/
Ab initio  effective rovibrational Hamiltonians for non-rigid molecules via curvilinear Ab initio  effective rovibrational Hamiltonians for non-rigid molecules via curvilinear

Ab initio effective rovibrational Hamiltonians for non-rigid molecules via curvilinear - PowerPoint Presentation

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
367 views
Uploaded On 2018-02-02

Ab initio effective rovibrational Hamiltonians for non-rigid molecules via curvilinear - PPT Presentation

Bryan Changala JILA amp Dept of Physics Univ of Colorado Boulder Joshua Baraban Dept of Chemistry Univ of Colorado Boulder ISMS 2017 Rigid vs nonrigid polyatomic molecules Well defined unique equilibrium geometry ID: 627207

phys chem amp vmp2 chem phys vmp2 amp error vibrational rotational rigid bend vpt2 stretch 2016 174106 internal 145

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Ab initio effective rovibrational Hamil..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Ab initio effective rovibrational Hamiltonians for non-rigid molecules via curvilinear VMP2

Bryan ChangalaJILA & Dept. of Physics, Univ. of Colorado BoulderJoshua BarabanDept. of Chemistry, Univ. of Colorado Boulder

ISMS 2017Slide2

Rigid vs. non-rigid polyatomic molecules

Well defined, unique equilibrium geometryRigid

Non-rigid

Possibly no unique eq. geometry

Total rotations approximately separable from internal motion (e.g.

Eckart conditions)Small amplitude, approximately harmonic normal modes

Structure

Vibrational

dynamics

Rotational

dynamics

Large amplitude, highly anharmonic, tunneling

Potentially significant rotation-vibration interaction (e.g. internal rotors)Slide3

General approaches to solving

VariationalPerturbative

Converge numerically exact energies and wavefunctions

Non-rigidity handled naturally BUT

Very expensive (ca. 103+ per atom)

Computationally economicalNear spectroscopic accuracy in favorable cases

BUT

Standard methods (e.g. VPT2) geared for

semi-rigid

systems.

Alternative perturbative rovibrational approach for non-rigid molecules?Slide4

Disilicon carbide, Si2C

Si

Si

C

Mode

Variational

(“exact”) / cm

-1

Standard

VPT2 */ cm

-1

ν

2

(Si-C-Si bend)

140.49

148.82

ν

1

(sym. stretch)

828.24

846.62

ν

3

(

asym

. stretch)

1198.14

1213.94

RMS error

14.80

Soft, anharmonic bending mode

N. Reilly, et al,

J. Chem. Phys.

142

, 231101 (2015)

M. McCarthy, et al, J. Phys. Chem. Lett. 6, 2107 (2015)PBC & J. Baraban, J. Chem. Phys. 145, 174106 (2016)

*with rectilinear quartic force fieldSlide5

Rectilinear (Cartesian)

normal modes Q

i

are not natural choices

Q

2

bend

1

Perturbative theories are only as good as

Ψ

0

Standard zeroth order picture:

3N-6 harmonic oscillator normal modes

Use

curvilinear

internal coordinates (e.g. bond angles & lengths, …)

Vibrational factors are

harmonic oscillator

wavefunctions

Allow

arbitrary, anharmonic

1D vibrational wavefunctions

2Slide6

Holding all other fixed, vary one to minimize

…___……….

Do this for each factor.

Vibrational SCF & MP2

How do we choose

the factors??

Guess some initial

Repeat

… until converged

J. Bowman,

Acc. Chem. Res.

19

, 202 (1986); Gerber & Ratner,

Adv. Chem. Phys.

70

, 97 (1988)

Strobusch

&

Scheurer

,

J. Chem. Phys.

135

, 124102 (2011)

L.S. Norris et al,

J. Chem. Phys.

105

, 11261 (1996); O. Christiansen,

J. Chem. Phys.

119

, 5773 (2003

)

Perturbatively

correct for remaining vibrational correlation (

VMP2

)Slide7

How does VMP2 fare for Si2C?

Mode

Variational (“exact”) / cm-1

Standard VPT2 / cm-1Curvilinear VMP2*/ cm-1

ν2 (Si-C-Si bend)140.49148.82

140.48ν1 (sym. stretch)

828.24

846.62

828.29

ν

3

(

asym

. stretch)

1198.14

1213.94

1198.17

RMS error

14.80

0.03

Why such an improvement?

