/
forthenanotexturalcharacterizationofthematerials,otherthantheusuallowt forthenanotexturalcharacterizationofthematerials,otherthantheusuallowt

forthenanotexturalcharacterizationofthematerials,otherthantheusuallowt - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
361 views
Uploaded On 2016-07-09

forthenanotexturalcharacterizationofthematerials,otherthantheusuallowt - PPT Presentation

peraturenitrogenadsorptionThisisforinstancethecaseoftheadsorptionof moleculesofvolatileorganiccompoundsVOCswithvariousdimensionsand compounds ID: 397497

peraturenitrogenadsorption.Thisis forinstance thecaseoftheadsorptionof moleculesofvolatileorganiccompounds(VOCs) withvariousdimensionsand compounds

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "forthenanotexturalcharacterizationofthem..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

forthenanotexturalcharacterizationofthematerials,otherthantheusuallowtem- peraturenitrogenadsorption.Thisis,forinstance,thecaseoftheadsorptionof moleculesofvolatileorganiccompounds(VOCs),withvariousdimensionsand compounds · LandÞllgases 2.1Introduction Pillaredinterlayeredclays(PILCs)arefarmorestudiedconcerningtheirpreparation methodologiesandtheircatalyticproperties[1,2]thanwhatconcernstheirpossibil- lowerstructuralregularitythan,forinstance,themoreusualzeolites,butPILCs structuralregularityishigherthanotherimportantclassesofadsorbentmaterials, suchasactivatedcarbons.Therefore,thelackofapreciseregularstructurecannot beregardedasamajordrawbackforPILCapplicationsasadsorbents.Furthermore, PillaredClaysandRelatedCatalysts , DOI10.1007/978-1-4419-6670-4_2, C  SpringerScience+BusinessMedia,LLC2010 26J.PiresandM.L.Pinto presentsanisothermwhichisrelativelysimilartotheSiÐTi-PILC.Inthecaseof methanol(azirconiumoxide-pillaredsampleÐZr-PILCÐwasincludedinthiscase), probablybecausethisisthesmallestmoleculeoftheseries,theisothermsarenow moredifferentamongthevarioussolids. WhentheadsorptionofchlorinatedoroxygenatedVOCsisconsidered,the isothermscanbeverydifferentinthesamePILC[9,13,14].But,inthiscaseand becausethesetypesofmoleculeshavenormallyahighdipolemomentorarehighly polarizable,thosedifferencescanbeentirelyattributednotonlytosizeexclusion affectsbutalso,inanon-measurableway,tospeciÞcadsorbateÐadsorbentinterac- tions.Inthisway,theuseofchlorinatedoroxygenatedVOCsasprobemolecules forthecharacterizationofthemicroporositymaynotbeadequate.Theadsorption oforganicgasesandvaporsinPILCshasbeenmodeledaccordingtotheBET[7], Langmuir[7,14]virial[15],DubininÐRadushkevich[12],andDubininÐAsthakov [14]equations. 2.2.2ForSeparation/PuriÞcation ItiswellknownthatanumberofVOCs,liberatedinvariousindustrialactivities,are toxicandcontributetotheatmosphericpollution,withdirectorindirectactionon humantissues[16].TheabatementofVOCscanbemadebythermaloxidation,an efÞcientbuthighlyenergycostlyprocessthat,additionally,isnotentirelyadequate forchlorinatedVOCs[17].ThecatalyticoxidationofVOCsisanimportantproce- durebutadsorptioncan,inthelimit,makepossiblethere-useofaparticularVOC [18].Additionally,sinceVOCsareusuallypresentindilutedairstreams,adsorbents maybeusedtoconcentrateadilutedstreamandthereforeimprovingtheefÞciency ofthermalorcatalyticoxidation[18].Whileactivatedcarbons,duetotheirspread useandmoderate-to-lowcost,areusuallyconsideredasgoodcandidatesasadsor- bents,intheÞeldoftheremovalofVOCsthesematerialspresentsomedrawbacks sincetheirßammabilityposesdifÞcultiestotheirregeneration[19].Zeolitesare