/
http://cs273a.stanford.edu [Bejerano Fall16/17] http://cs273a.stanford.edu [Bejerano Fall16/17]

http://cs273a.stanford.edu [Bejerano Fall16/17] - PowerPoint Presentation

fluental
fluental . @fluental
Follow
343 views
Uploaded On 2020-06-16

http://cs273a.stanford.edu [Bejerano Fall16/17] - PPT Presentation

1 CS273A Lecture 12 repetitive elements II httpcs273astanfordedu Bejerano Fall1617 2 Announcements TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAAT ID: 779430

stanford cs273a fall16 bejerano cs273a stanford bejerano fall16 http genome dna repeats repeat elements amp instances coding human simple

Share:

Link:

Embed:

Download Presentation from below link

Download The PPT/PDF document "http://cs273a.stanford.edu [Bejerano Fal..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

http://cs273a.stanford.edu [Bejerano Fall16/17]

1

CS273A

Lecture

12: repetitive elements II

Slide2

http://cs273a.stanford.edu [Bejerano Fall16/17]

2

Announcements

Slide3

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG

3

Genome

Evolution

http://cs273a.stanford.edu [Bejerano Fall16/17]

Slide4

http://cs273a.stanford.edu [Bejerano Fall16/17]4

“Nothing in Biology Makes Sense Except in the Light of Evolution” Theodosius Dobzhansky

Slide5

TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG

5

Genome Content

http://cs273a.stanford.edu [Bejerano Fall16/17]

Slide6

Why this cartoon?

http://cs273a.stanford.edu [Bejerano Fall16/17]

6

Slide7

Sequences that repeat many times in the genomeTake up cumulatively a whooping half of the genomeCome in two major, very different, flavorshttp://cs273a.stanford.edu [Bejerano Fall16/17]7

III

Slide8

http://cs273a.stanford.edu [Bejerano Fall16/17]

8

I. Classes of Interspersed Repeats

Slide9

http://cs273a.stanford.edu [Bejerano Fall16/17]

9

LINE & SINE Elements

Slide10

http://cs273a.stanford.edu [Bejerano Fall16/17]

10

DNA Transposons

Slide11

http://cs273a.stanford.edu [Bejerano Fall16/17]

11

Retrovirus-like Elements

Slide12

http://cs273a.stanford.edu [Bejerano Fall16/17]

12

Genomic Transmission

For repeat copies to accumulate through human generations they must make it into the

germline

cells (eggs & sperms).

Equally true for any genomic mutation.

cell

genome =

all DNA

chicken ≈ 10

13

copies

(DNA) of egg (DNA)

chicken

egg

egg

egg

cell

division

DNA strings =

Chromosomes

Slide13

TE composition and assortment vary among eukaryotic genomes

20%

40%

60%

80%

100%

Slime mold

Budding yeast

Fission yeast

Neurospora

Arabidopsis

Rice

Nematode

Drosophila

Mosquito

Fugu

Mouse

Human

DNA transposons

LTR Retro.

Non-LTR Retro.

Feschotte & Pritham 2006

13

http://cs273a.stanford.edu [Bejerano Fall09/10]

Slide14

Repeats: mostly neutralMost repeat events/instances are neutral.Ie, a repeat instance is dropped in a new place, and joins the rest of the neutral DNA, gradually decaying over time.Many repeat copies are “dead as a duck” on arrival at their new location (eg 5’ truncation).Some instances may be active (spawn new instances) for a while, but when an active copy is hit by a mutation – the host is not affected, the instance is inactivated and decays away.http://cs273a.stanford.edu [Bejerano Fall16/17]14

Slide15

http://cs273a.stanford.edu [Bejerano Fall16/17]

15

Repeat Ages

Slide16

Figure from Ryan Gregory (2005) INTERSPECIES VARIATION IN GENOME SIZE WITHIN VARIOUS GROUPS OF ORGANISMS

