewillgotozerointhelimit!0.However,thisisnotthecaseforStochas-ticcalculus.Inparticular,thedistancearandomwalkmovesisproportionaltop t.[Remark:Onewaytoseethisisasfollows:Theran-domvariabledqinasense,representsanaccumulationofrandomin uencesovertheintervaldt.BytheCentralLimitTheorem,dqhasanormaldistribution.Thevari-anceofarandomvariable(whichistheaccumulationofindependente ectsoveranintervaloftime)ispropor-tionaltothelengthoftheinterval,i.e.dt.Thestandarddeviationofdqisthusproportionaltothesquarerootofdt].Consequently,q(t+)�q(t)p :(53)Thisinturnimpliesthat,wehavefromEq.(52),(q(t+)�q(t))2 p 2 =1;(54)insteadofzero.Wethusobtained[^q;^p]=1;(55)theEuclideanversionofthecommutationrelation.Thisisactuallyinessence,theconsequenceofthecelebratedIto'sLemma.UponWick-rotatingbacktoLorentziansignature,weobtain(~=1)[^q;^p]=i(56)inquantummechanics.WeremarkthattheequalitiesobtainedinEq.(55)andEq.(56)areactuallyonlyweakequality:theyarevalidonlyinthesensetheofsenseofdistributions.ForaBrownianmotion,theresultisactuallysayingthatthepositioniscorrelatedwiththe[in nite]valueoftheve-locity[sincethepathsareactuallycontinuousbutnon-di erentiable,whichisclearfromEq.(53),sincetheratiothatde nesthederivativewilldivergeinthelimit!0],sothatthefuturepositionisactually nitelycorrelatedwiththeaveragevelocitygiventhepastposition.Thepastvalueisofcoursecompletelyuncorrelatedwiththecurrent[forward]velocity.VI.CONCLUSIONWeconcludebymerelyemphasizingthatdiscretiza-tioniscrucialinthepathintegralformulation,foritisviacarefulanalysisonthediscretizationthatonecanre-coverthecommutationrelation[^q;^p]=i~ofquantummechanics.