/
SIAMR1999SocietyforIndustrialandAppliedMathematicsVol.41,No.1,pp.45{76 SIAMR1999SocietyforIndustrialandAppliedMathematicsVol.41,No.1,pp.45{76

SIAMR1999SocietyforIndustrialandAppliedMathematicsVol.41,No.1,pp.45{76 - PDF document

faustina-dinatale
faustina-dinatale . @faustina-dinatale
Follow
352 views
Uploaded On 2015-08-19

SIAMR1999SocietyforIndustrialandAppliedMathematicsVol.41,No.1,pp.45{76 - PPT Presentation

PersiDiaconisDavidFreedmanIteratedrandomfunctionsareusedtodrawpicturesorsimulatelargeIsingmodelsamong 1Introduction ReceivedbytheeditorsMarch111998acceptedforpublicationinrevisedformJuly71998 ID: 110685

PersiDiaconisDavidFreedmanIteratedrandomfunctionsareusedtodrawpicturesorsimulatelargeIsingmodels among 1.Introduction. ReceivedbytheeditorsMarch11 1998;acceptedforpublication(inrevisedform)July7 1998;

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "SIAMR1999SocietyforIndustrialandAppliedM..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

SIAMR1999SocietyforIndustrialandAppliedMathematicsVol.41,No.1,pp.45{76IteratedRandomFunctions PersiDiaconisDavidFreedmanIteratedrandomfunctionsareusedtodrawpicturesorsimulatelargeIsingmodels,among 1.Introduction. ReceivedbytheeditorsMarch11,1998;acceptedforpublication(inrevisedform)July7,1998;publishedelectronicallyJanuary22,1999.http://www.siam.org/journals/sirev/41-1/33844.htmlDepartmentofMathematicsandStatistics,StanfordUniversity,Stanford,CA94305.DepartmentofStatistics,UniversityofCalifornia,Berkeley,CA94720(freedman@stat.berkeley.edu). PERSIDIACONISANDDAVIDFREEDMANisgivenand01.Inpresentnotation,=;suppose(+)=2.Theprocessmoveslinearly,1withprobability12.Thestationarydistributionhasanexplicitrepresentation,asthelawofTherandomseriesontherightconvergestoa nitelimitbecause01.Plainly,thedistributionofisunchangedifismultipliedbyandthenanewisadded:thatisstationarity.Theseriesrepresentation(1.3)canthereforebeusedtostudythestationarydistribution;however,manymysteriesremain,evenforthissimplecase(section2.5).Therearemanyexamplesbasedonanemapsin-dimensionalEuclideanspace.Thebasicchainiswherethe()areindependentandidenticallydistributed;isaisa1vector.Section2surveysthisarea.Section2.3presentsaninterestingapplicationfor=2:withanappropriatelychosen nitedistributionfor(theMarkovchaincanbeusedtodrawpicturesoffractalobjectslikeferns,clouds,or re.Section3describes nitestatespaceswherethebackwarditerationscanbeexplicitlytestedtoseeiftheyhaveconverged.Theleadexampleisthe\couplingfromthepast"algorithmofProppandWilson(1996,1998),whichallowssimulationforpreviouslyintractabledistributions,suchastheIsingmodelonalargegrid.Section4givesexamplesfromqueuingtheory.Section5introducessomerigorandexplainsaunifyingtheme.Supposethatisacompleteseparablemetricspace.Writeforthemetric.SupposethateachisLipschitz:forsomeandallx;yyf(x);f(y)]K(x;yFor,de nethe\forwarditeration"startingfrombeingindependentdrawsfromaprobabilityon;thisisjustarewriteofequation(1.1).De nethe\backwarditeration"asOfcourse,hasthesamedistributionasforeach.However,theforwardprocesshasverydi erentbehaviorfromthebackwardprocess:theforwardprocessmovesergodicallythrough,whilethebackwardprocessconvergestoalimit.(Naturally,thereareassumptions.)Thenexttheorem,provedinsection5.2,showsthatifiscontractingonaverage,thenhasauniquestationarydistribution.The\inducedMarkovchain"inthetheoremistheforwardprocess.Thekernelx;dy)isthelawofgiventhatandtheProkhorovmetricisusedforthedistancebetweentwoprobabilitiesonThismetricwillbede nedinsection5.1;itisdenoted\,"likethemetricon(Section5.1alsotakescareofthemeasure-theoreticdetails.) ITERATEDRANDOMFUNCTIONSLetS;beacompleteseparablemetricspace.LetbeafamilyofLipschitzfunctionson,andletbeaprobabilitydistributiononSupposethatthatf(x0);x0](d)1forsome,andTheinducedMarkovchainhasauniquestationarydistributiondistributionPn(x;);]AxrnforconstantsthisboundholdsforalltimesandallstartingstatesTheconstantdoesnotdependon;theconstantdoesnotdepend,andx;xwhere;bTheconditionthat0makes1fortypical,andformalizesthenotionof\contractingonaverage."ThekeystepinprovingTheorem1.1isprovingconvergenceofthebackwarditerations(1.4).ROPOSITIONUndertheregularityconditionsofTheorem,thebackwarditerationsconvergealmostsurelytoalimit,atanexponentialrate.Thelimithastheuniquestationarydistribution(Asequenceofrandomvariablesconverges\almostsurely"iftheexceptional 21 x1(0;x)(y 21 Asusual,1)=1or0,accordingas.The rstterminthesumcorrespondstoaleftwardmovefrom;thesecond,toarightwardmove. PERSIDIACONISANDDAVIDFREEDMAN 0.000.25 0255075100 0255075100 Fig.1Theleft-handpanelshowsconvergenceofthebackwardprocess;theright-handpanelshowsergodicbehaviorbytheforwardprocess.Didthischainhaveastationarydistribution?Ifso,couldthedistributionbeidenti ed?Thosewereourtwobasicquestions.Aftersomeinitial oundering,wesawthatthechaincouldberepresentedastheiterationofrandomfunctionsux; chosenuniformlyon(01)and; chosenwithprobability12each.Theorem1.1showsthereisauniquestationarydistribution.Weidenti edthisdistributionbyguesswork,butthereisasystematicmethod.Beginbyassumingthatthestationarydistributionhasadensity).From(2.1),x;y 2Z1yf(x) xdx+1 2Zy0f(x) Di erentiationgives 2f(y) y+1 2f(y) 1�yorf0(y) f(y)=1 2 �1 y+1 1�y!;sof(y p Thisargumentisheuristic,butitiseasytocheckthatthe\arcsinedensity"displayedin(2.3)satis esequation(2.2)|andmustthereforebestationary.Theconstantmakes=1;thenamecomesaboutbecause arcsinp Figure1illustratesthedi erencebetweenthebackwardprocess(left-handpanel,convergence)andtheforwardprocess(right-handpanel,ergodicbehavior).Positionattimeisplottedagainst100,withlinearinterpolation.Bothprocessesstartfrom3andusethesamerandomfunctionstomove.Theorderinwhichthefunctionsarecomposedistheonlydi erence.Intheleft-handpanel,thelimitisrandombecauseitdependsonthefunctionsbeingiterated;butthelimitdoesnotdependonthestartingpoint ITERATEDRANDOMFUNCTIONS 01 .00.25.50.751.00 0 .00.25.50.751.00 Fig.2TheBetadistribution.Theleft-handpanelplotstheBeta-density(heavyline)andthe-density(lightline).Theright-handpanelplotstheBeta 2;1 -density(heavyline)andtheBetadensity(lightline).Remarks.Suppose01and.Thesameargumentshowsthatchoosing(0)withprobabilityand(1)withprobabilityleadstoaBeta(q;pstationarydistribution,withdensityon(01).Thenormalizingconstantis=�((�(q)�(p)],where�isEuler'sgammafunction.Inour=1,so�()=�(1)=1.Althoughwewillnotpursuethisidea,theprobabilityofmovingto(0)fromcanevenbeallowedtodependon.Forexample,if,thestationarydistributionisuniform.However,Theorem1.1isnotinforcewhen)dependson.Forinstance,if,theprocessconvergesto0or1almostsurely:ifthestartingstateis,thechanceofconvergingto1is.