Prasad and Constantine Do vrolis Colle ge of Computing Geor gia Institute of echnology ra vido vrolis ccgatechedu Abstract It is common for simulation and analytical studies to model Internet tr af 57346c as an gr gation of mostly per sis tent TCP 5 ID: 28576 Download Pdf
Zico Kolter Christian Plagemann David T Jackson Andrew Y Ng Sebastian Thrun Abstract We consider the task of accurately controlling a complex system such as autonomously sliding a car sideways into a parking spot Although certain regions of this do
hristmas n arrial\r\f\n\t\b
LaValle Magnus B Egerstedt lavalleuiucedu magnusecegatechedu Department of Computer Science School of Electrical and Comput er Engineering University of Illinois Georgia Institute of Technology Urbana IL 61801 USA Atlanta GA 30332 USA Abstract This
of California Riverside jinxcsucredu Alexandre Donz Univ of California Berkeley donzeeecsberkeleyedu Jyotirmoy V Deshmukh Toyota Technical Center jyotirmoydeshmukhtematoyotacom Sanjit A Seshia Univ of California Berkeley sseshiaeecsberkeleyedu ABSTR
Litérati. Bonsaï Club. Le point focal. où est-il ?. Les fleurs, à droite. autre exemple de point focal. . Le bois mort. Vide principal, secondaire, vides intérieurs, où sont-ils ?. Leur importance: permet au regard de plonger à travers l’arbre.
If a fault occurs within the network the control centre is noti57375ed but theres no need to wait for an operator response Instead the Easergy T200 units communicate with one another automatically to determine where the fault has occurred isolate it
AGENCY REPORT NUMBER HSMV CRASH REPORT NUMBER COUNTY CITY CODE FEET or COUNTY AT NODE NO or NEXT NODE NO NO OF LANES 1 DIVIDED 2 UNDIVIDED MILES of CITY OR TOWN Check if in City or Town FEET or MILES FROM NODE NO FEET MILES FROM INTERSECTION OF AM
If the system has a v ariable loop gain then the location of the closedloop poles depends on the value of the loop gain chosen It is important therefore that the designer know how the closedloop poles move in the splane as the loop gain is varied Fr
Mapping If we take a complex number on the splane and substitute into a function an other complex number results eg substitut ing 4 3 into 2 1 yields 16 30 Contour Consider a collection of points called a contour A Contour A can be mapped
preusse hanschristianlapp hansmichaelhanisch informatikunihallede Abstract Control software engineering has become a weighty factor according to implementation expense especially when developing a new plant or migrating an existing one Because of thi
Published bygiovanna-bartolotta
Prasad and Constantine Do vrolis Colle ge of Computing Geor gia Institute of echnology ra vido vrolis ccgatechedu Abstract It is common for simulation and analytical studies to model Internet tr af 57346c as an gr gation of mostly per sis tent TCP 5
Download Pdf - The PPT/PDF document "Bey ond the Model of ersistent TCP Flo w..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
BeyondtheModelofPersistentTCPFlows:Open-LoopvsClosed-LoopArrivalsofNon-PersistentFlowsRaviS.PrasadandConstantineDovrolisCollegeofComputing,GeorgiaInstituteofTechnologyfravi,dovrolisg@cc.gatech.eduAbstractItiscommonforsimulationandanalyticalstudiestomodelInternettrafcasanaggregationofmostlypersis-tentTCPows.Inpractice,however,owsfollowaheavy-tailedsizedistributionandtheirnumbeructuatessigni-cantlywithtime.Oneimportantissuethathasbeenlargelyignorediswhethersuchnon-persistentowsarriveinthenetworkinanopen-loop(sayPoisson)orclosed-loop(in-teractive)manner.ThispaperfocusesonthedifferencesthattheTCPowarrivalprocessintroducesinthegener-atedaggregatetrafc.WerstreviewtheProcessorSharingmodelsforsuchowarrivalprocessesaswellasthecorre-spondingTCPpacket-levelmodels.Then,wefocusonthequeueingperformancethatresultsfromeachmodel,andshowthattheclosed-loopmodelproduceslowerlossrateandqueueingdelaysthantheopen-loopmodel.Weexplainthisdifferenceintermsoftheincreasedtrafcvariabilitythattheopen-loopmodelproduces.Thecauseofthelat-teristhattheowarrivalrateintheopen-loopmodeldoesnotreduceuponcongestion.Wealsostudythetransientef-fectofcongestioneventsonthetwomodelsandshowthattheclosed-loopmodelresultsincongestion-responsivetraf-cwhiletheopen-loopmodeldoesnot.Finally,wediscussimplicationsofthedifferencesbetweenthetwomodelsinseveralnetworkingproblems.1IntroductionModelsofaggregateTCPtrafcarevaluableinnet-workingresearchandpractice.MuchofthepreviousworkinthisareahasbeenfocusingonthemodelofpersistentTCPows,i.e.,onowsthathaveunlimiteddatatosendandthatarenotlimitedbythereceiveradvertisedwindow.Thismodelismathematicallytractableanditiseasiertosimulate,butatthesametimeitfailstocapturekeyas-pectsofrealInternettrafc[10].Specically,itignorestheheavy-tailednatureoftheowsizedistribution(thatcanproduceLong-RangeDependency),thesignicantvari-ationsinthenumberofactiveowswithtime,andthere-lationbetweencongestionandtheowarrivalprocess.Ontheotherhand,somepreviousworkhasconsiderednon-persistentTCPows,followingaheavy-tailedsizedistri-bution.TheopenissuethereiswhetherthearrivalprocessoftheTCPowsshouldbemodeledinanopen-loop(OL)manner(say,accordingtoaPoissonprocess),orinaclosed-loop(CL)manner(say,fromanumberofinteractiveusers).Thispaperfocusesonthedifferencesthattheowarrivalprocess,OLversusCL,causesinthegeneratedaggregatetrafc.Therelatedissueofwhichmodelismorerealistichasbeenthefocusofarecentmeasurementstudy[16].WestartwiththeuidProcessorSharing(PS)mod-elsfortheOLandCLowarrivalprocesses.ThePSmodelsprovideanaccurateestimateoftheofferedloadinlight/moderateloadconditions.Ontheotherhand,whentheloadapproachesthecapacity,thePSmodelscanleadtosignicantunderestimationoftheofferedload.ThemainproblemisthatthePSmodelsignorepacketlossesandTCPretransmissions,whichareasignicantcontributionofad-ditionalloadincongestedlinks.Nevertheless,thePSmod-elsshowclearlythattheopen-loopmodelcanbeunstable,whiletheclosed-loopmodelisalwaysstable,asthenumberofactiveowsisbounded.Wethencomparethequeueingperformanceofthe(packetlevel)OLandCLmodels,examiningthelossrateandqueueingdelaydistributionthatthetwomodelspro-duceunderthesameofferedload.TheOLmodelproduceshigherlossrateandqueueingdelaysthantheCLmodel.Toexplainthisdifference,weexaminethetrafcvariabil-ityproducedbythetwomodelsinarangeoftimescales(10msec-1sec).WendoutthattheOLmodelresultsinhighervariancethantheCLmodel,especiallywhenthetimescaleexceedstheTCPRound-TripTime(RTT).ThecauseoftheincreasedtrafcvariabilityintheOLmodelisthatthelatterdoesnotreducetheowarrivalrateuponcongestion.Thisleadstomoresignicantoverloadevents,inmagnitudeandduration,thantheCLmodel,generatinghighertrafcvariability.TheCLmodelrespondstoconges-1 tionroughlyoneRTTafteritsoccurrence,whichexplainswhythevariabilitydifferencebecomessignicantwhenthetimescaleislargerthantheRTT.Wealsoexaminethedistributionofthenumberofac-tiveowswitheachowarrivalmodel.Here,wendthattheOLmodelresultsinhighervariabilityinthenumberofowsthantheCLmodelwhentheofferedloadissig-nicant.TherearetimeperiodsinwhichthenumberofongoingowswiththeOLmodelismuchhigherthantheaverage.ThisobservationisrelatedtoanearlierstudybySchroederetal.whichshowedthatjobschedulingiscru-cialmostlywiththeOLmodel,astheformergivesawiderleewaytotheschedulerthantheCLmodel[18].Finally,wefocusonthetransientresponseofthetwomodelsintermsofthecongestionresponsivenessoftheag-gregatetrafc.WithOLowarrivals,theresultingtrafcisnotcongestionresponsive,meaningthattheofferedloaddoesnotfollowtheavailablecapacityinthenetwork.WithCLowarrivals,ontheotherhand,thetrafciscongestionresponsive.Therestofthepaperisorganizedasfollows.Sections2and3reviewpreviousworkandthelimitationsoftheper-sistentowsmodel,respectively.Section4describetheOLandCLmodelsandreviewbasicresultsaboutthecorre-spondingPSmodels.OursimulationsetupispresentedinSection5,whilethequeueingandofferedloaddifferencesbetweenthetwomodelsarepresentedinSections6and7.Section8examinesthevariabilityintheofferedloadatdif-ferenttimescales,whileSection9showsthevariationinthenumberofactiveows.Section10focusesontheconges-tionresponsivenessofthetwomodels.Weconcludethepa-perinsection11,alsodiscussingsomeimplicationsofthisworkinvariousareasofnetworkingresearchandpractice.2RelatedWorkOverthelastfewyears,andespeciallyafterthesemi-nalworkbyKellyetal.[11],severalresearchersappliedcontroltheorytoexaminethestabilityofTCPcongestioncontrol[14,20,15].AkeypointaboutthatlineofworkisthatitassumespersistentTCPows,anditfocusesontheasymptoticstabilityofthequeuesizeatthenetworkbottle-neck.Theassumptionofpersistentowsremovesfromtheproblemtheimportanceoftheowarrivalprocess.Somepreviousworkusesnon-persistentowmodels,butoftenwithoutdiscussingwhethertheOLortheCLmodelismoreappropriate.BenFredjetal.[7]consideredtheOLmodel.Theynotedthattheonlyreductionintheof-feredloaduponacongestioneventisduetoabortedtrans-fers.Suchtransfers,however,resultinwastedthroughputanduserdissatisfaction.Forthisreason,theauthorspro-posedadmissioncontrolastheonlyefcientwaytopreventpersistentoverload.Vecianaetal.[4]consideredtheOLmodelandconcludedthattheInternettrafcmaybecomeunstableundercertainconditions.Heymanetal.[8]usedaCLmodeltoanalyzetheper-formanceofWeb-liketrafcoverTCP.Theyshowedthatthesessiongoodputandthefractionoftimethesystemhasagivennumberofactivesessionsareinsensitivetothedis-tributionofsessionsizesand“thinktimes”,andtheyonlydependonthemeanofthesedistributions.BergerandKo-gan[2],aswellasBonaldetal.[3],usedasimilarCLmodeltodesignbandwidthprovisioningrulesformeetingcertainthroughput-relatedQoSobjectives.BondiandWhitt[1]examinethedifferencesbetweentheOLandCLmodelsinthecontextofnetworksofqueues,focusingontherela-tionbetweentheaveragequeuesizeatthebottleneckqueueandthevariabilityinthejobservice-timedistribution.MostofthepreviousworkwiththeOLorCLmodelsassumesthatTCPcongestioncontrolcansharethecapacityofalinkasauidPSserver[17].KheraniandKumar[12]showedthatthePSmodelisnotalwaysaccurate,mostlybecauseTCPtransfersdonotmanagetokeepthelinkfullyutilizedundercertainconditions.Inthispaper,weusethePSmodeljusttogainsomebasicanalyticinsight.MostofourconclusionsarebasedonNS2simulationswithTCPtransfers.Inapaperthatiscloselyrelatedtoourwork,Schroederetal.