/
InternationalJournalofPureandAppliedMathematics InternationalJournalofPureandAppliedMathematics

InternationalJournalofPureandAppliedMathematics - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
445 views
Uploaded On 2016-07-08

InternationalJournalofPureandAppliedMathematics - PPT Presentation

Volume75No32012269278ISSN13118080printedversionurlhttpwwwijpameu ijpameuPETALGRAPHSVKolappan1xRSelvaKumar212VITUniversityVelloreINDIAAbstractInthispaperweintroduceppetalgraphs ID: 396216

Volume75No.32012 269-278ISSN:1311-8080(printedversion)url:http://www.ijpam.eu   ijpam.euPETALGRAPHSV.Kolappan1x R.SelvaKumar21;2VITUniversityVellore INDIAAbstract:Inthispaperweintroducep-petalgraphs

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "InternationalJournalofPureandAppliedMath..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

InternationalJournalofPureandAppliedMathematics Volume75No.32012,269-278ISSN:1311-8080(printedversion)url:http://www.ijpam.eu   ijpam.euPETALGRAPHSV.Kolappan1x,R.SelvaKumar21;2VITUniversityVellore,INDIAAbstract:Inthispaperweintroducep-petalgraphs.Weprovethatthenecessaryandsucientconditionforaplanarp-petalgraphGisthatGhasevennumberofpetalseachofsizethree.Wealsocharacterizetheplanarpartialp-petalgraphs.AMSSubjectClassi cation:05C10KeyWords:petalgraph,p-petalgraph,partialp-petalgraph,planarity1.IntroductionApetalgraphGisasimpleconnected(possiblyin nite)graphwithmaximumdegreethree,minimumdegreetwo,andsuchthatthesetofverticesofde-greethreeinducesa2-regulargraphG4(possiblydisconnected)andthesetofverticesofdegreetwoinducesatotallydisconnectedgraphG.(see[1]).IfG4isdisconnected,theneachofitscomponentsisacycle.Inthispaper,weconsiderpetalgraphswithpetals,P0;P1;:::;Pa1andcomponents,G40;G41;:::;G4r1.ThevertexsetofGisgivenby=1[2,where1=fig;i=0;1;:::;21isthesetofverticesofdegreethree,and2=fjg;j=0;1;:::;a1isthesetofverticesofdegreetwo.ThesubgraphGisthetotallydisconnectedgraphwithvertexset2.ThesubgraphG4isthecycleG4:0;u1;:::;u2a1.ThesetP(G)=P0;P1;:::;Pa1isthepetalset Received:July7,2011c\r2012AcademicPublications,Ltd.url:www.acadpubl.euxCorrespondenceauthor 270V.Kolappan,R.S.Kumar Figure1:A niteandanin nitepetalgraphofG.Considerthepathii+1:::ui+k;k1onthecomponentG4lofG4.Letj22beadjacenttoiandi+k.ThenthepathPj=iji+kiscalledapetalofGinthecomponentG4l.Thepathfromitoi+koflengthpj=minfk;2kgiscalledthebaseofPj.WecallpjthesizeofthepetalPj.ThepetalsizeofGisgivenbyp(G)=maxfpj;j=0;1;:::;a1g.ThevertexjiscalledthecenterofthepetalPj.Theverticesiandi+karecalledthebasepointsofPj.Wereferapetalof nitesizetobea nitepetal.Wedenotethenumberof nitepetalsinGasf=r1Pt=0t.ThepetalPj=kjl,wherekandlareindistinctcomponentsofG4iscalledanin nitepetal.Thesizeofanin nitepetalisin nity.WecalltheverticeskandlasthebasepointsofPj.Anin nitepetalconnectstwocomponentsofG.Thesetofin nitepetalsconnectingtwocomponentsG4kandG4lisdenotedbyP(G4k[G4l).Thenumberofin nitepetalsinP(G4k[G4l)isdenotedbykl.Thenumberofin nitepetalsinapetalgraphisgivenby1=P0klr1kl.ThenumberofpetalsinapetalgraphGisgivenby=f+1.Figure1presentsa niteandanin nitepetalgraph.Wegivebasicde