anotherfamilyofadsorbentsthatcanbeconsideredfortheVOCsabatement.Some limitationsofzeolites,atleastforthemorecommon,areduetotheirhydrophilic nature,sincehumidityisalsonormallypresentinthestreamswhereVOCsareto beremoved.Zeolitescanbepreparedlesshydrophilic[19],forinstance,bydea- luminationprocesses[19,20],butthisisanadditionalpreparativestepandthe limitingadsorbedamountstendtobelowerintherespectivedealuminatedsamples [20].PillaredclayshaveintermediatehydrophobicÐhydrophilicpropertiesbetween activatedcarbonsandthemorecommonzeolites[21]andcouldbeaninterest- ingalternativeasadsorbentsintheÞeldofVOCsremoval/abatement,atleastif anappropriatedmethodologyofmakingPILCseconomicallyinlargeamountsis developed. Sincetheremovalofnoxiousvolatileorganiccompoundsisusuallytobecon- sideredinthelowpressureregion,Table2.1includestheamountsofselectedVOCs adsorbedinseveralPILCsattherelativepressureof0.1. 2PillaredInterlayeredClaysasAdsorbentsofGasesandVapors27 Table2.1 AmountsofselectedVOCsadsorbedinPILCsattherelativepressureof0.1.When indicatedintheoriginalwork,thestructuralformulaoftheclays,whichwereallmontmorillonites, (perO 10 (OH 2 ))isgiven VOCTypeofpillarsStartingclay Amount adsorbed(cm 3 /g) andreference BenzeneSiO 2 ÐTiO 2 (Si 3.89 Al 0.11 )(Al 1.60 Mg 0.32 Fe 0.08 )0.1[7] BenzeneChromiumoxide0.13[12] BenzeneTitaniumoxide0.14[12] TolueneAluminumoxide0.12[10] CyclohexaneSiO 2 ÐTiO 2 (Si 3.89 Al 0.11 )(Al 1.60 Mg 0.32 Fe 0.08 )0.065[7] n- HexaneSiO 2 ÐTiO 2 (Si 3.89 Al 0.11 )(Al 1.60 Mg 0.32 Fe 0.08 )0.09[7] CCl 4 IronoxideÐzirconium oxide (Si 4 )(Al 1.67 Mg 0.34 Fe 0.08 )0.31[9] CHCl 3 IronoxideÐzirconium oxide (Si 4 )(Al 1.67 Mg 0.34 Fe 0.08 )0.28[9] TrichloroethaneAluminumoxide0.12[10] TrichloroethaneZirconiumoxide(Si 3.70 Al 0.30 )(Al 1.16 Fe 0.51 Mg 0.26 )0.07[13] MethanolAluminumoxide(Si 3.70 Al 0.30 )(Al 1.16 Fe 0.51 Mg 0.26 )0.12[13] MethanolZirconiumoxide(Si 3.70 Al 0.30 )(Al 1.16 Fe 0.51 Mg 0.26 )0.08[13] SomestudiesaddressedtheseparationoforganicmoleculesusingPILCs asselectiveadsorbents[13,22].Indynamicexperiments[22]separationfactors foranaluminumoxide-pillaredclaywithvaluesof2.08for n- hexane/benzene (at523K);1.90for n- hexane/ n- heptane(at594K),and2.68forcyclohex- ane/benzene(at624K)werereported.Themodelingofselectiveadsorption ofVOCs,byamethodologybasedontheDubininÐRadushkevichtheorywas alsoattemptedinmontmorillonitespillaredwithaluminumorzirconiumoxide pillars[13].VariousVOCsweretestedandseparationfactorsnearthree(at acoverageof0.5)forthemethanol/propanonesystemandthemethylethylke- tone/propanonesystemwereobtained.Theeffectsofthetypeofpillarsinthe separationfactorswerenotentirelyclear,althoughthetotalamountsadsorbed werehighestforthealuminumoxide-pillaredmaterials,inlinewiththehigh- estspeciÞcsurfaceareaofthesesamples[13].Chlorinatedsamplessuchasthe 1,1,1-trichloroethane/trichloroethylenewerealsotestedbuttheresultswereless promisinginthiscase[13]. AlimitednumberofstudiesweremadeconsideringtheadsorptionofH 2 S, whichisalsoanoxiousgaseouspollutant.Theseconsideredeitherthestudyof theeffectofthepillaringwithdifferentoxidepillars,mainlyofaluminumor iron[23]ortheparticularcaseofH 2 Sremovalrelatedtotheconservationof worksofart[24].Inthelattercase,amontmorillonitefromWyomingpillared withaluminumoxidepillarsresultedtobemoreefÞcientintheremovalofH 2 S atverylowrelativepressures,inspiteofislowesttotalmicroporousvolume whenconsideredwithothermorecommonadsorbents,suchassodiumXorY zeolites. 