[18]comparetheOLandCLmodelsinageneralcon-textofjobarrivalsataserver.Theyhighlightthedifferencesbetweenthetwomodelsintermsofthemeanjobcomple-tiontime,andtheyfocusontheeffectivenessofdifferentjobschedulingpolicieswitheachmodel.Morerecently,wehaveanalyzedseveraltrafctracescollectedatadozenofInternetlinksinordertoestimatethefractionoftrafcthatcanbemappedtoeithertheOLorCLmodel[16].Thatmeasurementstudyshowsthatabout60-80%oftrafcto/fromwell-knownports(mostlyHTTP)followtheCLmodel.Nevertheless,thepercentageofOLtrafcissignicantinsomelinks.Additionally,wecouldnotclassifyreliablyupto70%ofthetrafcincertaintraces.3CritiqueofthePersistentFlowsModelItiscommonforanalyticalandsimulationstudiestomodelmostofthetrafcwithpersistentTCPconnections.Acommonargumenttojustifythismodelisthatmosttraf-cinanInternetlinkiscarriedbyafewlargeTCPowselephantsandsothoseowscanbemodeledaspersistent.Thesmallerows,referredtoasmice,donotcontributeasignicantamountoftrafcandsotheyareoftenignored,ortheyareviewedasasourceofstochasticnoiseinsim-ulationstudies.Thepreviousargumentisanoversimpli-cationanditignorestwokeycharacteristicsofrealInternettrafc.First,thesizeofTCPowsfollowsacontinuousandheavy-taileddistributioninpractice,ratherthanabimodal distributioninwhichowsareeitherveryshort(mice)orverylong(elephants).Inotherwords,thepreviousargu-mentignorestheowsofsignicant,butnotextreme,size.Second,owswithverylargesize(relativetootherowsintheaggregate)donotalwayshaveverylongduration.Somelargeowsgethigherthroughput,andsotheirdurationcanbecomparabletothatofshortows.Suchowscannotbemodeledaspersistent,especiallywhenthetimescaleofin-terest(forexample,thedurationofthesimulationstudy)islongerthantheirduration.Toillustratetheseissues,weanalyzeapackettracethatwascollectedattheborderrouterofGeorgiaTechinJan-uary2005.Thetracedurationistwohoursandthemoni-toredlinkcarriestheinboundtrafcinaGigabitEthernetsegmentthatconnectsthecampusnetworktotheSoXGi-gaPoP.Theobjectiveofthistrafcanalysisistoexaminetheassumptionsbehindthepersistentowsmodel.Notethatsimilarstudieshavebeenconductedseveraltimesinthepast(forinstance,see[6]),usingtracesfrommanylinksandunderdiverseloadconditions.0102030405060708090100110120Time interval T (min.)0.20.30.40.50.60.7Fraction of bytes from Figure1.ThefractionofbytesfgeneratedbyowsthatareactivefortheentiredurationofagiventimeintervalTasafunctionofT.Theerrorbarsdepicttheminimumandthemaximumvaluesofthefractionf.Werstlookedattheowsizedistribution.WendthattheC-CDFofthatdistributionshowsclearlineardecreaseinalog-logplot,pointingtotheheavy-tailedParetodistri-bution(withshapeparameterabout1.3).Wealsoexaminedthedistributionofowinterarrivals.Whentheinterarrivalsarelargerthan100msecorso,theycanbemodeledasex-ponentialandindependent(pointingtoaPoissonowar-rivalprocess).However,therearesignicantcorrelationsinlowerinterarrivals,probablyduetothegenerationofsimul-taneousowsbythesameapplicationsession.Next,wemeasuredthenumberofactiveowsasafunc-tionoftimefordifferentowsizethresholds.Ifweonlyconsiderowsthatarelargerthan1.5MB(or1000pkts),thenumberofactiveowsremainsalmostconstantwithtime.Thisobservation,however,shouldnotbeinterpretedasvalidationofthepersistentowsmodel.Thereasonisthateventhoughthenumberof(sufcientlylarge)activeowsremainsroughlyconstantwithtime,thesetofactiveowschangessignicantlywithtime.ToillustratethispointweexaminedthefractionofbytesfthatisgeneratedbyowsthatremainedactivethroughoutagiventimeintervaloflengthT.Withthepersistentmodel,allowsareactivethroughoutTandthisfractionshouldbecloseto100%.IfallowslastedforlessthanTseconds,thenthisfrac-tionshouldbezero.Wemeasuredfforthefollowingval-uesofT:7.5,15,30,60and120minutes.ForeachvalueofT(exceptfor120minutes),weobtained30samplesofthefractionf,ignoringthersttwominutesofthetrace,andconsideringowsthatlastlongerthan0:95TasactivethroughoutthedurationT.Figure1showsthemean,theminimumandthemaximumvalueoffasafunctionofT.Thekeyobservationhereisthatevenfortimeintervalsthatlastonly5-10mins,thefractionoftrafcfrompersistentowsisonly40-70%.So,theassumptionthatthesamesetofowscarriesalmostalltrafcignoresthevariabilityduetothedynamicowarrivalandcompletionprocesses.4TwoModelsofNon-PersistentFlowAr-rivalsInthissection,wedescribetwobasicmodelsofnon-persistentowarrivals:theOLandCLmodels.Bothmod-elsaresimpleandwell-studiedintheperformanceevalua-tionliterature.Notethattheterms“open-loop”and“closed-loop”havebeenpreviouslyusedtodistinguishbetweennon-TCPtraf-c(viewedasopen-loopbecausepacketsarriverandomlybasedonanexogenousprocess)andTCPtrafc(viewedasclosed-loopbecausetheowisregulatedbyTCPcon-gestioncontrol).Inthispaper,bothOLandCLmodelsdescribeanaggregateofTCPows.Theydiffer,however,inthehigherlevelprocess,operatingatthesessionorap-plicationlayer,thatgeneratestheseows.Figure2showsaschematicdiagramoftheowgenerationprocess.Ifthesessionlayerusessomefeedbackfromthenetwork,sothatitslowsdownthegenerationofnewowsuponcongestion,theresultingtrafcwillbeclosertotheCLmodel.Oth-erwise,intheabsenceofsuchfeedback,theOLmodelismoreappropriate.4.1Open-LoopmodelIntheOLmodel,usersorapplicationsgenerateowsindependentofanypreviousowstheymayhavegenerated.Tomotivatethismodel,considertheaccesslinkofaWebserver.Intheoutbounddirection,theserversendslestoalargepopulationofuserslocatedanywhereintheInternet. NetworkTCP