(Theprocessisamartingale,andconvergencefollowsfromstandardtheorems.)Theorem1.1canbeextendedtocoverthatdependon,butfurtherconditionsareneeded.ManyoftheconstructionsinthispaperinvolvetheBetadistribution.Figure2plotssomeofthedensities.Thestationarydensity(2.3)inourleadexampleis 2;1 )|thebowl-shapedcurveintheright-handpanel;wereturntothisexampleinsection6.3.2.2.MatrixRecursions.Matrixrecursionshavebeenusedinahostofmodelinge orts;see,forinstance,Priestley(1988).Tode nethingsin,letwith()beingi.i.d.;isamatrixandisa1vector(i.i.d.istheusualshort-handfor\independentandidenticallydistributed").Autoregressiveprocesseslike(2.4)willbediscussedagaininsection6.1.Undersuitableregularityconditions,thestationarydistributioncanberepresentedasthelawofIndeed,supposethissumconvergesa.s.toa nitelimit.Thedistributionisunchangedifafresh(A;B)pairischosen,thesumismultipliedby,andthenisadded:thatisstationarity.Thenotationmaybeabitperplexing:;A;Bareallrandomratherthandeterministic,and\a.s."isshort-handfor\almostsurely":thesumconvergesexceptforaneventofprobability0.Conditionsforconvergencehavebeensharpenedover PERSIDIACONISANDDAVIDFREEDMANtheyears;roughly,mustbeacontraction\onaverage."FollowingworkbyVervaat(1979)andBrandt(1986),de nitiveresultswereachievedbyBougerolandPicard(1992).Tostatetheresult,letbeamatrixnormon.Supposethat(arei.i.d.for,with0and=0when0.Asubspaceis\invariant"=1forallTheorem2.1.andde netheMarkovchain.Supposethattheonlyinvariantsubspaceofitself.Thein niterandomseriesconvergesa.s.toa nitelimitifandonlyif holds,thedistributionofistheuniqueinvariantdistributionfortheMarkovchainThemomentassumptionsinTheorem2.1cannotbeessentiallyweakened;seeGoldieandMaller(1997).Ofcourse,theMarkovchain(2.4)canbede nedwhenisexpandingratherthancontracting,butdi erentnormingsarerequiredforconvergence.Anderson(1959)andRachevandSamorodnitzky(1995)provecentrallimittheoremsinthenoncontractivecase.Inthecontractivecase,seeBenda(1998).Onalighternote,EmbreeandTrefethen(1998)usethismachinerywithtostudyFibonaccisequenceswithrandomsignsandadampingparameter,so2.3.FractalImages.Thissectionshowshowiteratedrandomanemapscanbeusedtodrawpicturesintwodimensions.Fix().Eachisa2contraction,whileisa21vector:istheassociatedanemapoftheplaneintoitself,whichisLipschitzbecauseisacontraction.Fixpositiveweights,with=1.TheseingredientsspecifyaMarkovchainmovingthrough.Startingat,thechainproceedsbychoosingatrandomwithprobabilityandmovingtoRemarkablyenough,givenatargetimage,onecanoftensolveforthatthecollectionofpoints;:::;Xformsareasonablelikenessofthetarget,atleastwithhighprobability.ThetechniqueisbasedonworkofDubinsandFreed-man(1966),Hutchinson(1981),andDiaconisandShahshahani(1986).IthasbeendevelopedfurtherbyBarnsleyandElton(1988)aswellasBarnsley(1993),andisnowwidelyused.Weoutlinetheprocedure.Theorem1.1applies,sothereisauniquestationarydistribution,callit.Letstandforpointmassat:thatis,)=1if)=0if.Accordingtostandardtheorems,theempiricaldistribution;:::;Xconvergesto NNXiXi! ITERATEDRANDOMFUNCTIONS Fig.3AferndrawnbyaMarkovchain.Convergenceisalmostsure,intheweak-startopology.Foranyboundedcontinuous fdwithprobability1.See,forinstance,Breiman(1960).Inshort,thepatterngeneratedbythepoints;:::;Xlookslikeislarge.Theparametersmustbechosensothatrepresentsthetargetimage.Hereisoneoftheearlyalgorithms.Supposeapictureisgivenasblackandwhitepointsonangrid.Correspondingtothispicturethereisadiscreteprobabilityontheplane,whichassignsmass1toeachblackpointandmass0toeachwhitepoint,beingthenumberofblackpoints.Wewantthestationaryapproximate.StationarityimpliesthatforanyboundedcontinuousfunctionThenextideaistoreplacefdontherightsideof(2.9)byfdForappropriate's,wegetasystemofequationsthatcanbesolved|atleastapproxi-.Forinstance,taketobelinearoralow-orderpolyno-mial(andignorecomplicationsduetounboundedness).In(2.10),theunknownsare.Theequationsarelinearinthe'sbutnonlinearintheotherunknowns.Exactsolutionscannotbeexpectedingeneral,becausewillbediscretewhilebecontinuous.Still,theprogramiscarriedoutbyDiaconisandShahshahani(1986)andbymanylaterauthors;seeBarnsley(1993)forarecentbibliography.AlsoseeFisher(1994).Figure3showsapictureofafern.TheparametersweresuggestedbyCrown-over(1995):=10000,=2,7007,and0600+ PERSIDIACONISANDDAVIDFREEDMAN1371+2.4.TailBehavior.Weturnnowtothetailbehaviorofthestationarydistribu-tion.Someinformationcanbegleanedfromthemoments,andinvariancegivesarecursion.Wediscuss(abitinformally)thecase=1.Let()bei.i.d.pairsofreal-valuedrandomvariables.De netheMarkovchainby(2.4),andsupposethechainstartsfromitsstationarydistribution.Write)forthelawof.Then),whichimplies);soso�E(A1)].Similarexpressionscanbederivedforhighermoments1.See,forinstance,Vervaat(1979)orDiaconisandShashahani(1986);alsosee(6.4)below.Momentsmaynotexist,ormaynotcapturerelevantaspectsoftailbehavior.Undersuitableregularityconditions,Kesten(1973)obtainedestimatesforthetailprobabilitiesofthestationary.Forinstance,when=1,heshowsthereisapositiverealnumbersuchthatGoldie(1991)givesadi erentproofofKesten'stheoremandcomputes;alsoseeBabillot,Bougerol,andElie(1997).Ofcourse,thereisstillmoretounderstand.Forexample,ifisuniformon[0isindependentCauchy,and=(1thestationarydistributionforisCauchy.Thus,theconclusionsofKesten'stheoremhold|althoughtheassumptionsdonot.Section7.3containsotherexamplesofthissort.Itwouldbenicetohaveatheorythathandlestailbehaviorinsuch2.5.FineStructure.Evenwithanexplicitrepresentationforthestationarydis-tribution,therearestillmanyquestions.Considerthechaindescribedbyequa-tion(1.2).Asin(1.3),thestationarydistributionisthelawofbeingi.i.d.with1)=12.Wemayaskaboutthe\type"ofisthismeasurediscrete,continuousbutsingular,orabsolutelycontinuous?(Theterminologyisreviewedbelow.)Bythe\lawofpuretypes,"mixturescannotarise,anddiscretemeasurescanberuledouttoo.SeeJessenandWintner(1935).2,thenisuniformon[2].If02,thenissingular.takesonatmost2distinctvalues.Fortheremainderterm, concentratesonasetofintervalsoftotallength2),whichtendsto0asgetslarge|becauseItisnaturaltoguessthatisabsolutelycontinuousfor2.However,thisisfalse.Forexample,if ,thenissingular:seeErdos(1939,1940).Whichvaluesofgivesingular's?Thisproblemhasbeenactivelystudiedfor50years,withnoendinsight.SeeGarsia(1962)forareviewoftheclassicalwork.TherewasarealbreakthroughwhenSolomyak(1995)provedthatisabsolutelycontinuousforalmostallvaluesofin[11];alsoseePeresandSolomyak(1996, ITERATEDRANDOMFUNCTIONS2.6.Terminology.A\discrete"probabilityassignsmeasure1toacountablesetofpoints,whilea\continuous"probabilityassignsmeasure0toeverypoint.A\sin-gular"probabilityassignsmeasure1toasetofLebesguemeasure0.Bycontrast,an\absolutelycontinuous"probabilityhasadensitywithrespecttoLebesguemea-sure.TextbookexampleslikethebinomialandPoissondistributionsarediscrete;thenormal,Cauchy,andBetadistributionsareabsolutelycontinuous.Orderingtherationalsin[01]andputtingmass1onthethrationalgivesyouaninterestingdiscreteprobability.TheuniformdistributionontheCantorsetin[01]iscontinuousbutsingular.3.ThePropp{WilsonAlgorithm.ThisremarkablealgorithmdoesexactMonteCarlosamplingfromdistributionsonhuge nitestatespaces.Letbethestatespaceandletbeaprobabilityon.Theobjectiveistomakearandompickfrom,onthecomputer.Whenislargeandiscomplicated,theprojectcanbequitedicultandthebackwarditerationisavaluabletool.Tobeginwith,thereisafamilyoffunctionsandaprobabilityon,sothatisthestationarydistributionoftheforwardchainonInotherwords,foreachThesefunctionswillbeconstructedbelow.Insomecases,theMetropolisalgorithmisuseful(Metropolisetal.,1953).Inthepresentcase,aswillbeseen,theGibbssampleristheconstructiontouse.Theprobabilityonwillbecalledthe\movemeasure":thechainmovesbypickingandgoingfrom).Iftheconstructionissuccessful,thebackwarditerationswillconvergea.s.toalimitingrandomvariablewhosedistributionis.