VSCF/VMP2 zeroth order approximation =

separability

of 3N-6 q

i

vibrational degrees of freedom (which we choose …

critical user input

!)

All “diagonal anharmonicity” and “mean-field cross anharmonicity” are accounted for already at zeroth order.

Remaining vibrational correlations tend to be “small”; handled well by VMP2.

PBC & J. Baraban,

J. Chem. Phys.

145

, 174106 (2016)

*with

curvilinear

normal coords.Slide8

Typically: so let’s treat them perturbatively

as well. Important: choice of body-fixed frame! For well defined eq. geometry, use Eckart frame for curvilinear KEO.

If no well defined eq. geometry, more elaborate schemes are used.

Details: J. Chem. Phys. 145, 174106 (2016). Adding molecular rotation to VMP2

After a bunch of machinery, we get A/B/C rotational constants and quartic centrifugal distortion constants.

NEWSlide9

Rotational constant

Variational

(“exact”)/MHz

VPT2 |rel. error| x 104VMP2 |rel. error| x 104

Av=06362749.3

2.1Bv=0

4339

2.9

0.3

C

v

=0

4051

2.3

0.7

A

bend

70668

315.8

5.8

Si

2

C rotational constants

aSlide10

Unhindered internal rotation in nitromethane

E

5.5 cm

-1

V = 2 cm

-1

22 cm

-1

50 cm

-1

So far, we’ve assumed

But in the torsional manifold

Uh-oh!!!Slide11

Dealing with near-resonant interactions with rotational-VMP2

Energy

Target state

well isolated

Energy

Target state

n

ot isolated

Treat subset of states non-

perturbatively

Account for remaining (weak) interactions

perturbatively

(via contact/Van

Vleck

transformation)

Standard perturbative correction sum

PBC

& J. Baraban,

J. Chem. Phys.

145

, 174106 (2016)Slide12

Parameter

Expt. / MHzVPT2 VMP2

A

133421219013330B

105441046410507C

587658495862

F

166703

---

166896

A’

13283

---

13249

Δ

JK

x 10

3

17.8

953

17.8

Δ

K

x 10

3

-7.5

-949

-10.7

δ

K

x 10

3

15.8

-268

15.8

All the “problem” parameters involve internal or total rotation about the CH

3

top axis (a-axis)

CH3NO2 torsion-rotation effective HamiltonianF. Rohart

,

J. Mol. Spec.

57

301 (1975); G.

Sørensen

et al

J. Mol.

Struct

.

97

, 77 (1983).

PBC & J. Baraban,

J. Chem. Phys.

145

, 174106 (2016)

aSlide13

Conclusions

Rotational curvilinear VMP2 is a flexible and efficient tool for accurate rovibrational predictions for non-rigid molecules displaying various types of non-trivial nuclear motion dynamics.Applications to tunneling gauche-1,3,-butadiene (10 atom molecule, see talk

TK07 this afternoon) and c-C

3H2 (see talk WF08 by H. Gupta)Future work:inclusion of rotations in SCF stage (explicit RVSCF)

extensions to vibronic/JT systems???Thanks for your attention!!!Slide14

Si2C experimental molecular constants

Mode

Variational (“exact”) / cm

-1Standard VPT2 / cm-1Curvilinear VMP2 / cm-1

Expt / cm-1ν2

(Si-C-Si bend)140.49148.82140.48140(2)

ν

1

(sym. stretch)

828.24

846.62

828.29

830(2)

ν

3

(

asym

. stretch)

1198.14

1213.94

1198.17

---

RMS error

14.80

0.03

Rotational constant

Variational

(“exact”)/MHz

VPT2

|rel. error| x 10

4

VMP2

|rel. error| x 10

4

Expt

/ MHz

Av=06362749.3

2.164074

Bv=043392.90.34396

C

v

=0

4051

2.3

0.7

4102

A

bend

70668

315.8

5.8

71230

N. Reilly, et al,

J. Chem. Phys.

142

, 231101 (2015)

M. McCarthy, et al,

J. Phys. Chem. Lett.

6

, 2107 (2015)

J.

Cernicharo

, et al,

ApJL

,

806

, L3 (2015)