feedback loopSession feedback loop ?TransportSessionClientServerFigure2.Theowarrivalprocessiscon-trolledbythesession/applicationlayer.Isthatlayerresponsivetonetworkcongestion?Assumethatauserdoesnotreturntothisserver,atleastforalongtime,aftercompletingaletransfer.Consequently,theserver'ssessionsarealwayswithnewusers.Ifthelinkbecomescongested,thearrivalrateofnewsessionswillnotbeaffected,asInternetusersaretypicallyunawareofthenetworkstateinagivenpath.ConsideraPSserverwithcapacityC(bytes/sec),aver-ageowarrivalrate(ows/sec),andaverageowsizeS(bytes).WerefertothismodelasPS-OL.Theaverageof-feredloadintheserverisgivenbySandthenormalizedofferedloadiso=S=C:(1)Ifo1,theserverisstableandoistheaverageutiliza-tion.ForaPoissonowarrivalprocess,itcanbeshownthattheaveragenumberofactiveowsisgivenby[13]No=1(1 o):(2)Otherwise,ifo1,theserverisunstable(aslongasowsareneveraborted).Sinceboththeowarrivalrateandtheaverageowsizeareindependentofthenetworkstate,theaverageofferedloadremainsconstanteveninthepresenceofcongestion.Further,theexpectedthroughputofanewowinthePS-OLmodelisgivenbytheavailablecapacityintheserver,R=C(1 o):(3)DeviatingfromthePSmodel,wecanconsiderapacket-levelmodelofaFirst-Come-First-Served(FCFS)queuewithanitebufferandwithowsthatarecontrolledbyTCPcongestioncontrol(TCP-OL).NoticetwoimportantdifferencesbetweentheTCP-OLmodelandthePS-OLmodel.Intheformer,wecanhavepacketdrops.TCPreactstothemwithretransmissions,whicheffectivelyincreasethesizeoftheaffectedows.Further,itiswellknownthatTCPcangenerateredundantretransmission.ThismeansthattheactualofferedloadbyasetofTCPowsintheOLmodelcanbehigherthanwhatthePSmodelpredictsinEqua-tion(1).Second,aTCPowcanbeactiveevenwhenitdoesnotcompeteforavailablecapacity,becauseofwindowlimitationsduetoslow-start,retransmissiontimeouts,lim-itedadvertisedwindow,etc.ThismeansthattheaveragenumberofactiveTCPowscanbemuchlargerthanEqua-tion(2).4.2Closed-LoopmodelToillustratetheCLmodel,considertheaccesslinkofasmallenterprisewith,sayN,users.Intheinbounddi-rection,mostofthetrafcatthelinkisdownloadsthataregeneratedbytheactivityoftheseNusers.Inthesimplestmodel,eachusercanbeinthe“Active”statedownloadingale,thenspendingsometimeinthe“Idle”(or“Thinking”)state,andtheneitherdownloadinganotherle,orleavingthesystemforalongertimeperiod(“Inactive”state).ThislinkwouldnotcarrymorethanNactiveowsatanytime.Furthermore,ifthelinkbecomescongested,thenthedown-loadlatenciesofallactiveowswillincrease,reducingtheratewithwhichnewowsaregenerated.InthePSversionoftheCLmodel,wehaveaxednum-berofusersN.Eachusergoesthroughcyclesofactivity,withowsofaveragesizeS,followedbyidleperiodsofaveragelengthTi.TheaveragesessionarrivalrateintheCLmodelisgivenbyc=NTt+Ti(4)whereTtistheaverageowtransferlatency.Thelatterde-pendsontheloadatthePSserver.ThustheaverageserverutilizationatthePS-CLmodelisgivenbyc=NSC(Ti+Tt):(5)TheaveragenumberofactiveowsinthePS-CLmodelisgivenby(see[2])Nc=a1 afora1=N 1 a 1=N CTiSfora1(6)wherethenormalizedofferedloadisgivenbya=NS=CTi:(7)Notethattheexpectednumberofactiveowsfora1issamewiththeOLmodel.Ontheotherhand,whena1,NcincreasesslowlywithaandremainsboundedbyN.SimilartotheTCP-OLmodel,theCLmodelwithaFCFSqueueandTCPows(TCP-CL)candeviatesigni-cantlyfromitsPS-CLcounterpart.First,asinTCP-OL,weneedtoconsidertheextraloadduetorequiredorredundantretransmissions.Second,asintheTCP-OLmodel,TCPisnotabletoalwaysusetheavailablecapacity. 5SimulationSetupTheprevioussectionreviewedwell-knownresultsfortheOLandCLmodels,basedonthePSmodel.Inthiswork,wearemoreinterestedinTCP-speciceffectsthatcannotbecapturedbythePSmodel,aswellasonthevarianceoftheresultingaggregatetrafc.Forthesereasons,werelymostlyonsimulation.Figure3showsourNS-2simulationsetup.Thereare 1Gbps1Gbps50MbpsB=250pkts1105ms45ms5ms5msServersClientsFigure3.Simulationsetup10inputlinks,eachwithcapacity1Gbps,connectedtoanoutputlinkwithcapacityC=50MbpsandbuffersizeB.Thistopologydescribesascenarioinwhichthebottleneckistheingresslinkofanenterprisenetwork,andwheretheserver,backboneandclientlinksareover-provisioned.Inthissetup,wehave20serversthatareconnectedtothebot-tleneckwith1Gbpslinksandwithpropagationdelaysthatvarybetween5msecand45msec.Theround-trippropaga-tiondelayinthissetupvariesfrom30msecto110msec,withaharmonicmeanofaboutT0=60msec1.InallsimulationsweusetheSACK-enabledNS-2TCPmodulesack1.ThebuffersizeBissettothebandwidth-delayproductofthepath(250packets),consideringT0astherepresentativedelay.Themaximumadvertisedwindowissetto256packets.IntheCLsimulations,thereareNclientsthatinitiateTCPtransfers.Theseusersarriveforthersttimeatthenetworkatarandominstantduringtherstfewsecondsofthesimulation.Afterarriving,eachuserfol-lowstheCLowgenerationprocessselectingaserverforeachtransferrandomlyfromthesetof20servers.IntheOLsimulations,theowarrivalprocessisPoissonwithar-rivalrate.Inallsimulations,theowsizefollowsaParetodistributionwithameanof25packetsandshapeparameter1.5.ThethinktimeTifortheCLmodelfollowsanexpo-nentialdistributionwithameanof2seconds.ThevaluesofandNarevariedtoobtaindifferentofferedloadsintheOLandCLmodels,respectively.Eachsimulationrunsfor1000secondsandwereportresultsfortheperiodfrom200to950seconds.6ControllingtheOfferedLoadTocomparethetrafccharacteristicsandqueueingper-formanceoftheOLandCLmodels,werstneedtomake1Theuseoftheharmonicmeanhasbeenrecommendedin[5].surethattheirparametersareselectedsothatbothmodelsproduceequalaverageofferedload.Theofferedloadisde-nedastheamountoftrafcthatarrivesatthebottlenecklinkperunitoftime,anditincludestrafcthatmaygetdroppedduetocongestion.ControllingtheofferedloadintheOLandCLmodels,however,isnottrivial.SupposethatwewanttogenerateacertainofferedloadXatthebottlenecklinkoftheprevioussimulationsetup.GiventheaverageowsizeS(andtheav-eragethinktimeTiinthecaseoftheCLmodel),acommonapproachistorelyonthePSmodel.FortheOLmodel,wecancalculatetherequiredowarrivalrateas=X=S.FortheCLmodel,however,thetermTtdependsonthegivenloadconditions.Acrudeapproximationistoassumelightloadconditions(a1),andthusTtTi.Then,therequirednumberofusersisN=XTi=S.010203040506070PS Model Offered Load (Mbps)020406080100Offered Load (Mbps)PS-OLPS-CL-TPS-CLCapacityFigure4.TheofferedloadwiththeTCP-OLandTCP-CLmodels(simulated,y-axis)asafunctionoftheofferedloadXthatispre-dictedbythecorrespondingPSmodels(cal-culated,x-axis).Next,weexaminetherelationbetweentheaverageof-feredloadXpredictedbythetwoPSmodels,aspreviouslydescribed,andtheactualofferedloadthatweobserveinsimulationswithTCPtrafc(TCP-OLandTCP-CLmod-els).Figure4showstheresultsofthiscomparison.ThecapacitylinesX=CandY=Careshownforreference.WeobservethattheofferedloadwiththeTCP-OLmodelisveryclosetotheloadXpredictedbythePS-OLmodel,aslongasXremainsbelowthecapacityC.AsXapproachesCtheTCP-OLofferedloadstartsdeviatingfromX,andwhenXC(overload)theTCP-OLofferedloadissignif-icantlyhigherthanX.ThereasonisthattheTCP-OLof-feredloadincludesretransmissions(requiredorredundant)ofdroppedpackets.ThefactthattheincreaserateoftheTCP-OLofferedloaddropsasXgoesmoredeeplyintooverloadisduetotheincreasingfrequencyofretransmis-siontimeoutsthattheTCPconnectionsexperience.Nev-ertheless,theimportantobservationhereisthatwecanuse theofferedloadpredictedbyPS-OLmodelasareasonableapproximation,aslongasXC.InthecaseoftheCLmodel,theofferedloadpredictedbythePS-CLmodelislowerthanthatwithTCP-CL,eveninlight/moderateloadconditions.Thereason,ofcourse,isthatwehaveignoredtheload-dependenttransfertimeTt,assumingthatitismuchlessthanTi.EspeciallyforTCPows,however,wecannotignorethatforaowofsizeSthereisaminimumtransferlatencyofseveralRTTsdueslow-start,eveniftherearenoqueueingdelaysorpacketlosses.Thus,wenextconsiderthefollowingimprovedap-proximationoftheofferedloadwiththePS-CLmodel,X=NSTi+Tt;min(S)(8)whereTt;min(S)istheminimumlatencyrequiredbyTCPtotransferaowofsizeSusingslow-start.ItissimpletoestimatethisparameteraslongastheRTTandtheTCPvariantusedareknown.WerefertothisapproximationasthePS-CLmodelwithaconstanttermfortheminimumtransfertimeoftheaverageowsize,orPS-CL-Tforshort.Figure4showstherelationbetweentheofferedloadoftheTCP-CLandPS-CL-Tmodels(withTt;min(S)=0.36secinoursimulations).Notethatthelatterisareasonablygoodapproximationbothwhenthelinkisnotcongested(XC)andinoverload(XC).ThereasontheofferedloadisslightlyabovethecapacityinoverloadisagainthepresenceofsomeTCPretransmissions.Insummary,thePSmodelcanprovideareasonableapproximationoftheofferedloadintheTCP-CLmodel,aslongasweconsidertheminimumtransfertimewithTCPslow-startfortheaverageowsize.010203040506070PS Model Offered Load (Mbps)020406080100Offered Load (Mbps)PS-OLPS-CL-T (TI=20sec)PS-CL-T (TI=2sec)CapacityN=3200N=390Figure5.TheofferedloadfromtheCLmodeltendstothatoftheOLmodelasNandTiincrease.NoticethattheOLmodelcanbeviewedastheasymp-toticlimitoftheCLmodel,ifweletthenumberofusersNandtheaverageidletimeTigotoinnity,whiletheinitialtransferofeachuserisrandomlyplacedonthetimeaxis.Indeed,wemaywonderwhethertheofferedloadwiththeTCP-CLmodelapproachesthatoftheTCP-OLmodelasweincreaseNandTi.Figure5showstheofferedloadfromtheTCP-CLmodelfortwovaluesofTi,2and20seconds.Notethatanincreaseintheidletimealsorequiresanincreaseinthenumberofusersinordertoattainthesameofferedload.Forexample,withTi=2secweneed400userstoget46Mbpsofofferedload,whilewithTi=20secweneed3200users.Weseethattheofferedloadbetweenthethreecurvesdiffersmostlyinoverload,asexpected.AsweincreaseTiandN,theTCP-CLcurveapproachestheTCP-OLcurve,implyingthegradualconvergenceoftheCLmodeltotheOLmodel.NoticehoweverthatthisconvergenceisveryslowandinpracticewewouldneedaverylargenumberofusersbeforewecanclaimthattheaclosedpopulationofuserscanbemodeledwiththeOLmodel,inoverloadconditions.Intherestofthepaper,weusetheofferedloadthatiscalculatedfromns-2simulations.7QueueingPerformanceNext,wecomparethequeueingperformanceoftheTCP-OLandTCP-CLmodels.Themainobservationisthat,un-derthesameofferedload,theTCP-OLmodelresultsinhigherqueueingdelaysthantheTCP-CLmodel.Iftherearepacketlosses,thenthelossratewithTCP-OLisalsohigherthanwithTCP-CL.01020304050Offered Load (Mbps)00.511.52Loss Rate (%)TCP-OLTCP-CLFigure6.Thelossrateasafunctionoftheof-feredloadfortheTCP-OLandTCP-CLmod-els.6and7showthelossrateandthequeueingde-laysfortheTCP-OLandTCP-CLmodelsasafunctionoftheofferedload.Forqueueingdelays,wereporttheme-dianandthe90-thpercentileoftheper-packetdelaydistri-bution.Thedifferencesareofcourseminorforlightloadconditions,whentheofferedloadis,say,below50%ofthecapacity.Inheavierloadconditions,however,thediffer- 