(Asequenceconvergesifitiseventuallyconstant,andareindependentdrawsfromthemovemeasureon.)Convergenceiseasiertocheckifthereismonotonicity.Supposeisapartiallyorderedset;write.Supposetoothereisasmallestelement0andalargestelement1.Withpartialorderings,theexistenceofalargestelementisanadditionalassumption,evenfora niteset;likewiseforsmallest.Finally,supposethateachismonotone:).Nowconvergenceisforcedif,forsome)(0)=(Thistakesamomenttoverify.Amongotherthings,convergencewouldnotbeforcedifwehadequalityontheforwarditeration.ProppandWilson(1996,1998)turntheseobservationsintoapracticalalgo-rithmforchoosingapointatrandomfrom.Theymakeasequenceindependentpicksfromthemovemeasurein(3.1),andcomputethebackwarditera-tions(3.2).Ateachstage,theychecktoseeif(3.3)holds.Ifso,thecommonvalue|oftheleftsideandtherightside|isapickfromtheexactstationarydistributionThealgorithmgeneratesarandomelementofwhosedistributionisthesought-foritself,ratherthananapproximationto;thereisanexplicittestforconvergence; PERSIDIACONISANDDAVIDFREEDMANandinmanysituations,convergencetakesplacequiterapidly.Thesethreefeaturesarewhatmakethealgorithmsoremarkable.Bywayofexample,taketheIsingmodelonangrid;areferenceisKindermanandSnell(1980).Thestatespaceconsistsofallfunctions.Thestandard(barbaric)notationhashasn][n].Inthepartialorder,forallpositions(i;j)inthegrid,andboundaryconditionmaybeimposed,forinstance,that=+1ontheperimeterofthegrid.Theminimalstateis1atalltheunconstrainedpositions;themaximalstateis+1atalltheunconstrainedpositions.Theprobabilitydistributiontobesimulatedisisapositiverealnumberandisanormalizingconstant|whichisquitehardtocomputeifislarge.Intheexponent,)countssignchanges.Algebraically,ij;k`Theindicesi;j;k;`runfrom1to,andtheposition(i;j)mustbeadjacentto(k;`forinstance,theposition(22)isadjacentto(23)butnotto(3A\singlesiteheatbath"(aspecializedversionoftheGibbssampler)isusedtoconstructachainwithlimitingdistribution.Fromstate,thechainmovesbypickingasite(i;j)onthegridandrerandomizingthevalueati;j).Morespeci cally,letagreewithatallsitesotherthan(i;j);let=+1at(i;j).Likewise,agreeswithatallsitesotherthan(i;j),but1ati;j).Let(+)= H(sij+)]+exp[(+).Thechanceofmovingto(+);thechanceofmovingto).Inotherwords,thechanceofrerandomizingto+1at(i;j(+).Thischanceiscomputablebecausetheuglyconstanthascanceledout.Inprinciple,(+)and)dependonthesite(i;j)andonvaluesofatsitesotherthan(i;j);wewriteijs)whenthismatters.Ofcourse,(+)isjustthe-probabilitythat=+,giventhevaluesofatallothersites.Asitturnsout,onlythesitesadjacentto(i;j)a ect(+),becausethevaluesofatmoreremotesitesjustcancel:ijs +expThesumisoverthesites(k;`)adjacentto(i;j).Equation(3.6)isinessencethe\Markovrandom eld"propertyfortheIsingmodel.Thesinglesiteheatbathcanbecycledthroughsites(i;j)onthegrid,orthesitecanbechosenatrandom.Wefollowthelattercourse,althoughtheformeriscomputationallymoreecient.Thealgorithmisimplementedusingthebackwarditeration.Therandomfunctionsare).Here,isastateintheIsingmodeli;j;u)consistsofaposition(i;j)inthegridandarealnumber1.Thepositionisrandomlychoseninthegrid,andisrandomover(0 ITERATEDRANDOMFUNCTIONSThefunctionisde nedasfollows:iju)agreeswithexceptatpositioni;j).There,=+1if(+),and1otherwise.Twothingsmustbeveri ed:isstationary,andismonotone.Stationarityisobvious.Formonotonicity, xasite(i;j),twostatess;t1).Clearly,ijuiju)exceptperhapsat(i;j).Atthisspecialsite,wemustproveijsijtButthetwoconditionalprobabilitiesin(3.7)canbeevaluatedby(3.6),andThecondition0makesmonotoneincreasingratherthanmonotonedecreasing.Thebackwarditerationcompletesaftera nite,randomnumberofsteps,essentiallybyTheorem1.1.Completioncanbetestedexplicitlyusing(3.3).Andthealgorithmmakesarandompickfromitself,ratherthananapproximationtoTherearemanyvariationsonthePropp{Wilsonalgorithm,includingsomeforpointprocesses:seeMo/ller(1998)orHom,vanLieshout,andMo/ller(1998).AnovelalternativeisproposedbyFill(1998),whoincludesasurveyofrecentliteratureandawarningaboutbiasesduetoabortedruns.Therearenogeneralboundsonthetimeto\coupling,"whichoccurswhen(3.3)issatis ed:chainsstartingfrom0andfrom1,butusingthesame's,wouldhavetoagreefromthattimeonwards.ExperimentsshowthatcouplinggenerallytakesplacequiterapidlyfortheIsingmodelbelowacriticalvalue,butquiteslowlyforlarger's.ProppandWilson(1996)havealgorithmsthatworkreasonablywellforallvaluesof|evenabovethecriticalvalue|andforgridsuptosize21002100.Formorediscussion,andacomparisonoftheMetropolisalgorithmwiththeGibbssampler,seeHomandNelander(1998).BrownandDiaconis(1997)showthatahostofMarkovchainsforshuingandrandomtilingsaremonotone.ThesechainsarisefromhyperplanewalksofBidigare,Hanlon,andRockmore(1997).Theanalysisgivesreasonablysharpboundsontimetocoupling.Monotonicitytechniquescanbeusedforin nitestatespacestoo.Forinstance,suchtechniqueshavebeendevelopedbyBorovkov(1984)andBorovkovandFoss(1992)toanalyzecomplexqueuingnetworks|ournexttopic.4.QueuingTheory.Theexistenceofstationarydistributionsinqueuingtheorycanoftenbeprovedusingiteratedrandomfunctions.Thereisaninterestingtwist,becausethefunctionsaregenerallynotstrictcontractions,evenonaverage.Wegiveanexampleandpointerstoavoluminousliterature.Inonerelativelysimplemodel,theG/G/1queue,customersarriveataqueuewithi.i.d.interarrivaltimesThearrivaltimesarethepartialsums0thcustomerhasservicetime;thesetooarei.i.d.,andindependentofthearrivaltimes.Letbethewaitingtimeofthethcustomer|thetimebeforeservicestarts.Byde nition,=0.For0,thesatisfytherecursionIndeed,thethcustomerarrivesattimeandwaitstime nishingserviceattime.The+1stcustomerarrivesattime,then=0;otherwise, PERSIDIACONISANDDAVIDFREEDMANThewaiting-timeprocesscanthereforebegeneratedbyiteratingtherandomfunctionsTheparametershouldbechosenatrandomfrom),whichisaprobabilityonthereallineThefunctionisaweakcontractionbutnotastrictcontraction:theLipschitzconstantis1.AlthoughTheorem1.1doesnotapply,thebackwarditerationstillgivesthestationarydistribution.Indeed,thebackwarditerationstartingfrom0canbewrittenas)(0)=Nowthereisamagicalidentity:=maxThisidentityholdsforanyrealnumbers.Feller(1971,p.272)asksthereadertoprove(4.4)byinduction,and=1istrivial.Separatingthecases0,onechecksthat(=max;x;x.Thatdoes=2.Nowput+max=maxThatdoes=3.Andsoforth.Ifthestartingpointisratherthan0,youjustneedtoreplacein(4.4)byInthequeuingmodel,arei.i.d.byassumption,asare;andthe'sareindependentofthe's.Set.Sothearei.i.d.too.Itiseasilyseen|given(4.3){(4.4)|thattheMarkovchainforitsstationarydistributionthelawofprovidedthelimitis nitea.s.Manyauthorsnowusethecondition0toinsureconvergence,viathestronglawoflargenumbers:!�1a.s.,sothemaximumofthepartialsumsis nitea.s.Inaremarkablepaper,Spitzer(1956)showedthatnomomentassumptionsareneeded.Theorem4.1.Supposetherandomvariablesarei.i.d.Thelimitinis nitea.s.ifandonlyif Underthiscondition,thelimitinhasanin nitelydivisibledistributionwithcharacteristicfunction where ITERATEDRANDOMFUNCTIONSThe\G/G/1"intheG/G/1queuestandsforgeneralarrivaltimes,generalservicetimes,andoneserver:\general"meansthat)and)arenotrestrictedtoparametricfamilies.Therecentqueuingliteraturecontainsmanyelaborations,including,forinstance,queueswithmultipleserversanddi erentdisciplines;seeBaccelli(1992)amongothers.TherearesurveysbyBorovkov(1984)orBaccelliandBremaud(1994).Oneremarkableachievementisthedevelopmentofasortoflinearalgebrafortherealnumbersundertheoperation(x;yx;yThebookbyBaccellietal.