28J.PiresandM.L.Pinto 2.3AdsorptionofWater Wateradsorptionstudiesinpillaredclayshavebeenmadebyvariousauthors,essen- tiallywithatwofoldobjective:thepotentialuseoftheseadsorbentsinmoisture removalandalsothecharacterizationofthesurfaceofPILCs.Inthissection,we consideredtheanalysisofpublishedwateradsorptionresultsintermsoftheirpoten- tialitiesasdesiccants,usingsomeindicationsintheliteraturethatmaterialsshould have,inparticularlyiftheenvisageuseisasdesiccantsingas-Þredcoolingsystems anddehumidiÞcation[25].Forthis,oneimportantcriterion,althoughofcoursenot theonlyone,isthatthewateradsorptionisothermmustbeofaÒmoderateÓtypeI. Roughly,theamountadsorbedatarelativepressureof0.1shouldbeabout50%the totalamountadsorbed[25,26]. Figure2.3collectsthemaximumwateradsorbedamounts,estimatedfromthe publisheddataforrelativepressuresbetween0.85and0.95andtherespectiveper- centageofamountadsorbedattherelativepressureof0.1.InthisÞgure,thedata forsamples1Ð4arefrom[26],forsamples5Ð9from[27],forsamples10Ð13from [28],forsamples14Ð16from[29],andforsamples17Ð22from[12].Samples23 and24[8]arenotPILCs,theyare,respectively,YandAzeolites.Thelattersamples wereincludeinFig.2.3toillustratetheeffectofasteeptypeIisotherm,whichis usuallyobtainedforwateradsorptioninthesehydrophiliczeoliticmaterials.Infact, forthesezeolites,theamountadsorbedatarelativepressureof0.1ismorethan 80%(almost90%forAzeolite)ofthetotaladsorbedvolume. AllmaterialsinFig.2.3havealumina-basedpillarsexceptsamples17Ð19[12], whichhavechromiumoxidepillars,andsamples20Ð22[12]thathavetitanium 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 sample amount adsorbed (cm 3 g –1 ) 0 10 20 30 40 50 60 70 80 90 100 % at p /p 0 = 0.1 amount adsorbed % at p/p 0 = 0.1 34567891112 14151619212324 22 20 18 17 13 10 2 1 Fig.2.3 Adsorptioncapacitiesforwaterandrespectiveadsorptionat p / p o = 0.1forvarious pillaredclaysandzeolites(seetextforreferences) 2PillaredInterlayeredClaysasAdsorbentsofGasesandVapors29 oxidepillars.AscanbeseeninFig.2.3,thehighestwateradsorptionamountsseem toberegisterednotforPILCsthathavealuminumoxidepillarsbutforthosethat havechromiumortitaniumoxidepillars. Intheseriesofsamples5Ð9[27],samples5and6arealsoamongthosewith thehighestwateradsorbedamounts.Inthatworktheauthorsstudytheeffectof theprogressiveincreaseofthecalcinationtemperature,instepsof100  Cbetween 200  C,forsample5,and600  C,forsample9,andobservedthatthemaximum adsorbedamountofwaterdecreasesasthecalcinationstemperatureincreases.Inthe caseofthelowestcalcinationtemperature(200  C),thehighestadsorbedamount observedmayalsobeduetothefactthattheoligomericcationicspeciesthatarethe precursorsofthepillarscanbenotentirelytransformedintotherespectiveoxide andtheresidualOHgroupsmaythenincreasetheadsorptionviaspeciÞcinteraction withthewatermolecules.Forallsamplesofthisseries(samples5Ð9)thepercentage adsorbedat p / p o = 0.1isalwayswellbelow50%,puttinginevidencetherelatively lowhydrophilicityofthestudiedsamples. Inthecaseofthesamples1Ð4,theauthors[26]triedtoimprovethepropertiesof thePILCsforwateradsorptionbyincreasingthepercentageoftheamountadsorbed at p / p o = 0.1byvaryingtheagingconditionsofthepillaringsolution.Aslightly betterresultwasobtainedinthesamestudyinaPILC,whereCa 2+ cationswere introducedafterthepillaring/calcinationprocess,wherethatpercentageincreases to32%.Otherauthorshavealsostudiedtheeffectonwateradsorptionproperties ofPILCsbyintroducingcationsafterthepreparationofthePILCs[28],bydirect cationexchangeathighpH,namely,Ca 2+ ,Na 2+ ,Mg 2+ ,andLi + (samples10,11, 12,and13,respectively).AscanbeseeninFig.2.3,themostfavorableresultswere obtainedforCa 2+ ,whileLi + andMg 2+ resultedonlyinamodestimprovement.The authors[28]interpretedthelatterfactasduetothemigrationofthesmallestLi + and Mg 2+ cationsintotheoctahedrallayersoftheclaysheets,accordingtotheknown HoffmannÐKlemeneffect. Waterisapolarmolecule,andaswellstatedintheliteratureforwateradsorption, thecontributionofthedispersionforcestoadsorptionisusuallysmallwhencom- paredwiththecontributionfromtheinteractionswiththedipole[30].Therefore, wateradsorptionhasahighdegreeofspeciÞcinteractionswiththesurface.Inthe presentreviewitisdifÞculttodisclosefromthepublishedresultssomeaspects relatednamelywithdifferencesintheusedstartingclaysthatcouldalsopartially explainthevariationofresultsinFig.2.3.Forthepreparationofthealuminum oxide-pillaredclayscorrespondingtothesamples14Ð16[29]theauthorsusedthree montmorillonitesfromthreedifferentsoildeposits.Fromthesematerials,sam- ple14presentedthebestresults,particularlyconcerningthevalueoftheamount adsorbedat p / p 0 = 0.1,whichapproached50%ofthetotalamount.Thissam- plewaspreparedwithamontmorillonitethathadahighdegreeofsubstitutions inthetetrahedralsubstitutions(ofsiliconbyaluminum),whiletheglobalsilicon toaluminumratioofthethreesampleswasmuchsimilar.Thetetrahedralsheets are,ofcourse,moreexposedtotheinteractionswiththeadsorbedmoleculesand sospeciÞcinteractionscanbedevelopedwiththeadsorbedwatermolecules.This 30J.PiresandM.L.Pinto resultseemstoindicatethatstartingclayswithhighdegreeoftetrahedralsubstitu- tionsmaybebeneÞcialwhenpreparingPILCsformoistureadsorption,particularly forimprovingtheadsorptionpropertiesintheinitialportionoftheadsorption isotherm. 2.4AdsorptionofNaturalandBiogasComponents Oneimportantapplicationofadsorbentmaterialsisingasseparationprocesses, whereamixtureoftwoormoregasesisseparatedtoobtainoneormorepuri- Þedcomponents[31].PILCscanbepotentiallyusedinsuchprocesses,provided thattheypresenttheadequatepropertiesforaneffectiveseparationofagiven mixture.However,comparingwithothertypesofadsorbentmaterials,likeacti- vatedcarbonsandzeolites,relativelyfewstudiesandexperimentaldatacanbe foundontheliteratureabouttheadsorptionofpermanentgasesonPILCs.Works involvingadsorptionatpressuresabovetheatmosphericpressure(high-pressure adsorption)areevenscarcer.Nevertheless,someimportantandillustrativeresults wereobtained,namely,inthestudyofPILCsforthepuriÞcationofnaturalandbio- gascomponents.Thissectionpresentsthepublishedadsorptionresultsonthistopic alongwithadiscussionandanalysisoftheresultsintheviewofpossibleindustrial applications. PILCshavebeenstudiedforthemethane/ethaneseparation[32,33].Thissep- arationhasimportanceinthecontextofthenaturalgasextraction,sincetheseare thetwomainhydrocarboncomponentsofnaturalgas[34].Ethanemaybesepa- ratedforuseasafeedstockforsteamcrackingfortheproductionofethylene.Other highermolecularweighthydrocarbonspresentinnaturalgasesareimportantfuels aswellaschemicalfeedstocksandarenormallyrecoveredasnaturalgasliquids. AnexampleofthemethaneandethaneadsorptionresultsispresentedinFig.2.4for theadsorptiononazirconiumoxidePILC(Zr-PILC).Asexpected,ethaneadsorbs considerablymorethanmethane,sinceitistheheaviercomponent,andatnear atmosphericpressuretheadsorbedamountsofethanearemorethanthreetimes higherthanthoseofmethane.Thevacancysolutiontheory(VST)[35Ð37]wasused topredicttheadsorptionisothermsofmethane/ethanebinarymixturesandsuccess- fullycomparedthemwithsomeexperimentalpoints[32].InFig.2.4,thebinary