01020304050Offered Load (Mbps)00.010.020.030.040.050.06Queueing Delay (sec.)TCP-OL: 90thPercentileTCP-CL: 90thPercentileTCP-OL: MedianTCP-CL: MedianFigure7.Themedianand90-thpercentileofthequeueingdelaydistributionasafunctionoftheofferedloadfortheTCP-OLandTCP-CLmodels.encesaresignicantandcannotbeignored.Inthenextsec-tionweexplainthesedifferencesexaminingthestatisticalvariabilityoftheaggregatetrafcindifferenttimescales.8TrafcVariabilityatDifferentTimescalesTheresultsoftheprevioussectionsuggestthattheTCP-OLmodelproduceslargertrafcburstinessthantheTCP-CLmodel.Inthissectionweaimtofurtherunderstandwhatcausesthisdifferenceandtoidentifytheloadconditionsandtimescalesinwhichthisismoreevident.Figure8showsthevarianceoftheofferedloadforanaveragingtimescaleof10msec,100msecand1sec.First,noticehowthevariancedependsontheofferedload.Thevarianceincreasesuptoacertainpoint(20-45Mbps,de-pendingonthetimescaleandthemodel).Afterthatpointthevariancedecreaseswiththeofferedload.Foranex-planationofthiswell-understoodtrendwereferthereaderto[9,19].WhatismorerelevanthereisthattheTCP-OLmodelproduceshighervariancethantheTCP-CLmodelinmoderate/heavyloadconditions.Sincetheround-tripprop-agationdelaysinoursimulationtopologyvaryfrom30msecto110msec,weviewthetimescaleof10msecasbelowthetypicalRTT,100msecasroughlyequaltotheRTT,and1secaslargerthantheRTT.TheresultsofFigure8alsosuggestthatthedifferenceinthevarianceofthetwomodelsismoresignicantwhenthetimescaleisaroundtheRTTorhigher.Inlightloadconditionsthetwomodelsarepracticallyequivalent,asthereisnosignicantqueueingorpacketlossesandtransfersareonlylimitedbyTCP'sslow-start.Astheofferedloadincreasesbeyondroughly50%ofthecapacity,congestionepisodesstarttooccur.IntheTCP-OLmodel,newowsarriveindependentofwhetherthebot-tleneckiscongestedornot.IntheTCP-CLmodel,whenaowslowsdownbecauseofcongestionitalsodelaysthegenerationofthenextowfromthesameuser.Thisreducesthedurationandmagnitudeofcongestionevents,leadingtolowertrafcvariabilitythanintheTCP-OLmodel.TheresponselatencyoftheTCP-CLmodelcannotbefasterthanTCP'sRTThowever;thisexplainswhythetwomodels“look”thesameinsub-RTTtimescales.0100200300400500050100150VarianceTCP-CLTCP-OL01020304050Offered Load (Mbps)0255075Time Scale = 10 msecFigure8.VarianceoftheofferedloadwiththeTCP-OLandTCP-CLmodelsforthreeaverag-ingtimescales.0102030405000.10.20.30.40.5TCP-CLTCP-OL0102030405000.10.20.30.40.501020304050Offered Load (Mbps)00.10.20.30.40.5Fracion of time offered load Capacity01020304050Offered Load (Mbps)00.10.20.30.40.5Time Scale = 10msecTime Scale = 100msecTime Scale = 1 secTime Scale = 10 secFigure9.Fractionoftimetheofferedloadisgreaterthanthecapacityforfouraveragingtimescales.ofurtherillustratethepreviousexplanation,Figure9showsthefractionoftimetheofferedloadexceedsthelinkcapacityinfouraveragingtimescales.Hereweseethatinthesub-RTTtimescaleof10msec,bothmodelsexperienceoverloadforpracticallythesamefractionoftime.WhenweexaminethetrafcathighertimescalesthantheRTT,however,weconrmthattheTCP-OLisoverloadedmorefrequently.TheTCP-CLmodelexperiencesoverloadlessoftenbecauseitsowarrivalratereducesupontheoccur-renceofpacketlosses.Sincethetwomodelshavethesameaverageofferedload,thehigheroverloadfrequencyinTCP-OLiscompensatedwithtimeperiodsinwhichtheTCP-OL offeredloadislessthanthatinTCP-CL.Thesewideruc-tuationsmakethevarianceofTCP-OLhigher,aslongasthetheofferedloadandtimescalearesufcientlylarge.02468101200.20.40.60.81CDF02468101200.20.40.60.8102468101200.20.40.60.81CDFTCP-OLTCP-CL024681012Number of Consecutive Congestion Periods00.20.40.60.81Time Scale = 10 msecTime Scale = 100 msecTime Scale = 10 secTime Scale = 1 secFigure10.TheCDFofthelengthofcon-secutiveoverloadperiodsforfouraveragingtimescales.Theaverageofferedloadis95%ofthecapacity.Itisnotjustthefrequencyofoverloadeventsthatdif-fersbetweenthetwomodels,butalsotheirduration.ThisisshowninFigure10,whereweplottheCDFofthedurationofoverloadeventsatdifferenttimescalesforanaverageof-feredloadof47.5Mbps.Thisdurationismeasuredasthenumberofconsecutivetimeperiods(withlengthequaltotheaveragingtimescale)inwhichtheofferedloadishigherthanthecapacity.Inthesub-RTTtimescalebothmodelshavethesamedistribution.Asthetimescaleincreases,how-ever,thegapbetweenthetwodistributionsincreases,astheTCP-OLmodelisunabletoself-regulateitsofferedloadbe-lowthecapacity.Forinstance,whenwelookatthetrafcinsuccessiveintervalsof10seconds,about85%oftheover-loadeventsinTCP-CLlastforonlyoneinterval.Thecor-respondingpercentageisonly40%intheTCP-OLmodel.9NumberofActiveFlowsInthissection,weexaminethenumberofactiveowscreatedbytheTCP-OLandTCP-CLmodels.WeshowthatthenumberofactiveowsinthesetwoTCPmodelsismuchlargerthanthatpredictedbythePSmodel,andthatTCP-OLproduceshighervariabilityinthenumberofactiveowsthantheTCP-CLmodel,inheavyloadcondi-tions.Thelatterimpliesthattheper-owthroughputintheTCP-OLmodelisalsolesspredictable.Figure11showstheCDFoftheaveragenumberofac-tiveowswhentheofferedloadis70%and95%ofthecapacity.Thenumberofactiveowsisaveragedover1-secintervals.Werstnotethatthenumberofactiveowsin5010015020025000.20.40.60.81CDFTCP-CLTCP-OL50100150200250Average