(1992)givesmanyapplications;queuesarediscussedinChapter7.Therandom-iterationsideahelpstounifythearguments.5.Rigor.Thissectiongivesamoreformalaccountofthebasicsetup;thenThe-orem1.1isprovedinsection5.2.Thetheoremandthemainintermediateresultsareknown:seeArnoldandCrauel(1992),BarnsleyandElton(1988),DubinsandFreedman(1966),Du o(1997),Elton(1990),orHutchinson(1981).Evenso,theself-containedproofsgivenheremaybeofsomeinterest.5.1.Background.Let(S;)beacomplete,separablemetricspace.Thenisamappingofintoitself,withwithf(x);f(y)]K(x;y).Theleastsuch.Ifisconstant,then=0.Ifforsome,then\Lipschitz";otherwise,.Ofcourse,thesede nitionsarerelativeto.Wepauseforthemeasuretheory.Letbeacountabledensesubsetof,andlet thesetofallmappingsfrominto.Weendow withtheproducttopologyandproduct- eld.Plainly, isacompleteseparablemetricspace.LetbethespaceofLipschitzfunctionson.ThefollowinglemmaputsameasurablestructureonLemma5.1.isaBorelsubsetof isaBorelfunctionon(iii)(f;sisaBorelmapfromProof.For ,let=supsupf(x);f(y)]=(x;yPlainly,isaBorelfunctionon .IfcanbeextendedasaLipschitzfunctiontoallof.Conversely,ifisLipschitzon,itsretractionto.Thus,theLipschitzfunctionscanbeidenti edasthefunctions,and.Thisproves(i)and(ii).For(iii),enumerate.Fixapositiveinteger.Letbethesetofpointsthatarewithin1.Letbethesetofpointsthatarewithin,butatadistanceof1ormorefrom.(Inotherwords,taketheballsofradius1aroundtheandmakethemdisjoint.)Foreach,thearepairwisedisjointandandj=1Bn;j=S:Givenamappingintoitself,let)for.Thatis,approximates)inthevicinityof.Themap(f;s)isBorelfrom .AndonthesetofLipschitz,thissequenceofmapsconvergespointwisetotheevaluationmap. Remark.Tomaketheconnectionwiththesetupofsection1,ifisafamilyofLipschitzfunctionsindexedby,werequirethatthemap)be PERSIDIACONISANDDAVIDFREEDMANmeasurableforeach.Thenisameasurablemapfromto,andameasureoninducesameasureon.ThissectionworksdirectlywithmeasuresonThemetricinducesa\Prokhorovmetric"onprobabilities,alsodenotedbyasfollows.Definition5.1.areprobabilitieson,thenP;Qisthein mumofsuchthatforallcompact,whereisthesetofallpointswhosedistancefromislessRemarks(i)Plainly,P;Q(ii)LetbeasinDe nition5.1,withrangingoverallBorelsets.Plainly,entails.Thatis,.Conversely,suppose.FixaBorelsetandasmallpositive.Findacompactset.Thenandsimilarlyfor).Thus,andhence.Inshort,(iii)Dudley(1989)isastandardreferenceforresultsontheProkhorovmetric.Weneedthede nitionofarandomvariablewithan\algebraictail."Basically,hasanalgebraictailiflog(1+)hasaLaplacetransforminaneighborhoodof0,where=maxisthepositivepartof.Ofcourse,itisamatteroftastewhetheroneuseslog(1+)orlogDefinition5.2.Arandomvariablehasanalgebraictailiftherearepositive, niteconstantssuchthat�Uu =uforall.Thisconditionhasforceonlyforlargepositive;andweallow5.2.TheMainTheorem.Fixaprobabilitymeasure.AssumethathasanalgebraictailrelativetoFixareferencepoint;assumetoothatthatf(x0);x0]hasanalgebraictailrelativetoIf,forinstance,isthelineandthe'sarelinear,condition(5.1)constrainstheslopesandthen(5.2)constrainstheintercepts.Aswillbeseenlater,anyreferencepointinmaybeused.ConsideraMarkovchainmovingaroundinaccordingtothefollowingrule:startingfrom,thechainchoosesatrandomfromandgoesto).Wesaythatthechain\movesaccordingto,"or\isthemovemeasure";insection1,thisMarkovchainwascalled\theforwarditeration."Theorem5.1.SupposeisaprobabilityontheLipschitzfunctions.Supposeconditionshold.Supposefurtherthat ITERATEDRANDOMFUNCTIONStheintegralmaybe.ConsideraMarkovchainonthatmovesaccordingtoLetx;dybethelawofthechainaftermovesstartingfromThereisauniqueinvariantprobabilityThereisapositive, niteconstantandansuchthatthatPn(x;);]AxrnforallTheconstantdoesnotdependon;theconstantdoesnotdepend,andx;x,where;bIn(ii)and(iii),istheProkhorovmetric(De nition5.1).TheargumentforTheorem5.1canbesketchedasfollows.Althoughtheforwardprocessdoesnotconvergeas,thebackwardprocess|withthecompositioninreverseorder|doesconverge.Thus,weconsiderThemainstepwillbethefollowing.Proposition5.1..De nethebackwardprocess.ThenconvergesatageometricrateastoarandomlimitthatdoesnotdependonthestartingpointTorealizethestationaryprocess,letbeindependentwithcommondistribution,andletwherethecomposition\goesalltheway."Rigorwillcomeaftersomepreliminarylem-mas,anditwillbeseenthattheprocessisstationarywiththerighttransitionlaw.Lemma5.2.Letbei.i.d.randomvariables;isallowed.Supposetherearepositive, niteconstantssuchthat eforall.Letbedistributedas.Then�1isa niterealnumberwith,therearepositive, niteconstantssuchthatʁ.;耀ncrforallconstantsdependonandthelawof,notonProof1.Supposeisboundedbelow.Then(i)isimmediate,with;(ii)isnearlystandard,butwegivetheargumentanyway.First,.Next,let.Weclaimthat=1+)asIndeed, xwith0 ;let1and.Then,so Theright-handsideof(5.8)has niteexpectedvalue,proving(5.7).Asaresult,therearepositiveconstantsforwhich PERSIDIACONISANDDAVIDFREEDMANprovided0.LetByMarkov'sinequality,�ncIf0,wehaveaboundon.SettocompletetheproofinCase1,with=exp[].Thisislegitimateprovided.Largervaluesofmaybereplacedby2.Lettruncatedbelowataconstantthatdoesnotdependon.Case1appliestothetruncatedvariables,whosemeanwillbelessthanifthetruncationpointissucientlynegative.Ourideaoftruncationcanbede nedbyexample:truncatedbelowat17equals17,and17if beani.i.d.sequenceofpicksfrom.Fix.Considertheforwardprocessstartingfromx;X;::::Lemma5.3.5.3.Xn(x);Xn(y)]Qnj=1Kfj(x;yProof.Thisisobviousfor=0and=1.Now ThenexttwolemmaswillprovetheuniquenesspartofTheorem5.1.Lemma5.4.Suppose.Ifissucientlysmall,therearepositive, niteconstantsrforallTheconstantsdependonbutnotonProof.ApplyLemma5.2totherandomvariables=log Lemma5.5.Suppose.Forsucientlysmallpositive:exceptforasetofofprobabilitylessthanthanXn(x);Xn(y)]exp(�n")(x;yforallx;y.Again,dependonbutnotonProof.UseLemmas5.3and5.4. Corollary5.1.Thereisatmostoneinvariantprobability.Proof.Supposewereinvariant.Choose,inde-pendently.Let)and).Nowexceptforasetofexponentiallysmallprobability.So,thelawsofbuttheformerisandthelatteris Thenextlemmagivessomeresultsonvariableswithalgebraictails,leadingtoaproofthatif(5.1)holds,and(5.2)holdsforsomeparticular,then(5.2)holdsfor.Thelemmaanditscorollaryareonlytoassisttheinterpretation.Lemma5.6.isnonnegativeandboundedabove,thenhasanalgebraictail.hasanalgebraictailand,thenhasanalgebraictail. ITERATEDRANDOMFUNCTIONShavealgebraictails,sodoes;theserandomvariablesmaybedependent.(Inprinciple,therearetwo'sandtwo's;itisconvenienttousethelargerandthesmaller,ifbothofthelatterarepositive.)Proof.Claims(i)and(ii)areobvious.Forclaim(iii),�Vt�Ut=�Vt= Corollary5.2.Supposeconditionholds.Ifholdsforanyparticular,thenholdsforany.Inotherwords,thereare nitepositiveconstants ; f(x0);x0]�ug =uforall.Theconstantmaydependon,buttheshapeparameterdoesnot.Proof.UseLemma5.6andthetriangleinequality. Lemma5.7.Letbemappingsofintoitself;let.ThenThen(fg)(x);x][f(x);x]+Kf[g(x);x]:Proof.Bythetriangleinequality,,(fg)(x);x][f(x);x]+[(fg)x;fNowusethede nitionof Corollary5.3.Letbemappingsofintoitself;let.ThenThen(g1g2g1(x);x]+Kg1[g2(x);x]+Kg1Kg2[g3(x);x]++Kg1Kg2Kgm�1[gm(x);x]:ProofofProposition5.1.Weassumeconditions(5.1){(5.3)andconsiderthebehaviorwhenofthebackwarditerationsConvergenceof)aswillfollowfromtheCauchycriterion.InviewofLemma5.5,itisenoughtoconsider.AsinLemma5.3,5.3,Yn+m(x);Yn(x)]Kf1Kfn[(fn+1fn+2WeuseCorollary5.3withtoboundtheright-handsideof(5.10),concludingconcludingYn+m(x);Yn(x)]1Xi=0 n+iYj=1Kfj![fn+i+1(x);x]:(5.11)ByLemma5.4,exceptforasetofprobabilityforallandallNext,condition(5.2)comesintoplay.Writeritefj(x);x].BytheDe nition5.2ofalgebraictails,therearepositive niteconstantssuchthat PERSIDIACONISANDDAVIDFREEDMAN 0.000.25 0510152025 0.00 0510152025 Fig.4Thebackwarditerationsconvergerapidlytoalimitthatisrandombutdoesnotdependonthestartingstate..Choose1butsocloseto1that1.Exceptforanothersetofexponentiallysmallprobability,forallandallNowthereare nitepositiveconstants1and1,suchthatforall,forall,andallallYn+m(x);Yn(x)]rn1;(5.14)exceptforasetofprobability.Thus,)isCauchy,andhenceconvergestoalimitin.Wehavealreadyestablishedthatthelimitdoesnotdependon;callthe.Anexponentialratefortheconvergenceof)tofollowsbylettingin(5.14). Lemma5.8.Letberandommappingsinto,withdistributionsSupposecanberealizedsothatX;X.Then;.