nitionsandprovepreliminarytheoremsinSection2.OurmainresultsaregiveninTheorem10andCorollary11inSection3.2.BasicDe nitionsandResultsDe nition1.Thesequencefigofvertices0;u1;:::;u2a1ofG4iscalledthevertexsequenceofG.Thesequencefjgofvertices0;v1;:::;va1 PETALGRAPHS271 Figure2:A3-petalgraphofGiscalledthevertexsequenceofthepetalsofG.ThesequencefPjgofpetalsP0;P1;:::;Pa1iscalledthepetalsequenceofG.Notethatthesucesarewrittenintheascendingorder.De nition2.Thedistancel(Pi;Pj)betweentwopetalsPi=kilandPj=k0jl0inG4listhelengthoftheshortestpathbetweentheirbasepointskandk0orlandl0inG4l.LetPi=kilandPj=k0jl0betwopetalsofG.IfPi2P(G4s)andPj2P(G4s[G4t),thenl(Pi;Pj)inG4sisthelengthoftheshortestpathbetweenkandk0inG4s.IfPiandPj2P(G4s[G4t),thenl(Pi;Pj)inG4sisthelengthoftheshortestpathbetweentheirbasepointskandk0inG4s;l(Pi;Pj)inG4tisthelengthoftheshortestpathbetweentheirbasepointsinlandl0inG4t.WheneachbasepointofPiandPjisindistinctcomponentsofG4,thenl(Pi;Pj)=1.Inthispaperweconsiderpetalgraphswhosein nitepetalsdonotcrossoneanother.De nition3.ApetalgraphGofsizenwithpetalsequencefPjgissaidtobeap-petalgraphdenotedG=Pn;p,ifeverypetalinGisofsizepandl(Pi;Pi+1)=2;i=0;1;2;:::;a1wherethesucesaretakenmodulo.Inap-petalgraphthepetalsizepisalwaysoddbecause,otherwisel(Pi;Pi+1)willnotbe2forsomei.Figure2showsa3-petalgraphwith6petals.De nition4.ApetalgraphGissaidtobeapartialpetalgraphifG4isdisconnected.ThepartialpetalgraphGiscalledapartialp-petalgraphifevery nitepetalinGisofsizepandl(Pi;Pi+1)=2foranypetalPiinanycomponentG4l.De nition5.Twoin nitepetalsPiandPjofP(G4k[G4l)formanin nitepetalpairiftheirbasepointslieonthebasesoftwosuccessive nite 272V.Kolappan,R.S.Kumar Figure3:Non-planarrepresentationofG=P9;3petalsinbothG4kandG4l.De nition6.AcomponentG4kiscalledapendantcomponentifitisconnectedtoonlyonecomponentofGbywayofin nitepetals.Theorem7.IfGisap-petalgraphofordernandsizem,thenn=3andm=4suchthatm3n6,wherea&#x-400;1:Proof.LetGbeap-petalgraphofordernandsizem.Nowj(G)j=impliesthatj(G4)j=2.Hencej(G)j=3orn=3.ThecontributiontotheedgesetofGbyeachpetalis2andbyG4is2.Thus,m=4.Now,3n6=96&#x-400;m,whena&#x-400;1. Theorem8.IfGisap-petalgraph,thenthereareatleastppetalsinG:Proof.Considerap-petalgraphGwithpetals.Therearep1verticesonthebaseofanypetalPj=ijkotherthaniandk.Thisimpliesthattherearep1petalsinGotherthanPjwithoneoftheirbasepointslyinginthebase. 3.Planarityofp-PetalGraphsItcanbeeasilyveri edthatap-petalgraphG=Pn;pisplanarwhenp(G)=1foranyvalueofnaswellas.ThegraphPobtainedfromthePetersengraph PETALGRAPHS273byremovingoneoftheverticesisa3-petalgraphP9;3.ThepetalgraphPisasubdivisionofK3;3andhencenotaplanargraph.Note9.Thesucesofiarealwaystakenmodulo2andthatofjaretakenmodulo.Note10.ForanypetalPj=ijk,j=even(i;j)2.Theorem11.Ap-petalgraphG=Pn;p(p=1)isplanarifandonlyifthefollowingconditionsaresatis ed.(i)p=3.