adsorptionisothermspredictedbyVSTandbytheidealadsorbedsolutiontheory (IAST)[38Ð41]arealsopresentedandasmaybeobservedagreefairlywellforthe gasphasecompositionscompared,althoughVSTtendstopredicthigheradsorption valuesatthesamecomposition.Itisinterestingtonotethat,forequalcomposition inthegasphase(0.5methanemolarfraction),thepredictedisothermsareconsider- ablymoreclosetothepureethaneisothermthantothepuremethane.ThisisaÞrst indicationthatthematerialselectivelyadsorbsethaneovermethane. Forabetterunderstandingoftheadsorptionbehaviorofmixturesinanadsor- bentmaterial,atagivenÞxedpressure,itisusefultocomparethecompositionof thegasphase( y i )withthecompositionoftheadsorbedphase( x i ),byconstructing 2PillaredInterlayeredClaysasAdsorbentsofGasesandVapors31 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 pure ethane 0.25 0.5 0.75 pure methane methane molar fraction n ads /mmol g –1 100 80 60 040 20 p /kPa Fig.2.4 ComparisonbetweenIAST( black )andVST( gray )predictionsofbinarymixture isothermsofmethane/ethaneonazirconiumoxide-PILC,at289K.Experimentalvaluestaken from[32] theso-called x–y phasediagram[31].Forthesamezirconiumoxide-pillaredclay presentedinFigure4.1,itispossibletoobtainthediagraminFig.2.5usingthe IASTmodeladjustedtotheexperimentalresultsobtainedattwotemperatures.In thisÞgure,thecompositionofmethane(molarfractions)inthegasphase( y 1 )and adsorbedphase( x 1 )arerepresentedintheaxis.Inthisway,thecompositionofthe adsorbedphasemaybeknownforagivengascomposition,whichisaveryuseful informationinthecontextofgasseparationsinceitallowstoestimatetheexpected purityoftheseparatedgases.Thetwocurves(oneateachtemperature)showthat thegasphaseisalwaysricherinmethanethantheadsorbedphase,i.e.,theethane tendstoadsorbonthematerialandthemethanetendstostayinthegasphase.The sharperthekneeofthecurve,themoreeffectiveistheseparation.Infact,ifone 0 0.2 0.4 0.6 0.8 1 x 1 y 1 215 K 293 K 1 0.8 0.6 0.4 0.2 0 Fig.2.5 x–y phasediagram ofthemethane/ethane adsorption(compositionof theadsorbedandgasphases) onaZr-PILC,at215and 293Kand100kPa 32J.PiresandM.L.Pinto considersthegasmixturewith0.8inmethane( y 1 )itcanbeseenthatthecompo- sitionoftheadsorbedphaseat215Kisabout0.3inmethane( x 1 )(i.e.,about0.7 inethane),butincreasesto0.55inmethaneat293K.Therefore,Fig.2.5clearly showsthattheseparationismoreeffectiveat215Kthanat293K.Nevertheless, theresultsindicatethatthisPILCcouldbeusedforthemethane/ethane separation. The x–y diagramsareusefulfortheevaluationofamaterialforaspeciÞcsepa- ration,asshownbytheprecedingexample,buttheydonotgiveanyinformationon theadsorbedamountsinagivenmassofadsorbent.Thisinformationisalsoimpor- tantwhendesigningtheseparationequipmentforaparticularapplication,namely, forcalculatingthemaximumadsorbedamountsofaseparationcolumn.Forthis purpose,therepresentationoftheadsorbedamountsasafunctionofthegasphase compositionismoresuited,byconstructingagasphasediagramoftheadsorbed phase.WhenusingsuchrepresentationforthesameZr-PILC(showninFig.2.6)it becomesevidentthattheadsorptioncapacitiesat215and293KaresigniÞcantly different.Theinterceptionofthelinesfortheethaneandmethaneamountsindi- catesthecompositionofthegasphaseatwhichthecompositionoftheadsorbed phaseisequalinthetwocomponents.Thispointmovestolower y 1 valueswhen thetemperaturesincrease,indicatingthattheseparationbecomeslesseffective.The resultsat293KaremoresigniÞcantforpossibleapplications,sincetheyarecloseto