Number of Active Flows00.20.40.60.81CDF70% Offered Load 95% Offered Load Figure11.TheCDFoftheaveragenumberofactiveows,measuredat1-secintervals,fromtheTCP-OLandTCP-CLmodelswhentheofferedloadis70%and95%oftheca-pacity.bothmodelsismuchhigherthanthatpredictedbythepro-cessorsharingmodel(seeEquations2and6).Specically,thePS-OLmodelpredictsabout3and20owsforofferedload70%and95%,respectively.Thecorrespondingaver-agesfromtheTCP-OLsimulationsare70and131.ForthePS-CLmodel,ontheotherhand,Equation6predictsanav-erageof102activeowsfor95%offeredload,whiletheaveragefromtheTCP-CLsimulationsis115.Thesediffer-encescanbeattributedtothefactthat,withTCP,thereisalargenumberofsmallowsthatarenotalwayscompetingforavailablecapacitybecauseofslow-start,retransmissiontimeouts,orotherlimitations.AlsonoticethattheTCP-OLmodelresultsinmuchhighervariabilityinthenumberofactiveowsinheavyloadconditions.Again,thisisbecausetheTCP-OLmodeldoesnotreducetheowarrivalrateuponcongestion.ThenumberofactiveowsintheTCP-CLmodel,ontheotherhand,isalwaysboundedbyN.Theincreasedvariabil-ityinthenumberofactiveowswiththeTCP-OLmodelmeansthattheper-owthroughputwiththatmodelislesspredictablethanwithTCP-CL.10CongestionResponsivenessSofarwehavefocusedonthesteady-statebehaviorofthetwomodels.Inthissection,weexaminetheirtransientresponsetoindividualcongestionevents.Werefertoatrafcaggregateascongestionresponsiveifitreducesitsofferedloaduponoverloadtoapointthatthereisnolongercongestion.ThespeciccongestioneventthatweconsiderhereisaperiodicUDPstreamwithratethatishigherthantheavailablecapacityinthebottleneck.GiventhattheUDPstreamdoesnotreacttocongestion, theeventthatwesimulaterepresentsasuddenreductionoftheavailablecapacityfortheTCPaggregatefromCtoC0=(1 f)C,wherefCistherateoftheUDPstream.Inthefollowing,wemaketheofferedloadCbeforethecongestioneventtobeatthesamelevelintheTCP-OLandTCP-CLmodels.Weset1 f1,sothatthebottle-neckbecomescongestedwhentheUDPstreamstarts.100200300400Time (sec.)3040506070Offered Load (Mbps)TCP-OLTCP-CL15Mbps UDP Stream Figure12.Theresponseofthetrafcag-gregateintheTCP-OLandTCP-CLmodels,whenacongestioneventiscausedbyaUDPstreamofrate15Mbps.Thecapacityis50Mbpsandtheofferedload(beforethecon-gestionevent)is47.5Mbps.Figure12showstheofferedloadfromthetwotrafcmodelsin1-secintervals.Thecongestioneventiscausedbya15MbpsCBRUDPstreamanditlastsfrom200secto275sec.Theeffectsofthecongestioneventcanbeex-aminedinthreestages:rst,justafterthecongestioneventstarts,second,duringthecongestionevent,andthird,afterthecongestioneventnishes.Beforethestartofthecongestionevent,bothTCP-OLandTCP-CLhavethesameaverageofferedload.TheirresponsewhentheUDPstreamstartsisthat,becauseofTCP'scongestioncontrol,thetrafcfrombothmodelsdropsatalevelthatisclosetothenewavailablecapacity(35Mbps).Thesimilaritybetweenthetwomodels,how-ever,endsthere.AfewsecondslatertheofferedloadintheTCP-OLmodelstartsincreasing,asmoreandmorenewowsarriveandcompeteforthroughput.TheofferedloadintheTCP-CLmodel,ontheotherhand,isself-regulatedattheleveloftheavailablecapacity,becauseanewowcan-notstartunlessanexistingowhascompleted.Thus,thenumberofactiveowsintheTCP-OLmodelkeepsincreas-ing,whilethecorrespondingnumberintheTCP-CLmodelstaysroughlythesame(alsoseeFigure13).Finally,afterthecongestioneventends,theofferedloadfrombothmodelsincreasestocapturetheavailablecapacitythathasbeenreleasedbytheUDPstream.IntheTCP-CLmodel,thisprocessiscompletedwithinafewseconds.IntheTCP-OLmodel,however,thereisalargebacklogofac-tiveowsthatneedstobeclearedbeforetheofferedloadreturnsatitspre-congestionlevel.AsFigure13shows,thiseffectlastsforhundredsofseconds(thisdependsofcourseonthedurationandmagnitudeofthecongestioneventandontheTCPofferedloadbeforecongestion).Figure13fur-thershowsthequeueingdelayinthebottleneckwitheachmodel.Noticethateventhoughthecongestioneventendsatt=275sec,thequeueremainsalmostfullforhundredsofsecondswiththeTCP-OLmodel.1001502002503003504000500100015002000Num. of Active FlowsTCP-OLTCP-CL100150200250300350400Time (sec)00.020.040.060.08Queuing Delay (sec.)15Mbps UDP streamFigure13.ThetimeseriesofthenumberofactiveowsandofthequeueingdelaywiththeTCP-OLandTCP-CLmodelswhenacongestioneventiscausedbyaCBRUDPstream.enifthelong-termofferedloadatalinkisbelowthecapacity,therecanbeoverloadeventsthatlastforafewtensofseconds.Theimportantlessonfromthepreviousdiscussionisthatduringsucheventsanopen-looptrafcaggregateiseffectivelycongestionunresponsivedespitethefactthatitconsistsofTCPows.Further,theconsequencesofanexternallyimposedcongestionevent(sayalargeUDPstreamoraDOSattack)canlastformuchlongerthanthedurationoftheeventitself,ifthetrafcisopen-loop.11DiscussionInthispaper,weexaminedtwobasicmodelsofnon-persistentowarrivals,andexplainedhowtheyleadtodif-ferenttrafccharacteristics,intermsofofferedload,vari-abilityindifferenttimescales,queueingperformance,num-berofactiveows,congestionresponsivenessandelastic-ity.Inthefollowing,wediscusssomemoreimplicationsofthisworkinotherareasofnetworkingresearchandpractice.AQMandnetworkstability:Activequeuemanage-ment(AQM)mechanisms,suchasRED,REM,PIcon-trollers,etc.,havebeenproposedasawaytostabilizecon-gestioncontrol.Itisimportanttonotethatsuchstudiesas-sumepersistentTCPconnections.Withthatmodel,AQM