(Inthe rstinstance,isthemetricon;inthesecond,istheinducedProkhorovmetriconprobabilities:seeDe nitionProof.Letbeacompactsubsetof.Thenentails,exceptforprobability.Likewise,entails,exceptforprobability Remark.TheconversetoLemma5.8istruetoo:oneproofgoesbydiscretizationandthe\marriagelemma."SeeStrassen(1965)orDudley(1989,Chapter11).ProofofTheorem5.1.Thereareonlyafewdetailstocleanup.Recallthedoublyin nitesequencefrom(5.5).ByProposition5.1,wecande neasfollows:=limThelimitdoesnotdependon.Proposition5.1applies,because|asbefore|Itiseasytoverifythat;:::isstationarywiththerighttransitionprobabilities.Andisdistributedlikeanyof.Thus,theconvergenceassertion(ii)inTheorem5.1followsfromLemma5.8andProposition5.1.Theargumentiscomplete. ITERATEDRANDOMFUNCTIONS Ð5Ð10 510152025 Ð10 510152025 Fig.5Logarithmtobaseoftheabsolutedi erencebetweenpathsinthebackwarditeration.ProofofTheoremandProposition1.1.TheseresultsareimmediatefromProposition5.1andTheorem5.1.Indeed,themomentconditionsinTheorem1.1im-plyconditions(5.1){(5.3);westatedTheorem1.1usingthemorerestrictiveconditionsinordertopostponetechnicalities. Theessenceofthethingisthatthebackwarditerationsconvergeatageometricratetoalimitthatdependsonthefunctionsbeingcomposed|butnotonthestartingpoint.Figure4illustratestheideafortheMarkovchaindiscussedinsection2.1.Theleft-handpanelshowsthebackwarditerationstartingfrom3orExactlythesamefunctionsareusedtogeneratethetwopaths;theonlydi erenceisthestartingpoint.(Positionattimeisplottedagainst25,withlinearinterpolation.)Thepathsmergeforallpracticalpurposesaround=7.Theright-handpanelshowsthesamething,withanewlotofrandomfunctions.Convergenceisevenfaster,butthelimitisdi erent|randomnessinaction.(Bycontrast,theforwarditerationdoesnotconverge,butwandersaroundergodicallyinthestatespace;seeFigure1.)Figure5plotsthelogarithm(base10)oftheabsolutedi erencebetweenthepathsinthecorrespondingpanelsofFigure4.Thelineardecayonthelogscalecorrespondstoexponentialdecayontheoriginalscale.Thedi erenceinslopesbetweenthetwopanelsisduetotherandomnessinchoiceoffunctions;thisdi erencewearso asthenumberofiterationsgoesup.Remarks(i)Thenotationin(5.15){(5.16)maybeabitconfusing:isnotthebackwardprocess,anddoesnotconverge.(ii)Weusethealgebraictailconditiontoboundtheprobabilitiesoftheexcep-tionalsetsinProposition5.1,thatis,thesetswhere(5.12)and(5.13)fail.TheseprobabilityboundsgivetheexponentialrateofconvergenceinTheorem5.1.Withalittlemoree ort,theoptimalcanbecomputedexplicitly,intermsofthemeanandvarianceoflog,andtheshapeparameterin(5.2).Ifanexponentialrateisnotneeded,itisenoughtoassumethatlog(1+)andloglogf(x0);x0]areL1.(iii)Furstenberg(1963)usesthebackwarditerationtostudyproductsofrandommatrices.Heconsiderstheactionofamatrixgrouponprojectivespaceandshowsthatthereisauniquestationarydistribution,whichcanberepresentedasaconver-gentbackwarditeration.Convergenceisprovedbymartingalearguments.Itseemsworthwhiletostudythedomainofthismethod.(iv)Let()beameasurablespaceandletx;dy)beaMarkovkernelon).WhenisthereafamilyandaprobabilityonsuchthattheMarkovchaininducedbytheseiteratedrandommappingshastransitionsx;dy PERSIDIACONISANDDAVIDFREEDMANThisconstructionisalwayspossibleif()is\Polish,"thatis,aBorelsubsetofacompleteseparablemetricspace.See,forinstance,Kifer(1986).Theleadingspecialcasehas=[01].Thencanalsobetakenastheunitinterval,andastheLebesguemeasure;x;dy)canbedescribedbyitsdistributionfunctionx;yy;y]).Let)betheinverseof).Ifisuniform,x;Uisdistributedasx;dy).Finally,letx;).Veri cationisroutine,andthegeneralcasefollowsfromthespecialcasebystandardtricks.Thequestionismoresubtle|andtheregularityconditionsmuchmoretechni-cal|ifitisrequiredthatthe)becontinuous.BlumenthalandCorson(1970)showthatifisaconnected,locallyconnected,compactspace,andiscontinuous(weakstar),andthesupportof)isforall,thenthereisaprobabilitymeasureontheBorelsetsofthecontinuousfunctionsfromwhichinducesthekernel.Quas(1991)givessucientconditionsforrepresentationbysmoothfunctionswhenisasmoothmanifold.AsurveyoftheseandrelatedresultsappearsinDubischar(1997);alsoseeBlumenthalandCorson(1971).6.MoreExamples.Autoregressiveprocessesareanimportantfeatureofmanystatisticalmodels,andcanusefullybeviewedasiteratedrandomfunctions;thecon-structionwillbesketchedhere.WelearnedthetrickfromAnderson(1959),butheattributesittoYule.Furtherexamplesandcounterexamplestoillustratethetheoryaregiveninsection6.2;section6.3revisitstheexamplediscussedinsection2.1.6.1.AutoregressiveProcesses.,therealline.Letbearealnumberwith01andletbeaprobabilitymeasureon.Forpresentpurposes,anautoregressionisaMarkovprocessonwiththefollowinglawofmotion:starting,thechainpicksaccordingtoandmovesto.Conditions(5.1)and(5.3)areobvious:if,then.Forcondition(5.2),weneedtoassumeforinstancethatifhasdistribution,therearepositive, niteconstants ; =uforall0.Ifareindependentwithcommondistribution,theforwardprocessstartingfromandsoforth.Thisprocessconvergesinlaw,butdoesnotconvergealmostsurely:at,newrandomnessisintroducedby.Thebackwardprocessstartingfromlooksat rstglancemuchthesame:andsoforth.Butthisprocessconvergesa.s.,becausethenewrandomnessintroducedisdampedby.ThestationaryautoregressiveprocessmayberealizedasEachisobtainedbydoingthebackwarditerationon.Equa-tion(5.6)isthegeneralization.WiththeusualEuclideandistance,theconstantinTheorem5.1mustdependonthestartingstate.Foraparticularlybrutalillus-tration,take6.2.WithoutRegularityConditions.Thissectiongivessomeexamplestoindi-catewhatcanhappenwithoutourregularityconditions. ITERATEDRANDOMFUNCTIONS 0.000.25 0255075100 Fig.6Iteratedrandomfunctionsontheunitinterval.Withprobability,thechainstandspat;withprobability,thechainmovesfrommodulo.Theforwardandbackwardprocessarethesame,anddonotconverge.6.1.ThisexampleshowsthatsomesortofcontractingpropertyisneededtogetaresultlikeTheorem5.1.Let=[01].Arithmeticistobedonemodulo1;forinstance,271=42.Letx;gmod12.Theforwardandthebackwardprocessescanbothberepresentedasmod1beingindependentandtakingvalues0or1withprobability12each;isthestartingpoint.Clearly,thebackwardprocessconvergesonlyifthestartingpointisabinaryrational.Furthermore,therearein nitelymanydistinctstationaryprobabilities:ifisastationary0{1valuedprocess,thenthelawofisstationaryforourchain.Since=1and=2,condition(5.3)fails.Figure6100,withlinearinterpolation.Remark.Figure6involvesontheorderof50doublings,sonumericalaccuracyisneededto50binarydigits,or16decimalplacesin.Thatisaboutthelimitofdouble-precisioncomputerpackageslikeMATLABonaPC.If,say,1,000iterationsarewanted,accuracyto150decimalplaceswouldbeneeded.Thework-aroundiseasy.Codethestatesaslongstringsof0'sor1's,anddobinaryarithmetic.Forplotting,converttodecimals:onlythe rst10bitsinwillmatter.6.2.Thisexamplehasauniquestationarydistributionbutthebackwardprocessdoesnotconverge.Letbetheintegersmod.Letj;g+1mod2.Theforwardandthebackwardprocessescanbothberepresentedasmodbeingindependentandtakingvalues0or1withprobability12each.Clearly,thebackwardprocessdoesnotconverge.Ontheotherhand,thechainisaperiodicandirreducible,sothereisauniquestationarydistribution(theuniform),andthere PERSIDIACONISANDDAVIDFREEDMANisanexponentialrateofconvergence.Leti;j)betheleastsuchthat.Thenisametric:thedistancebetweentwopointsistheminimalnumberofstepsittakestogetfromonetotheother,wherestepscanbetakenineitherdirection.Relativetothismetric,areLipschitz,with=1;condition(5.3)isviolated.Thenextexampleshowsanothersortofpathologywhencondition(5.3)holdsbut(5.1){(5.2)fail.6.3.Thestatespaceis[0).Lettherandomvariablehaveasymmetricstabledistributionwithindex1;seeSamorodnitskyandTaqqu(1994)orZolotarev(1986).Letbethelawof.ConsideraMarkovchainthatmovess;1)bychoosingatrandomfromandgoingto.Then0isa