ambienttemperaturesandseparationsarenormallypreformednearthesetempera- tures.Intheseconditions,Fig.2.6showsthattheamountsofethanevaryfromabout 0.45mmol/gofthepureethaneadsorptiontoabout0.16mmol/g,at0.79methane molarfaction,andforhighermethaneconcentrationonthegasphasetheamountsof 215 K 0 0.4 0.8 1.2 1.6 total amount Ethane Methane 293 K 0 0.1 0.2 0.3 0.4 0.5 1 1 0.8 0.6 0.4 0.2 0 1 0.8 0.6 0.4 0.2 0 n ads / mmol g –1 n ads / mmol g –1 y 1 Fig.2.6 Phasediagrams (amountsadsorbed)attwo temperaturespredictedby IASTat100kPa,asa functionofthegasphase composition,foraZr-PILC 2PillaredInterlayeredClaysasAdsorbentsofGasesandVapors33 methaneadsorbedbecamehigherthanthoseofethane.Thisindicatestheamounts ofethanethatcouldberecoveredfrommixturesundertheseconditions,usingthis Zr-PILCastheadsorbentmaterial. ThepredictionsshowninFig.2.6maybecomparedwithexperimentalvalues obtainedfortheadsorptionofmethane/ethanemixtures.Whenthepredictionsmade usingtheVSTarecomparedwiththetotaladsorbedamountandgasphasecompo- sitiondeterminedexperimentally,deviationsofabout2Ð3%intheadsorbedamount werefound[32]whichisagoodresultconsideringthattheexperimentalvalueshave aboutthesameuncertainty.Thepredictionspresentedin2.6weremadebytheIAST mayalsobecomparedwiththeexperimentaldata,andinFig.2.7theexperimen- talpointiscomparedwiththepredictions.Ascanbeseen,theexperimentalpointis closetothesolidlineofthetotaladsorbedamount,withadeviationof5%.Thissup- portsthepredictionsmadebyIASTandconÞrmsthattheyareclosetothosemade byVST(alreadyseeninFig.2.4).Alsoveryimportantistheindicationthatthese theoriesaresuitableformodelingtheadsorptionofbinarymixturesinPILC,using thepurecomponentsadsorptionisotherms.Infact,themeasurementsofisotherms forgasmixturesaremuchmorecomplicatedthanforpuregases,duetoequilibrium problemsandtotheanalysisofthegasphasecomposition.Thus,IASTorVSTare importanttoolstotheanalysisoftheadsorptiondata,especiallywhencomparing differentPILCmaterialsforanenvisagedapplication.Morerecently,anadsorption modelbasedonstatisticalmechanicsforthepredictionofmixtureisothermson PILCswasproposed[42]withhigheraccuracyatveryhighpressures,butforthe rangeofpressuresnormallyusedonadsorptionexperimentsitgivessimilarresults toIAST. 298 K 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Total amount Ethane Methane total amount (Exp.) 1 0.8 0.6 0.4 0.2 0 n ads /mmol g –1 y 1 Fig.2.7 Comparisonofthepredictedadsorbedphasediagramat73.84kPa,withanexperimental point,foraZr-PILC Mosttimes,thereisaninteresttostudytheseparationofagasmixturewith aspeciÞccompositionandthetemperatureorpressureeffectsontheseparation performanceoftheadsorbentmaterials.Onewayistousetheselectivityofthe separation,deÞnedas 34J.PiresandM.L.Pinto S 2,1 = x 2  y 2 x 1  y 1 (2.1) andevaluatethisparameterasafunctionofpressureortemperature.Usuallya separationwithselectivityhigherthanthreeisconsideredappropriateforindustrial applications[31]. Inthemethane/ethaneseparationappliedtonaturalgas,theabundanceofethane inthedistributiongasisonlyabout8%(i.e., y 1 = 0.92),andthisvaluecanbe usedasreferencetotheevaluationoftheselectivityofPILC.Figure2.8shows theselectivityfortheseparationofethanefrommethane,atthisreferencecom- position,usingzirconiumoxide-pillaredclayssynthesizedfromtwodifferentclays [32].Oneclay,labeledasPTS,isfromPortoSanto(Madeiraarchipelago,Portugal), andtheother,labeledasBEN,isfromBenavila(Alentejo,Portugal).Itisevident fromFig.2.8thatselectivitytowardethanedecreases,aspressuresandtemperatures