(ii)isaneveninteger.Proof.Considerthep-petalgraphG=Pn;p,wherepisanoddnumber.LetS:0;u1;u2;:::;u2a1bethevertexsequenceofG.Assumethatatleastoneoftheaboveconditionsisnotsatis ed.Thefollowingcasesarise:Case1:p=3andisodd.Case1a:=3:LetG=P9;3bethegivenp-petalgraphwiththevertexsequenceS:0,1,2,3,4,5.Partitionthevertexset1(G)into11(G)=f0;u2;u4gand21(G)=f1;u3;u5g.RepresentGusingthefollowingstepssothattheadjacencyoftheverticesofGispreserved:Takethecycle012345containingtheverticesof11(G)[21(G);Subdividetheedges(2i;u2i+2),withtheverticesi,i=0to2respectively.ReferFigure3inpage5.ThisrepresentationofG=P9;3isisomorphictoasubdivisionofK3;3.Case1b:a�3.Partitionthevertexset1(G)intothreesets11(G),21(G)and31(G)suchthat11(G)=f0;u2;u2a2gand21(G)=f1;u3;u2a1gand31(G)hastheremainingvertices.RepresentGusingthefollowingstepssothattheadjacencyoftheverticesofGispreserved:Takethecycle0,1,2,3,2a2,2a1containingtheverticesof11(G)[21(G);Connectthepairsofvertices(0;u3),(1;u2a2),(2;u2a1);Subdi-videtheedges(3;u2a2)withthevertices4,7,:::,i,i+3,i+4,i+7,:::,2a6,2a3andtheedge(2;u2a1)withthevertices5,6,:::,i,i+1,i+4,i+5,:::,2a5,2a4;Connectthepairsofvertices(4;u5);(6;u7);:::;(2a4,2a3);Subdividetheedges(2i;u2i+3),withtheverticesi,i=0to1re-spectively.ReferFigure4inpage6. 274V.Kolappan,R.S.Kumar Figure4:G=Pn;3isnonplanarwhena�3isoddThisrepresentationofG=Pn;3isisomorphictoagraphhavingasubdivi-sionofK3;3asitssubgraph.Case2:p�3andisodd.Case2a:=p.Partitionthevertexset1(G)intothreesets11(G),21(G)and31(G)suchthat11(G)=f0;ua1;ua+1gand21(G)=f1;ua;u2a1gand31(G)hastheremainingvertices.RepresentGusingthefollowingstepssothattheadjacencyoftheverticesofGispreserved:Takethecycle0,1,a1,a,a+1,2a1containingtheverticesof11(G)[21(G);Connectthepairsofvertices(0;ua),(1;ua+1),(a1;u2a1);Sub-dividetheedge(1;ua1)withthevertices2,3,:::;ua2and(a+1;u2a1)withtheverticesa+2,a+3,:::;u2a2;Connectthevertexpairs(2;ua+2),(3;ua+3),:::;(i;ua+i),:::;(a2;u2a2);Subdividetheedges(2i;u2i+a),withtheverticesi,i=0to1respectively.ReferFigure5inpage7.ThisrepresentationofG=Pn;pisisomorphictoagraphhavingasubdivi-sionofK3;3asitssubgraph.Case2b:a�p.Partitionthevertexset1(G)intothreesets11(G),21(G)and31(G)suchthat11(G)=f0,2,2a2gand21(G)=f1,p2,2a1gand31(G)hastheremainingvertices.RepresentGusingthefollowingstepssothattheadjacencyoftheverticesofGispreserved:Takethecycle0,1,2,p2,2a2,2a1containingtheverticesof11(G)[21(G);Connectthepairsofvertices(0,p2),(1,2a2),(2,2a1); PETALGRAPHS275 Figure5:G=Pn;pisnotplanarwhenp�3and=pSubdividetheedge(2;up2)withtheverticesi,i=3top3,theedge(p2,0)withtheverticesp1andp,theedge(2,2a1)withtheverticesp+2,p+3,:::;u2p1;theedge(1,2a2)withthevertices2ap+1,2ap+2,:::;u2a3;Connecttheverticesp,p+2andsubdividetheedgewithp+1,connectthevertices2ap1,2ap+1andsubdivideitwith2ap;Connectthevertices(i1,p+i1)fortheremainingvaluesofi,andSubdividetheedges(2i;u2i+p),withtheverticesi,i=0to1respectively.ReferFigure6inpage8.ThisrepresentationofG=Pn;pisisomorphictoagraphhavingasubdivi-sionofK3;3asitssubgraph.Case3:p�3andiseven.Case3a:=p+1.Partitionthevertexset1(G)intothreesets11(G),21(G)and31(G)suchthat11(G)=f0,2,2a2gand21(G)=f1,p2,2a1gand31(G)hastheremainingvertices.RepresentGusingthefollowingstepssothattheadjacencyoftheverticesofGispreserved:Takethecycle0,1,2,p2,2a2,2a1containingtheverticesof11(G)[21(G);Connectthepairsofvertices(0;up2),(1;u2a2),(2;u2a1);Subdividetheedge(p2;u0)withtheverticesp1,p,theedge(2a1;u2)withtheverticesp+1,p+2,theedge(1;u2a2)withtheverticesp+3,p+4,:::u2a3;Connectthepairsofvertices(p1;u2a3),(p;up+1)andp+2;up+3);Connectthevertices(2i,p+2i)fortheremainingvaluesofi(calculationsonsucestakenmodulo2a),andSubdividetheedges(2i;u2i+p),withthevertices 