xedpointandtheuniquestationarydistributionconcentratesat0.Ifi.i.d.symmetricstablewithindex,theforwardandthebackwardprocessescanbothberepresentedas0a.s.as,bythestronglawoflargenumbers.Ontheotherhand,theProkhorovdistancebetween)andisoforder1,byLemmas6.1and6.2below.Inparticular,exponentialratesofconvergencedonotobtain.Condition(5.3)holds:Kd1.However,(5.1)fails,andsodoes(5.2)for=0.Lemma6.1.Letbepointmassat,andletbeacontinuousprobabilitymeasureonThereisaunique(ii)()=Proof.Claims(i)and(ii)areeasytoverify.For(iii),weneedtocomputethein mumofsuchthatforallcompactIf0,then(6.1)isvacuous.If0,then(6.1)isequivalentto1Furthermore,0entails[0.And=[0)when.Thus,(6.1)forallcompactisequivalenttoLikewise,if0,then(6.2)isvacuous.If0then(6.2)isequivalentto.But00";1).Thus,(6.2)forallcompactisalsoequivalentto(6.3).Now(iii)followsfrom(ii). Lemma6.2.LetbeasymmetricstablerandomvariblewithindexLetbealargepositiveinteger.TheProkhorovdistancebetweenandthelawofisoforderProof.ThisfollowsfromLemma6.1,since�Uu Remark.SomethingcanbedoneevenwhenalltheLipschitzconstantsare1,providedthefunctionsaregenuinelycontractingonarecurrentset.Forinstance, ITERATEDRANDOMFUNCTIONSSteinsaltz(1997,1998)considersaMarkovchainonthatmovesbychoosingoneofthefollowingtwofunctionsatrandom:+1if +1if+2if1if 1if02ifThesefunctionshaveLipschitzconstant1.But,asateam,theyaregenuinelycon-tractingontheinterval[2].Thisintervalisrecurrent.Indeed,fromlargenegative,thechainmoves2unitstotherightand1unittotheleftwithequalprobabilities;thereverseholdsforlargepositive.Thus,whenthechainisnear,itdriftsbacktoward0.Steinsaltzhassomegeneraltheoryandotherexamples.6.3.TheBetaWalk.Thestatespaceistheclosedunitinterval[0,1].Letbeaprobabilitymeasureon,andlet01.Considerachainwiththefollowingtransitionprobabilities.Startingfromfrom;1],thechaingoesleftwithprobabilityandrightwithprobability1.Tomove,itpicksfrom.Ifthemoveistotheleft,thechaingoesto;iftotheright,itgoesto.Callthe\movingmeasure."IfisBeta( ; ),callthechaina\Betawalk."Theexampleinsection2.1wasaBetawalkwith2and2.Weextendtheterminologyalittle:Beta(00)putsmass12at0and1;Beta()putsmass1at1Theseexamples tintotheframeworkofTheorem5.1:andprobabilizethesetoflinearmapsthatshrinktheunitintervaleithertoward0,whenthemapsendsortoward1,whenthemapsendsAlltheLipschitzconstantsare1orsmaller.Conditions(5.1){(5.3)areobvious,andthereisexponentialconvergencetotheuniquestationarydistribution.Inthebalanceofthissection,weprovethefollowingtheorem.Theorem6.1.Suppose=[0,andthemovemeasureisBeta ; Let+1);when,let.If,or,thenthestationarydistributionoftheBetawalkisBeta.Foranyothervalueof,thestationarydistributionissymmetricandhasthesame rstthreemomentsasBetabutadi erentfourthmoment:inparticular,thestationarydistributionisnotBeta.Remarks.ThesecondmomentofBeta(a;a)is(+1)+2),whichdetermines;thatiswhyagreementonthreemomentsanddiscrepancyonthefourthshowsthestationarymeasurenottobeBeta.Aswillbeseen,thediscrepancyisremarkablysmall|ontheorderof103,andthatisaboutasbigasitgets.Theproofofthenextlemmaisomitted.The rsttermintheintegralcorrespondstoaleftwardmove,takenwithprobability;thesecond,toarightwardmove;compareLemma6.3.Ifthemovemeasurehasdensity,andthestartingstateischosenfromadensity,thedensityofthepositionafteronemoveis xy x (x)dx+ pZy01 1�xy�x Thenextresulttooisstandard.SupposeisBeta(a;b).Then �(a)�(a+b) +1) +1)( PERSIDIACONISANDDAVIDFREEDMANThesecondequalityfollowsfromtherecursion�(+1)=):thereareinthenumeratorandinthedenominator.Corollary6.1.isBetaa;a,then 2X2 aX3 aX4 a TheproofofTheorem1.Suppose=0,sothemovemeasureputsmass12eachat0and1;thisisthestationarymeasuretoo,withstationaritybeingachievedinonemove.=0,thetheoremholds.2.Suppose,sothemovemeasureconcentrateson12.Starting,thechainmovesto 2xorx+1 2�1 2x=1 2+1 )witha50{50chance.Clearly,theuniformdistributionisinvariant,itsimageunderthemotionhavingmass uniformlydistributedover[0 ],andmass uniformon[ 1].Since=1and1)isuniform,thetheoremholds.3.Thiswasdiscussedinsection2.1.4.SupposethemovemeasureisBeta( ; )with01or1Recallthat+1),andlet).ByCorollary6.1andsometediousalgebra, 2U02 U03 U04 Wemustnowcomputethe rstfourmomentsofthestationarydistribution;thelatterexistsbyTheorem5.1.Lethavethestationarydistributionandlet ; );makethesetworandomvariablesindependent.Asbefore,write)forthelawof.Then 2L( 2L(U+V� 2L( because)andaresymmetric.Inparticular, 2E(Un)E(Vn (�UV)n]:(6.5)E(Vn)isgivenbyCorollary6.1,soequation(6.5)canbesolvedrecursivelyforthemomentsof,and)for3.However, +3)(9+10+2) +1)(5+2)Consequently, +1)(5+3)(5+2)(Again,unpleasantalgebraicdetailsaresuppressed.)Figure7showsthegraphoftherightsideof(6.6),plottedagainst.Aswillbeseen,thediscrepancyisrathersmall.Remark.Theorem6.1isconnectedtoresultsinDubinsandFreedman(1967).Considergeneratingarandomdistributionfunctionbyconstructingitsgraphintheunitsquare.Drawahorizontallinethroughthesquare,cuttingtheverticalaxisinto ITERATEDRANDOMFUNCTIONS 1.500.75Ð0.75 Fig.7Di erencebetweenfourthmomentofstationarydistributionandfourthmomentofapproxi-matingBeta,scaledbyandplottedagainst;symmetricchain,Beta ; movedistri-alowersegmentandanuppersegmentwhoselengthsstandintheratioto1Pickapointatrandomonthisline.Thatdividesthesquareintofourrectangles.Nowrepeattheconstructioninthelowerleftandupperrightrectangles.(Thedescriptionmaybecumbersome,buttheinductivestepiseasy.)Thelimitingmonotonecurveconnectingallthechosenpointsisthegraphofarandomdistributionfunction.Theaverageofthesedistributionfunctionsturnsouttobeabsolutelycontinuous:letitsdensity.Thisdensityis,byconstruction,invariantunderthefollowingoperation.Chooseatrandomuniformlyon[01];distributemassaccordingtorescaledoverr;x]andmass1accordingtorescaledover[1].Ifisuniformand)+(1Inshort,isthestationarydensityforourMarkovprocess.TheequationinLemma6.3isdiscussedinsection9ofDubinsandFreedman(1967).7.DirichletDistributions.TheDirichletdistributionisthemultidimensionalanalogofthemorefamiliarBeta,andisoftenusedinBayesiannonparametricstatis-tics.AnearlypaperisFreedman(1963);alsoseeFabius(1964),Ferguson(1973)orFerguson,Phadia,andWari(1992).Sections7.1and7.2sketchaconstructionoftheDirichlet.Thesettingisanin nite-dimensionalspace,namely,thespaceofallprobabilitymeasuresonanunderlyingcompleteseparablemetricspace.Section7.3discussesthelawofthemeanofpickedatrandomfromaDirichletdistribution,whichcansometimesbecomputedinclosedform.Thesettingistherealline.7.1.RandomMeasures.Let()beacompleteseparablemetricspace,forinstance,therealline.Letbethesetofallprobabilitymeasuresonbetypicalelementsof,thatis,typicalprobabilitieson.Wewillbeconsideringrandomprobabilities:thesearerandomobjectswithvaluesin.The\law"ofsuchanobjectisaprobabilityon.Letbea nitemeasureon.The\Dirichletwithbasemeasure,"usuallyabbreviatedas,isthelawofacertainrandomprobabilityon.Thus,isaprobabilityonHere,weshowhowtoconstructbymodifyingtheargumentforTheorem5.1.ThestatespacefortheMarkovchainis.Thevariationdistancebetweenisde nedas=sup