increase,althoughatthehighertemperature(293K)theselectivityisalmostinsen- sitivetothepressure.ItisinterestingtonoticethattheselectivityvaluesforBEN andPTS-pillaredclaysarenotverydifferent.Nevertheless,inthemajorityofcondi- tions,selectivityishigherforthePTSsample,afactthatisrelated,mostprobably, tothehigherheatofadsorptionofethaneonthispillaredclay[32].Theselectiv- ityvaluescalculatedusingIASTandVSTpresentsomediscrepanciesat215Kfor thesamematerials,beingtheIASTvalueshigherthanthosecalculatedbyVST. However,theyqualitativelyagreeintheorderoftheexpectedselectivityforthe separation,andat293Kthevaluesareidentical.Fromthepracticalpointofview, thepotentialapplicationofpillaredclaysintheseparationofthemajorhydrocarbon componentsofnaturalgas(methaneandethane)isconÞrmed,sincetheselectivity coefÞcients,betweensixandeightat293K,comparewellwiththoseobtainedwith otheradsorbents[43]. 0 40 80 20406080100 p / kPa S PTS 215 (IAST) PTS 293 (IAST) BEN 215 (IAST) BEN 293 (IAST) PTS 215 (VST) PTS 293 (VST) BEN 215 (VST) BEN 293 (VST) Fig.2.8 SelectivityofZr-PILC(PTSandBEN)predictedbyIAST( black )andVST( gray ),at twotemperatures,forthemethane/ethaneseparation,at0.92methanemolarfraction 2PillaredInterlayeredClaysasAdsorbentsofGasesandVapors35 Anotherimportantgasseparation,whichhasalsobeenstudiedusingPILCsas adsorbents,isthecarbondioxide/methaneseparation.Thisseparationcanbeapplied forthepuriÞcationofnaturalgas,biogas,andlandÞllgas,whichareformedwitha considerableamountofcarbondioxidealongwiththecombustiblepart[34,44Ð46]. InFig.2.9theadsorptionresultsontwoPILCsusingthesamePortoSantoclay (PTS),butdifferentpillars,arepresented[47,48].TheZr-PTSpresenthigher adsorptioncapacityformethaneandcarbondioxideintherangeofcomparableval- ues(0Ð100kPa),althoughthetwomaterialshaveaboutthesamesurfacearea.This indicatesthatthenatureofthepillarsstronglyinßuencestheadsorptionbehavior ofthesegases,eitherbydifferencesonthechemicalnatureofthesurface(surface charges,acidity,etc.),orbydifferencesinthepillarÕsdensityandsize(i.e.,the sizeofthemicropores).Inarecentwork,aluminumandzirconiumoxide-PILCs preparedusingWyoming(WYO)andBenavila(BEN)clayshavebeenstudiedfor carbondioxide/methaneseparation,upto1,000kPa[33].Theresultsshowedthat thezirconiumPILCspresentedthehighestcarbondioxideadsorbedamountsper unitsurfaceareaofthestudiedmaterials,duetothemoreacidicnatureofZroxide- PILCsandtheirinteractionwiththequadrupoleofthecarbondioxide.However, whenthecomparisonismadebytheadsorbedamountintermsofthemassof materialonly,thecomparisonisnotbesoevident.Infact,somealuminum-PILC presentedhigheradsorbedamountsthananotherzirconium-PILC(Zr-BEN),due totheirhighersurfaceareasandmicroporousvolumes.Therefore,theworkcon- cludesthatthemorefavorableresultsobtainedforZr-WYOPILCisanoutcome ofthechemistryofZrO 2 pillarsintheWyomingclayhost.Thispointsoutthe difÞcultiesofdrawingsomegeneralconclusionsaboutthepillarsthataremore suitableforagivenseparation,sincetheywillalsodependontheparentclay usedinthepreparation.Thissubjectwillbefurtherdiscussedwithmoredetail hereafter. 