276V.Kolappan,R.S.Kumar Figure6:G=Pn;pisnotplanarwhenp�3anda�pisoddi,i=0to1respectively..ReferFigure7inpage9.ThisrepresentationofG=Pn;pisisomorphictoagraphhavingasubdivi-sionofK3;3asitssubgraph.Case3b:a�p+1.SameasCase2Conversely,letG=Pn;3bea3-petalgraphwithpetalsequencefPig,i=0;1;2;:::;a1,whereiseven.ThecycleG4dividestheplaneintotworegions,theinnerandtheouterregion.Itispossibletodrawthea 2petalsP0,P2,:::,Pa2ofGintheinner(orouter)regionsothattheydonotcrosstheremaininga 2petalsP1,P3,:::,Pa1thatareintheouter(orinner)region.Thisrepresentationofthe3-petalgraphisobviouslyplanar. Corollary12.LetGbeapartialp-petalgraphwithapetals.LetG41;G42;:::;G4rbethecomponentsofGwith1;a2;:::;ar nitepetalsrespectively.Letkldenotethenumberofin nitepetalsinP(G4k[G4l)forarbitrarykandl.Ifthefollowingconditionsaresatis ed,thenthegraphGisplanar.(i)p=3andiseven;(ii)Thenumberof nitepetalsPi1;Pi+1;:::;Pj1inG4kwherePi2P(G4k[G4l)andPj2P(G4k[G4q),possiblyG4l=G4q,iseitherzeroorodd.Proof.LetGbeapartialp-petalgraphasgiven.FromTheorem3anyp-petalgraphisplanarifandonlyifp=3andisaneveninteger.Henceitissuf- cienttoprovethatGisplanarifcondition(iii)issatis ed.Letusassumethat PETALGRAPHS277 Figure7:G=Pn;pisnotplanarwhenp�3andisoddsuchthat=p+1condition(iii)holdstrue.Considerthe1k nitepetalsPi1;Pi+1;Pi+2;:::;Pj1andthein nitepetalsPi;Pj(ij)suchthatPi2P(G4k[G4l)andPj2P(G4k[G4q).Fromcondition(iii),if1k&#x-399;&#x.986;0,then1kisodd.Now,drawthela1k 2m nitepetalsPi1;Pi+2;:::;Pj1intheinnerregionofG4kandtheremainingja1k 2kpetalsintheouterregionofG4k.ThisrepresentationofG4kisobviouslyplanar.SinceG4kisanarbitrarycomponentofG,weconcludethatGisplanar.ReferFigure8inpage10. Theconversepartisnottrue.Letthepartialp-petalgraphGbeplanar.Therefore,eachcomponentG4k;k=0;1;2;:::;r1isalsoplanar.Fromgivenconditions,p=3andeachiiseven.AssumethatG4kispendant,connectedtoG4l.LetPi=si0sandPj=tj0tbethein nitepetalpairbetweenG4kandG4lwheresandtareinG4k.LetG04kandG04lbethecomponentsobtainedbyidentifyingiandjtogetanewvertexij.Thepathssijtand0sij0tcanactas nitepetalsinG04kandG04lrespectively.Clearly,eachofthesecomponentsisplanar.Hence,thenumberof nitepetalsotherthansijtinG04kisodd.Similarly,thenumberof nitepetalsotherthan0sij0tinG04lisalsoodd.ThisideaisapplicabletoanypendantcomponentconnectedtoG4k.WhenG4kisconnectedtoG4landthependantcomponentG4q,evenifcondition(iii)isnotsatis ed,planaritycanbepreservedbydrawingtheplanegraphofG4qintheinnerregionofG4k. 278V.Kolappan,R.S.Kumar Figure8:Apartialp-petalgraphthatsatis escondition(iii)4.ConclusionThepetalgraphisaveryinterestingclassofgraphswhosepropertiesandcharacteristicsareyettobeexploredandmanyconjecturesingraphtheorycanbesolvedwithreferencetopetalgraphs.Further,theauthorswishtoacknowledgethecontributionofDr.Neelainthepreparationofthe naldraftofthispaper.References[1]DavidCariolaro,andGianfrancoCariolaro,Coloringthepetalsofagraph,TheElectronicJ.Combin.,R6(2003),1-11.