PERSIDIACONISANDDAVIDFREEDMANrunsoveralltheBorelsubsetsof.The\parameterspace"fortheLipschitzfunctionswillbe=[0.If01and,letintobythe+(1Itiseasytoseethatisananemapofintoitself.Furthermore,thisfunctionisLipschitz,withLipschitzconstantisanyprobabilitymeasureontheparameterspace,theMarkovchainondrivenbyhasauniquestationarydistribution.TheDirichletwillbeobtainedbyspecializing.Caution:thestationarydistributionisaprobabilityon,thatis,aprobabilityontheprobabilitieson;andthereisaregularitycondition,namely,u;pRecallthatstandsforlaw.Thenhasthestationarydistributionif+(1U;Pindependentof.Thestationarydistributionmayberepresentedbythebackwarditeration,asthelawoftherandomprobability=(1In(7.3),the()areindependent,withcommondistribution;aswillbeseeninamoment,thesumconvergesa.s.Thelimitisarandomprobabilityonbecauseeachisarandomprobabilityon,andthearerandomelementsof[0Furthermore,telescopesto1.Invariationdistance,iscompletebutnotseparable.Thus,Theorem5.1doesnotapply.Ratherthandealwiththemeasure-theoretictechnicalitiescreatedbyaninseparablespace,wesketchadirectargumentforconvergence.First,wehavetoprovethatthesumin(7.4)convergesa.s.Indeed,writeforthethterm.Then=(1,whereby(7.1).Thus n�1gp ,and .Animmediateconsequence:withprobability1,thesumontherightin(7.3)isCauchyandhenceconvergesinvariationnorm(completeness).Thelawofiseasilyseentobestationary,usingthecriterion(7.2).Togetageometricrateofconvergence,supposethechainstartsfrom.Letbethesumofthe rsttermsin(7.3).Aftermovesstartingfrom,thebackwardprocesswillbeat,where.Bypreviousarguments,exceptforasetofgeometricallysmallprobability,aregeometricallysmall.Wehaveprovedthefollowingresult.Theorem7.1.Supposeholds.ConsidertheMarkovchainondrivenby.Letq;dpbethelawofthechainaftermovesstartingfromThereisauniqueinvariantprobabilityThereisapositive, niteconstantandansuchthatthatPn(q;);]Arnforallandall ITERATEDRANDOMFUNCTIONSInthistheorem,istheProkhorovmetriconprobabilitieson,constructedfromthevariationdistanceon,asinDe nition5.1.Theconstantisuniversal,becausevariationdistanceisuniformlybounded.Ifcondition(7.1)fails,thechainstagnatesatthestartingpositionWenowspecializetogettheDirichlet.Recallthatisa nitemeasureon)bethetotalmassofandlet,whichisaprobability.Let~betheimageofunderthemap,withbeingpointmassat.Thus,~isaprobabilityon,namely,thelawofchosenatrandomfrom.(Caution:seesection7.2formeasurability.)Finally,weset=Beta(.Inotherwords,isthelawof(u;),whereischosenfromtheBeta(1)distributionandisindependentlychosenfrom.Forthisthelawoftherandomprobabilityde nedby(7.3)isDirichlet,withbasemeasureWhydoestheconstructiongive?Wesketchtheargumentforaleadingspecialcase,when;fordetails,seeSethuramanandTiwari(1982).Let2.Then.Allweneedtocheckisstationarity.Letbearandompickfrom.Condition(7.2)forstationarityis+(1isBeta(withprobability,andQ;U;Wareindependent.Ofcourse,|themassesassignedbyto0and1|shouldbeDirichletwithby(7.7a).ThedensityofaDirichletdistributionwiththeseparametersisx;yfor(x;y)with;y�1.Thenormalizingconstantmakes=1;itsnumericalvaluewillnotmatterhere.Conditiononin(7.6)anduse(7.7c),(7.7d).Stationarityboilsdowntox;y k kZ1 u2fx� u;y isthedensityoftherandomvariablein(7.6).By(7.7b),Wedealwith,below.Thenexttaskistodeterminetherangeoftheintegralin(7.9).Thereareseveralconstraintson.Firstisthat=u�Second,(=u1,whichfollowsfrom1.Third,,whichfollowsfrom(7.10),because1.Fourth, u+y u1; PERSIDIACONISANDDAVIDFREEDMANwhichfollowsfrom1.Finally,1.Thus,theintegralin(7.9)goesfromto1;thereisquitealotofcancellationof's,andandu�(1�x)] 0�1du=Cx 0y 1�1(1�x�y) 2�1:Thetermsin(7.8)canbeevaluatedthesameway: k kZ11�y1 u2fx u;y� ug(u)du=0�1y 1(1�x�y) 2�1;T2= 2 k kZ1x+y1 u2fx u;y because+(1)=1.Thiscompletestheproofof(7.6).Thesameargumentgoesthroughforany nite.Thencompactcanbehandledbytakinglimits.Alongtheway,ithelpstocheckthatAcompleteseparablecanbeembeddedintoacompactset,sothegeneralcasefollowsfromthecompactcase;(7.11)showsthatsitson,asdesired,ratherthanspillingoverontopointsaddedbycompacti cation.7.2.Measure-TheoreticIssues.Puttheweak-star- eldon:thisisgeneratedbythefunctionsfdprangesovertheboundedcontinuousfunctionsonThevariationnormisweak-starmeasurable,because=supfdpfdqrangesoverthecontinuousfunctionsonwith01.Withabitofe ort,wecanrestricttoacountable,densesetofcontinuousfunctions.Measurabilityofthenormisthenclear.Forexample,ifis[01],wecanrestricttothepolynomialswithrationalcoecients.PuttheusualBorel- eldon[01].Then(u;p;q)isjointlymeasurable,from[0.Likewise,(u;pismeasurable.Foreach,the;:::;isjointlymeasurablefrom.Finally,themapismeasurablefrom ITERATEDRANDOMFUNCTIONSThe\Borel"- eldinisgeneratedbytheopensetsinthenormtopology,andseemsto tbetterwithvariationdistance.Butthereisarealproblem:theisnotmeasurableifweputtheBorel- eldson.AreferenceisDubinsandFreedman(1964).WeneedthevariationnormtogettheLipschitzpropertyandtheweak-star- eldtohandlemeasurability.Inacompleteseparablemetricspace,allreasonable- eldscoincide|rangingfromtheBorel- eldto(forinstance)the- eldgeneratedbythebounded,uniformlycontinuousfunctions.Thespaceofprobabilitymeasuresiscompleteinthevariationdistancebutnotseparable.Thatisthesourceofthemeasure-theoreticcomplications.7.3.RandomMeans.bearandompickfrom,asde nedinsection7.1above.Letbeameasurablefunctionon.ConsidertherandomvariablefdP(Ofcourse,therandomvariableisde nedonlywhentheintegralconverges.)FeigenandTweedie(1989)provethefollowingresult.Proposition7.1.-almostallifandonlyiflog(1+Wenowspecializetotherealline(),and)to.Supposelog(1+xdP;Pisarandomvariable|beingthemeanofapickedatrandomfromFormula(7.14)mustbedistinguishedfrom(7.11).In(7.11),youpickatrandom,andtakethemeanoverall'srelativeto:ForanymeasurableIn(7.14),youpickatrandomfrom,andtakethemeanoverall'srelativeto.ThatgivesarandomvariablexdPInanumberofcases,thedistributionofrelativetocanbecomputedexplicitly,usingtheideaofiteratedrandomfunctions.Forinstance,CifarelliandRegazzini(1990)showthatunlessisapointmass,xdPhasanabsolutelycontinuousdistribution,andtheygiveformulasforthedensity.AdditionalresultsareobtainedbyDiaconisandKemperman(1996).7.1.Supposeconcentratesontwopoints,0and1.Relativeto)hastheBeta()distribution.Thisisimmediatefromthediscussioninsection7.1above:afterall,)isthemassassignsto1.7.2.Ifisuniformon[01],thenhasthedensity )for07.3.IfisCauchythenalsohastheCauchydistribution.SeeYamamoto(1984).Ofcourse,)doesnotconverge.Ontheotherhand,(7.13) PERSIDIACONISANDDAVIDFREEDMANholds,sothatforalmostalldrawnfrom,theintegralin(7.14)doesconverge.Picksfromhaveashortertailthan7.4.LetbeCauchy.Ifisthelawof(1+),thenisuniformon[0Forthemathematicsbehindexamples(7.2){(7.4),werefertoDiaconisandKem-perman(1996),whereconnectionstotheMarkovmomentproblemandrecentworkofKerov(1993)areexplained.Weconcludebyshowinghowthelawofin(7.14)canbeobtainedasthestationarydistributionunderiteratedrandomfunctions.Thisisfairlyimmediateonthebasisofsection7.1.Thestatespaceistherealline.From,thechainmovesto+(1,whereisBeta(1),andisaninde-pendentpickfrom.Thelimitingstationarydistribution,whichis),isthedistributionofwhere()arei.i.d.copiesof(U;W):see(7.3).Acknowledgments.WewouldliketothankPhilippeBougerol,OlleHandYuvalPeresformanyusefulsuggestions.Wealsothankourveryhelpfuleditors,DanRockmoreandNickTrefethen.T.W.AndersonOnasymptoticdistributionsofestimatesofparametersofstochasticdif-ferenceequations,Ann.Math.Statist.,30,pp.676{87.L.ArnoldandH.CrauelIteratedfunctionsystemsandmultiplicativeergodictheoryinDi usionTheoryandRelatedProblemsinAnalysisII,M.PinskyandV.Wihstatz,eds.,Birkhauser,Boston,pp.283{305.M.Babillot,P.Bougerol,andL.ElieTherandomdi