0 0.25 0.5 0.75 1 1.25 p / kPa n ads /mmol g –1 Carbon Dioxide-Zr Methane-Zr Carbon Dioxide-Al Methane-Al 0100200300400500 Fig.2.9 Carbondioxideandmethaneadsorptionisotherms,onPILCsobtainedwithAlandZr oxidepillarsat298K 36J.PiresandM.L.Pinto Consideringapplicationsusingpressureswingadsorption[31],whichisthemost usedtypeofcyclicgasadsorptionseparation,thematerialsusedinthisprocess shouldbeeasilyregeneratedintheendoftheadsorptionstep,preferablybya simpledecompressionofthesystem.Thefactthattheadsorptionisothermsofcar- bondioxideandmethaneonPILCsaremosttimesslowrisingcurves,likethose presentedinFig.2.9,isfavorablefromthisviewpoint.Thisisanadvantageover manyzeolites,sincetheseusuallyhaverectangularshapedisothermsandbecome almostsaturatedwithcarbondioxidebelowatmosphericpressure,hamperingthe effectiveregenerationbyasimpledecompressionstep.Takingintoaccountthe exampleforthealuminumoxide-PILCinFig.2.9,onecanseethattheadsorp- tionamountrisesfromabout0.5mmol/gat100kPa(atmosphericpressure)tomore than1mmol/gat500kPa,givingaworkingcapacityof0.5mmol/gforthatpres- surecycle.Similarworkingcapacityforpressureswingadsorptionandvacuum swingadsorptionresultswerealsorepostedforotherPILCs,supportingthepossible applicationofPILCsforcarbondioxide/methaneseparation[33]. ForabetteranalysisoftheadsorptionresultspresentedinFig.2.9, x–y phasedia- gramsandselectivitycoefÞcientswerecalculatedusingtheIASTandarepresented inFigs.2.10and2.11.BothÞguresshowthatthePILCwithaluminumoxidepillars ismoreeffectivefortheseparationunderstudy,sinceitallowsobtainingmethane 0 0.2 0.4 0.6 0.8 1 00.20.40.60.81 x 1 y 1 Zr Al Fig.2.10 Zr-PTSand Al-PTS x–y phasediagrams ofcarbondioxide/methane mixture,at100kPaand 298K(component1Ð methane) 1 6 11 16 050100 p / kPa S Al Zr Fig.2.11 Selectivity coefÞcientsasfunctionof pressure,at y 1 = 0.5 (methane),forthetwoPILCs preparedfromPTSclay,at 298K 2PillaredInterlayeredClaysasAdsorbentsofGasesandVapors37 withaslightlyhigherpurity.Itisinterestingtonotethatthesimplecomparisonof theisothermswouldclearlyleadtothisconclusion.Infact,Zr-PTSpresentedthe highestadsorptionamountsforbothmethaneandcarbondioxide.However,itisthe relationbetweenthesetwoamountsthatinßuencestheselectivityoftheseparation. TheresultspresentedinFigs.2.10and2.11areinlinewiththoseobtainedwiththe sametypeofpillarsinotherclays[33]. Asalreadymentioned,mostgasseparationsarecarriedatpressuresaboveatmo- spheric,andthereismuchinteresttostudytheadsorptionofgasesinthispressure range.However,thereisscarcedataintheliteratureonhigh-pressureadsorptionof gasesonPILCs.Recently,theÞrstcomparisonworkonthehigh-pressureadsorp- tionofmethane,ethane,carbondioxide,andnitrogenondifferentaluminumand zirconiumPILCs[33]waspresented.Thisworkwasacontributiontoevaluatethe realapplicabilityofPILCsfortheseparationofbinarymixturesofthestudiedgases, whichisimportantinthecontextofthenatural,bio,andlandÞllgasupgrade.For thestudiedbinarymixtures,thepresentedresultsindicatethepossibleapplication intheseparationofmethane/ethane,methane/carbondioxide,nitrogen/ethane,and nitrogen/carbondioxide.Thelatterseparationhasalsointerestforapplicationsin carbondioxideemissionsabatement. Inadditiontotheapplicabilityevaluation,theresultsobtainedinabroadpressure rangealsogivetheopportunitytostudytheevolutionofthephasediagrams,similar tothoseinFigs.2.6and2.7,butnowasfunctionofpressure.Thisapproachleads totri-dimensionalrepresentationofthephasediagramsasinFig.2.12.ThisÞgure showsthephasediagramforazirconiumoxide-pillaredclay,whichpresentedthe bestresultsofthestudiedPILCsforthemethane/carbondioxideseparation.The Fig.2.12 Phasediagram(compositionoftheadsorbedphase)predictedbyIAST,asafunctionof thegasphasecompositionandpressureforazirconiumoxide-PILC.The black surfacerepresents thetotalamountadsorbed,thelower gray meshrepresentstheadsorbedmethaneamountsandthe upper gray meshrepresentstheadsorbedcarbondioxideamount

Related Contents


Next Show more