16

Slide17

The amount of TE correlate positively with genome size

Plasmodium

Slime mold

Budding yeast

Fission yeast

Neurospora

Arabidopsis

Brassica

Rice

Maize

Nematode

Drosophila

Mosquito

Sea squirt

Zebrafish

Fugu

Mouse

Human

0

500

1000

1500

2000

2500

3000

Genomic DNA

TE DNA

Protein-coding

DNA

Mb

Feschotte & Pritham 2006

17

http://cs273a.stanford.edu [Bejerano Fall09/10]

Slide18

TEs

Protein-coding genesThe proportion of protein-coding genes decreases with genome size, while the proportion of TEs increases with genome sizeGregory, Nat Rev Genet 2005

18

Slide19

Repeats: not just neutralSo far we treated all repeat proliferation events as neutral. While the majority of them appear to be neutral, this is certainly not the case for all repeat instances.And because there are so many repeat instances even a small fraction of all repeats can be a big set compared to other types of elements in the genome.(Eg, 1% of ½ the genome is still a lot)http://cs273a.stanford.edu [Bejerano Fall16/17]19

Slide20

http://cs273a.stanford.edu [Bejerano Fall16/17]

20

Slide21

http://cs273a.stanford.edu [Bejerano Fall16/17]

21

Slide22

http://cs273a.stanford.edu [Bejerano Fall16/17]

22

Repeats & Retroposed Genes

Remember how LINEs reverse transcribe copies of themselves back into the genome? How they sometimes reverse transcribe SINEs “by mistake”? Well, they also grab m/ncRNAs and reverse transcribe them into the genome!

Retrogenes (“

retrotranscribed

”)

:

Protein coding RNA that was reverse transcribed and inserted back into the genome.

The RNA can be grabbed at any stage (partial/full transcript, before/during/after all introns are spliced).

Slide23

http://cs273a.stanford.edu [Bejerano Fall16/17]

23

Retroposed Genes & Pseudogenes

Pseudogenes (“dead genes”):Genomic sequences that resemble (originated from) genes that no longer make proteins.

Retrogenes (“

retrotranscribed

”)

:

Protein coding RNA that was reverse transcribed and inserted back into the genome.

The RNA can be grabbed at any stage (partial/full transcript, before/during/after all introns are spliced).

Slide24

http://cs273a.stanford.edu [Bejerano Fall16/17]

24

Repeat Insertions Can “Break Things”

Slide25

http://cs273a.stanford.edu [Bejerano Fall16/17]

25

Repeat Insertions Can “Make Things”

Slide26

Any Sequence Can Become FunctionalRandom mutation (especially in a large place like our genome) can create functional DNA elements out of neutrally evolving sequences.So is there anything special about a piece of DNA from a repetitive origin that takes on a new function?

http://cs273a.stanford.edu [Bejerano Fall16/17]

26

Slide27

syncytinhttp://cs273a.stanford.edu [Bejerano Fall16/17]27

Slide28

http://cs273a.stanford.edu [Bejerano Fall16/17]

28

Regulatory elements from

obile

Elements

[Yass is a small town in

New South Wales, Australia.]

Co-option event, probably due to favorable genomic

context

Slide29

http://cs273a.stanford.edu [Bejerano Fall16/17]

29

Britten & Davidson Hypothesis: Repeat to Rewire!

Enhancer structure reminder

Slide30

The Road to Co-Optionhttp://cs273a.stanford.edu [Bejerano Fall16/17]

30

Transposition Event

Random Mutations

Neutral decay

Potential

Co-Option

States

Slide31

http://cs273a.stanford.edu [Bejerano Fall16/17]

31

Assemby Challenges

Slide32

http://cs273a.stanford.edu [Bejerano Fall16/17]

32

Inferring Phylogeny Using Repeats

[Nishihara et al, 2006]

Slide33

http://cs273a.stanford.edu [Bejerano Fall16/17]