erenceequationinthecriticalcase,Ann.Probab.,25,pp.478{493.F.BaccelliErgodictheoryofstochasticPetrinetworks,Ann.Probab.,20,pp.375{396.F.BaccelliandP.BremaudElementsofQueuingTheory,Springer-Verlag,NewYork.F.Baccelli,G.Cohen,G.J.Olsder,andJ.P.QuadratSynchronizationandLinearityWiley,NewYork.M.BarnsleyFractalsEverywhere,2nded.,AcademicPress,NewYork.M.BarnsleyandJ.EltonAnewclassofMarkovprocessesforimageencoding,Adv.Appl.Probab.,20,pp.14{32.M.BendaAcentrallimittheoremforcontractivestochasticdynamicalsystems,J.Appl.Probab.,35,pp.200{205.P.Bidigare,P.Hanlon,andD.RockmoreAcombinatorialdescriptionofthespectrumfortheTsetlinlibraryanditsgeneralizationtohyperplanearrangements,DukeMathJ.,toappear.R.BlumenthalandH.CorsonOncontinuouscollectionsofmeasures,Ann.Inst.FourierGrenoble,20,pp.193{199.R.BlumenthalandH.CorsonOncontinuouscollectionsofmeasures,inProc.SixthBerkeleySymp.onMathematicalStatisticsandProbability,Vol.2,L.M.LeCam,J.Neyman,andE.L.Scott,eds.,UniversityofCaliforniaPress,Berkeley,pp.33{40A.BorovkovAsymptoticMethodsinQueuingTheory,Wiley,NewYork.A.BorovkovandS.FossStochasticallyrecursivesequencesandtheirgeneralizationsSiberianAdv.Math.,2,pp.16{81.P.BougerolandN.PicardStrictstationarityongeneralizedautoregressiveprocessesAnn.Probab.,20,pp.1714{1730.A.BrandtThestochasticequationwithstationarycoecients,Adv.Appl.Probab.,18,pp.211{220.A.Brandt,P.Franken,andB.LisekStationaryStochasticModels,Wiley,NewYork.L.BreimanThestronglawoflargenumbersforaclassofMarkovchains,Ann.Math.Statist.,31,pp.801{803. ITERATEDRANDOMFUNCTIONSK.BrownandP.DiaconisRandomwalkandhyperplanearrangements,Ann.Probab.,toappear.J.F.ChamayouandG.LetacExplicitstationarydistributionsforcompositionsofrandomfunctionsandproductsofrandommatrices,J.Theoret.Probab.,4,pp.3{36.D.CifarelliandE.RegazziniDistributionfunctionsofmeansofaDirichletprocess,Ann.Statist.,18,pp.429{442.R.CrownoverIntroductiontoFractalsandChaos,JonesandBartlett,Boston.P.DiaconisandJ.KempermanSomenewtoolsforDirichletpriors,inBayesianStatistics5,J.M.Bernardo,J.O.Berger,A.P.Dawid,andA.F.M.Smith,eds.,OxfordUniversityPress,Oxford,UK,pp.97{106.P.DiaconisandM.ShahshahaniProductsofrandommatricesandcomputerimagegen-eration,Contemp.Math.,50,pp.173{182.L.DubinsandD.FreedmanInvariantprobabilitiesforcertainMarkovprocesses,Ann.Math.Statist.,37,pp.837{844.L.DubinsandD.FreedmanMeasurablesetsofmeasures,Paci cJ.Math.,14,pp.1211{22.L.DubinsandD.FreedmanRandomdistributionfunctions,FifthBerkeleySymp.Math.Statist.Probab.,II,part1,pp.183{214D.DubischarTheRepresentationofMarkovProcessesbyRandomDynamicalSystemsTechnicalReport393,InstitutfurDynamischeSysteme,UniversityofBremen,Germany.R.DudleyRealAnalysisandProbability,Wadsworth,Paci cGrove,CA.M.DufloRandomIterativeModels,Springer-Verlag,NewYork.J.EltonAmultiplicativeergodictheoremforLipschitzmaps,StochasticProc.Appl.,34,pp.39{47.M.EmbreeandL.N.TrefethenSurprisingBehaviorofRandomFibonacciSequencesTechnicalreport,OxfordUniversityComputingLaboratory,Oxford,UK.P.ErdOnafamilyofsymmetricBernoulliconvolutions,Amer.J.Math.,61,pp.974{975.P.ErdOnthesmoothnesspropertiesofBernoulliconvolutions,Amer.J.Math.,62,pp.J.FabiusAsymptoticbehaviorofBayesestimates,Ann.Math.Statist.,35,pp.846{856.P.FeigenandE.TweedieLinearfunctionalsandMarkovchainsassociatedwiththeDirich-letprocess,Math.Proc.CambridgePhilos.Soc.,105,pp.579{585.W.FellerAnIntroductiontoProbabilityTheoryandItsApplications,II,2nded.,Wiley,NewYork.T.FergusonABayesiananalysisofsomenonparametricproblems,Ann.Statist.,1,pp.T.Ferguson,E.Phadia,andR.WariBayesiannonparametricinference,inIssuesinStatisticalInference:EssaysinHonorofD.Basu,M.GhoshandP.K.Pathak,eds.,IMSLectureNotes17,Inst.Math.Statist.,Hayward,CA,pp.127-150.J.FillAninterruptiblealgorithmforperfectsamplingvia niteMarkovchains,Ann.Appl.Probab.,8,pp.131{162.Y.Fisher,ed.FractalImageGeneration,Springer-Verlag,NewYork.D.FreedmanOntheasymptoticbehaviorofBayesestimatesinthediscretecase,Ann.Math.Statist.,34,pp.1386{1403.H.FurstenbergNon-commutingrandomproducts,Trans.Amer.Math.Soc.,108,pp.377{A.GarsiaArithmeticpropertiesofBernoulliconvolutions,Trans.Amer.Math.Soc.,102,pp.409{432.C.GoldieImplicitrenewaltheoryandtailsofsolutionsofrandomequations,Ann.Appl.Probab.,1,pp.126{166.C.GoldieandR.MallerStabilityofPerpetuities,Tech.Report,Dept.ofMathematics,UniversityofWesternAustralia,Nedlands.O.HomandK.NelanderOnExactSimulationofMarkovRandomFieldsUsingCouplingsfromthePast,TechnicalReport,ChalmersTechnicalUniversity,Goteberg,Sweden.O.Hom,M.-C.vanLieshout,andJ.MoCharacterizationresultsandMarkovchainMonteCarloalgorithmsincludingexactsimulationforsomespatialpointprocessesBernoulli,toappear.J.HammersleyandD.HandscombMonteCarloMethods,ChapmanandHall,London.J.HutchinsonFractalsandself{similarity,IndianaUniv.Math.J.,30,pp.713{747.A.JessenandA.WintnerDistributionfunctionsandtheRiemannzetafunction,Trans.Amer.Math.Soc.,38,pp.48{88.S.KerovTransitionProbabilitiesforContinualYoungDiagramsandtheMarkovMomentProblem,TechnicalReport,InstituteforElectricityandCommunications,St.Petersburg,Russia. PERSIDIACONISANDDAVIDFREEDMANH.KestenRandomdi erenceequationsandrenewaltheoryforproductsofrandommatricesActaMath.,131,pp.207{248.Y.KiferErgodicTheoryofRandomTransformations,Birkhauser,Boston.R.KindermanandJ.L.SnellMarkovRandomFields,Contemp.Math.1,AMS,Provi-dence,RI.G.LetacAcontractionprincipleforcertainMarkovchainsanditsapplications,Contemp.Math.50,AMS,Providence,RI,pp.263{273.N.Metropolis,A.Rosenbluth,M.Rosenbluth,A.Teller,andE.Tellerofstatecalculationsbyfastcomputingmachines,J.Chem.Phys.,21,pp.1087{1092.J.MoMarkovChainMonteCarloandspatialpointprocesses,inStochasticGeometry,Likelihood,andComputation,O.Barndor -Nielsen,W.S.Kendall,andM.-C.vanLieshout,eds.,SeminaireEuropeendeStatistique,ChapmanandHall,London.S.P.MeynandR.L.TweedieMarkovChainsandStochasticStability,Springer-Verlag,Y.PeresandB.SolomyakAbsolutecontinuityofBernoulliconvolutions,asimpleproofMath.Res.Lett.,3,pp.231{239.Y.PeresandB.SolomyakSelf-similarmeasuresandintersectionsofCantorsets,Trans.Amer.Math.Soc.,toappear.M.PriestleyNon-LinearandNon-StationaryTimeSeriesAnalysis,AcademicPress,NewYork.J.ProppandD.WilsonExactsamplingwithcoupledMarkovchains,RandomStructuresAlgorithms,9,pp.223{252.J.ProppandD.WilsonHowtogetaperfectlyrandomsamplefromagenericMarkovchainandgeneratearandomspanningtreeofadirectedgraph,J.Algorithms,toappear.A.QuasOnrepresentationofMarkovchainsbyrandomsmoothmaps,Bull.LondonMath.Soc.,23,pp.487{492.S.RachevandG.SamorodnitskyLimitlawsforastochasticprocessandrandomrecursionarisinginprobabilisticmodelling,Adv.Appl.Probab.,27,pp.185{202.G.SamorodnitskyandM.TaqquStableNon-GaussianRandomProcesses:StochasticModelswithIn niteVariance,Chapman&Hall,NewYork.J.SethuramanandR.TiwariConvergenceofDirichletmeasuresandtheinterpretationoftheirparameters,inStatisticalDecisionTheoryandRelatedTopicsIII,J.BergerandS.Gupta,eds.,AcademicPress,NewYork,pp.305{315.B.SolomyakOntherandomseries(anErdosproblem),Ann.Math.,242,pp.611{625.F.SpitzerAcombinatoriallemmaanditsapplicationtoprobabilitytheory,Trans.Amer.Math.Soc.,82,pp.323{339.D.SteinsaltzZeno'swalk:Arandomwalkwithre nements,Probab.TheoryRelatedFields,107,pp.99{121.D.SteinsaltzLocallyContractiveIteratedFunctionSystems,TechnicalReport,BerlinUni-versity,Germany.V.StrassenTheexistenceofprobabilitymeasureswithgivenmarginals,Ann.Math.Statist.,36,pp.423{438.W.VervaatOnastochasticdi erenceequationandarepresentationofnon-negativein- nitelydivisiblerandomvariables,Adv.Appl.Probab.,11,pp.750{783.H.YamatoCharacteristicfunctionsofmeansofdistributionschosenfromaDirichletpro-cesses,Ann.Probab.,12,pp.262{267.V.ZolotarevOne-DimensionalStableDistributions,Transl.Math.Monographs65,AMS,Providence,RI.

Related Contents


Next Show more