mechanismscancontrolthequeuelengthandthebottle-necklinkutilization.TheeffectivenessofAQMmecha-nismswithnon-persistenttrafc,however,ismuchlessun-derstood.TheofferedloadofTCP-OLtrafcdoesnotde-pendonnetworkstate.AQMmechanismscannotregulatesuchanaggregate,andtheyareunabletoavoidpersistentoverloadiftheofferedloadexceedsthecapacity.Isadmissioncontrolnecessary?Severalresearchersadvocatetheuseofadmissioncontrolastheonlywaytoregulatetheofferedloadandavoidcongestioncollapse.Weagree,ifthetrafcismostlyOL.Withoutadmissioncontrol,theonlywaytoavoidcongestioncollapseistoexpectthatuserswillbeimpatientandabandonslowongoingtransfers.Admissioncontrolcanlimitthenumberofactivesessionsorowsinthenetwork.Admissioncontrolmaynotbenec-essary,however,ifmostofthetrafcfollowstheCLmodel.TCP-friendlycongestioncontrol:TheuseofTCP-friendlycongestioncontrolhasbeenencouragedinallnon-TCPprotocolsandapplications.ThebasicmotivationforsuchproposalsisthatTCP-friendlytransferscanavoidcon-gestioncollapse.Itshouldbeclearhowever,thatevenifatrafcaggregateconsistsentirelyofTCPows,itcanstillcausecongestioncollapseorpersistentoverloadifitisOL.ThesameisobviouslytrueforTCP-friendlytrafc.There-fore,theuseofTCP-friendlycongestioncontrolisnotsuf-cienttoguaranteestability.Trafcengineeringandnetworkprovisioning:Traf-cengineering,aswellasotherprovisioningmecha-nisms,requireanestimatefortheofferedloadbetweenanyingress/egresspair.Furthermore,suchmechanismsassumethatifagiventrafcaggregateisswitchedfromoneroutetoanother,thenthethroughputofthataggregatewillnotchange.ThisassumptionisnottrueforTCP-CLtrafc.TheofferedloadfromsuchaggregatesdependsontheRTTandlossrateintheunderlyingpath.Ontheotherhand,theof-feredloadfromTCP-OLtrafcdoesnotdependontheun-derlyingpath(ignoringretransmissions),makingsuchtraf-cconsistentwithcommonassumptionsintrafcengineer-ing.Sessionlayercongestioncontrol:Atthemorepracti-calside,werecommendthatallnetworkapplicationsusesomeformofcongestioncontrolatthesessionlayer.Thiscanbeassimpleasadoptingoneofthefollowingrules:donotgenerateanewsessionuntiltheprevioussessionhascompleted,slowdownthegenerationofnewsessionsifthenetworkiscongested,ordonotkeepmorethanacertainnumberofsessionsactive.Itisalsoimportantthatsessionlayercongestioncontrolisimplementedinapplicationsthatgeneratetransfersautomatically,withoutuserintervention.Forexample,NNTPserverstransfernewstotheirpeerspe-riodically,independentofwhethertheunderlyingnetworkiscongestedornot.Effectively,suchapplicationsgenerateTCP-OLtrafc.References[1]A.BondiandW.Whitt.TheInuenceofService-TimeVari-abilityinaClosedNetworkofQueues.PerformanceEvalu-ation,6:219–234,1986.[2]A.BergerandY.Kogan.DimensioningBandwidthforElas-ticTrafcinHigh-SpeedDataNetworks.IEEE/ACMTrans.onNetworking,8(5):643–654,2000.[3]T.Bonald,P.Olivier,andJ.Roberts.DimensioningHighSpeedIPAccessNetworks.In18thITC,2003.[4]G.deVeciana,T.Lee,andT.Konstantopoulos.StabilyandPerformanceAnalysisofNetworksSupportingServices.IEEE/ACMTrans.onNetworking,9(1),2001.[5]A.DhamdhereandC.Dovrolis.BufferSizingforCongestedInternetLinks.InIEEEInfocom,2005.[6]A.Feldmann.CharacteristicsofTCPConnectionArrivals.TechnicalReport,AT&TLabsResearch,1998.[7]S.B.Fredj,T.Bonald,A.Proutiere,G.Regnie,andJ.W.Roberts.StatisticalBandwidthSharing:AStudyofCon-gestionatFlowLevel.InACMSigcomm,2001.[8]D.Heyman,T.V.Lakshman,andA.L.Neidhardt.ANewMethodforAnalysisFeedback-BasedProtocolswithAp-plicationstoEngineeringWebTrafcovertheInternet.InACMSigmetrics,1997.[9]M.JainandC.Dovrolis.End-to-endEstimationoftheAvail-ableBandwidthVariationRange.InACMSigmetrics,2005.[10]Y.Joo,V.Riberio,A.Feldmann,A.Gilbert,andW.Will-inger.TCP/IPtrafcdynamicsandnetworkperformance:Alessoninworkloadmodeling,owcontrol,andtracedrivensimulations.ACMCCR,Apr2001.[11]F.P.Kelly,A.Maulloo,andD.Tan.RateControlinCom-municationNetworks:ShadowPrices,ProportionalFairnessandStability.JournaloftheOperationalResearchSociety,49:237–252,1998.[12]A.A.KheraniandA.Kumar.StochasticModelsforThroughputAnalysisofRandomlyArrivingElasticFlowsintheInternet.InIEEEInfocom,2002.[13]L.Kleinrock.Time-sharedSystems:ATheoreticalTreat-ment.JournaloftheACM,14(2):242–261,1967.[14]S.KunniyurandR.Srikant.Stable,Scalable,FairCon-gestionControlandAQMSchemesthatAchieveHighUti-lizationintheInternet.IEEETrans.onAutomaticControl,49:2024–2029,2004.[15]S.H.Low,F.Paganini,J.Wang,S.Adlakha,andJ.Doyle.DynamicsofTCP/REDandaScalableControl.InIEEEInfocom,2002.[16]R.S.PrasadandC.Dovrolis.MeasuringtheCongestionResponsivenessofInternetTrafc.InPAM,2007.[17]J.Roberts.ASurveyonStatisticalBandwidthSharing.ComputerNetworks,45:319–332,2004.[18]B.Schroeder,A.Wierman,andM.Harchol-Balter.ClosedVersusOpen:ACautionaryTale.InNSDI,2006.[19]X.Tian,J.Wu,andC.Ji.AUniedViewofHeterogeneousNetworkTrafc:ImpactofNetworkLoad.InIEEEInfo-com,2002.[20]Y.Zhang,S.Kang,andD.Loguinov.DelayedStabilityandPerformanceofDistributedCongestionControl.InACMSigcomm,2004.
© 2021 docslides.com Inc.
All rights reserved.