33

Transposons as Genetics Engineering Tools

Human Gene

Therapy

Slide34

Repeats: fun conspiracy theories1. Repeats wreck so much havoc in the genome, by inserting themselves, deleting segments between instances and more – they make the genome feel like a “rolling sea”. Maybe it is because of them that enhancers “learned” to work irrespective of distance and orientation?2. When the last active copy of a repeat dies, all instances of the repeat are now decaying. Wait long enough and they lose resemblance to each other. Look in 200My and you never know they belonged to the same repeat family. So… if half the genome is recognizable as repetitive now, how much of the genome originated from repeats? Most of it?http://cs273a.stanford.edu [Bejerano Fall16/17]34

Slide35

Repeats: fun conspiracy theories3. If repeats do significantly accelerate the rate of creation of novel functional (gene/regulation) elements – how many functional elements today came from repeats (including old ones we no longer can recognize as such)? Most?4. Is that why our genome “tolerates” these elements?5. You make a conspiracy theory…6. You think of ways* to solve one!* Computationally. Evolution is mostly computational business.http://cs273a.stanford.edu [Bejerano Fall16/17]35

Slide36

http://cs273a.stanford.edu [Bejerano Fall16/17]

36

II. Simple Repeats

Every possible motif of mono-, di, tri- and tetranucleotide repeats is vastly overrepresented in the human genome.These are called microsatellites,Longer repeating units are called minisatellites

,

The real long ones are called satellites.

Highly polymorphic in the human population.

Highly heterozygous in a single individual.

As a result microsatellites are used in paternity testing, forensics, and the inference of demographic processes.

There is no clear definition of how many repetitions make a simple repeat, nor how imperfect the different copies can be.

Highly variable between species: e.g., using the same search criteria the mouse & rat genomes have 2-3 times more microsatellites than the human genome. They’re also longer in mouse & rat.

AAAAAAAAA

CACACACAC

CAACAACAA

Slide37

http://cs273a.stanford.edu [Bejerano Fall16/17]

37

DNA Replication

Slide38

http://cs273a.stanford.edu [Bejerano Fall16/17]

38

Simple Repeats Create Funky DNA structures

Slide39

http://cs273a.stanford.edu [Bejerano Fall16/17]

39

These Bumps Give The DNA Polymerase Hiccups

Slide40

http://cs273a.stanford.edu [Bejerano Fall16/17]

40

Expandable Repeats and Disease

Slide41

Restriction EnzymesRestriction enzymes recognize and make a cut within specific DNA sequences, known as restriction sites. This is usually a 4-6 base pair palindromic sequence.Naturally found in different types of bacteriaBacteria use restriction enzymes to protect themselves from foreign DNA Many have been isolated and sold for use in lab work

http://cs273a.stanford.edu [Bejerano Fall16/17]

41

blunt end

sticky end

Slide42

DNA Fingerprint Basics DNA fragments of different size will be produced by a restriction enzyme that cuts at the points shown by the arrows.

42

Slide43

DNA fragments are then separated based on size using gel electrophoresis.43

Slide44

DNA Fingerprinting can be used in paternity testing or murder cases.44

Slide45

http://cs273a.stanford.edu [Bejerano Fall16/17]

45

There are Tracks for it

Slide46

http://cs273a.stanford.edu [Bejerano Fall16/17]

46

Interspersed vs. Simple Repeats

From an evolutionary point of view transposons and simple repeats are very different.Different instances of the same transposon share common ancestry (but not necessarily a direct common progenitor).Different instances of the same simple repeat most often do not.

Slide47

Now you really know most everythingIn the Genome:Genes (up to 5% of genome) coding and non coding (exons, introns)Gene regulation (15% of genome) proteins: transcription factors, chromatin remodelers, ... RNA genes: microRNAs, antisense, guide RNAs… DNA elements: TF binding sites, promoters, enhancers, ...Repetitive sequences (50% of genome) Interspersed repeats (transposons that hop around) Simple repeats (local replication “sore spots”)Categories are not mutually exclusive.Function comes & goes with evolution = mutation + selectionhttp://cs273a.stanford.edu [Bejerano Fall16/17]47