/
Margulis Space Time Margulis Space Time

Margulis Space Time - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
392 views
Uploaded On 2017-04-01

Margulis Space Time - PPT Presentation

AcknowledgmentsIthankProfFrancoisLabourieforhisguidanceIamalsothankfultotheAlgantConsortiumforgivingmetheopportunitytostudyintheAlgantMastersProgrammeandsupportingmebytheirscholarshipIamgratefultoM ID: 333351

AcknowledgmentsIthankProf.FrancoisLabourieforhisguidance.IamalsothankfultotheAlgantConsortiumforgivingmetheopportunitytostudyintheAlgantMastersProgrammeandsupportingmebytheirscholarship.IamgratefultoM

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Margulis Space Time" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

MargulisSpaceTime:CrookedPlanesandTheMargulisInvariantSouravGhoshAdvisor:FrancoisLabourieMasterThesis2012 AcknowledgmentsIthankProf.FrancoisLabourieforhisguidance.IamalsothankfultotheAlgantConsortiumforgivingmetheopportunitytostudyintheAlgantMastersProgrammeandsupportingmebytheirscholarship.IamgratefultoMr.ChinmoyChowdhuryandDr.MahanMjforintroducingmetotheworldofMathematics.Finally,IwouldliketoexpressmygratitudetowardsmyparentsMr.SwapanGhoshandMrs.PurnimaGhoshandalsotowardsSaumyaShuklafortheirconstantemotionalsupport.ii Contents1Introduction22GeometryofR2;132.1TheHyperboloidModel............................32.2TheLorentzProduct..............................43AneGeometry63.1AneSpacesandtheirautomorphisms....................63.2Anedeformationsoflinearactions.....................73.3TheMargulisInvariant.............................74MargulisSpaceTimes104.1FundamentalPolyhedraforthelinearpart..................104.2AneFundamentalPolyhedra........................115TheGeometryofCrookedPlanes155.1AnatomyofaCrookedPlane.........................155.2IntersectionofWings..............................165.3IntersectionofStemwithWing........................175.4IntersectionofStems..............................195.5IntersectionofCrookedPlanes........................196TheExtendedMargulisInvariantandItsApplications226.1FlatBundlesassociatedtoAneDeformations...............226.2Labourie'sdi usionoftheMargulisInvariant................236.3AnequivalentconditionforProperness....................24Bibliography261 Chapter1IntroductionIn1977,Milnor[2]askedwhetheranon-amenablegroup(e.gafreegroupofrank2)couldactproperlybyanetransformations.HeobservedthatbyapplyingTitsalternative[3],thisquestionisequivalenttowhetheranon-abelianfreegroupcouldactproperlybyanetransformations.Furthermore,heproposedthefollowingconstructionofsuchagroup:StartwithafreediscretesubgroupofSO0(2;1)(forexampleaSchottkygroupactingonthehyperbolicplane)andaddtranslationcomponentstoobtainagroupofanetransformationswhichmayactfreely.In1983,MargulisintroducedtheMargulisinvariantandusedittoshowthatsuchproperlydiscontinuousgroupsdoexist,realizingMilnor'ssuggestion.In1991,Drumm[5]gaveageneralizationofSchottky'sconstructionintroducingtheCrookedPlanes.FollowingthisworkDrummandGoldman[6][9]inaseriesofpapersstudiedtheCrookedPlanesinmuchdetail.ThisapproachgaveaslightlystrongerpositiveresultastowhichgroupsactproperlydiscontinuouslyonRn.Intheabovementioned1983paperMargulis[4]usedtheMargulisinvarianttodetectproperness.Hegaveanecessaryconditionforpropernessusingthesignoftheinvariant.Goldmanconjecturedthisnecessaryconditiontobesucient.In2006Charette[12]cameupwithanexampleofaone-holedtorussuggestingthattheconjectureisgenerallyfalse.In2001,followingMargulis'swork,Labourie[10]extendedtheoriginalMargulisinvarianttohigherdimensions.Recently,in2009,Margulis,GoldmanandLabourie[7]foundanequivalentconditionforpropernessusingtheextendedMargulisinvariantandgaveaveryconceptualproofoftheOppositeSignLemma.InthispaperwestudytheworksofDrummandGoldmanonCrookedPlanes[5][6][9]andtherecentworksofMargulis,GoldmanandLabourie[7]ongivinganequivalentconditionforproperness.2 Chapter2GeometryofR2;1Let,R2;1bethe3-dimensionalrealvectorspacewithinnerproduct,B(v;w):=v1w1+v2w2�v3w3andG0=O0(2;1)theidentitycomponentofitsgroupofisometries.G0consistsoflinearisometriesofR2;1whichpreservebothanorientationofR2;1andaconnectedcomponentoftheopenlightcone:fv2R2;1:B(v;v)0g.Then,G0=O0(2;1)=PSL(2;R)=Isom0(H2),whereH2denotestherealhyperbolicplane.2.1TheHyperboloidModelWede neH2asfollows.WeworkintheirreduciblerepresentationR2;1(isomorphictotheadjointrepresentationofG0).Anonzerovectorv2R2;1iscalled:SpacelikeifB(v;v)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0LightlikeorNullifB(v;v)=0TimelikeifB(v;v)0Thetwosheetedhyperboloid:fv2R2;1:B(v;v)=�1ghastwoconnectedcomponents.We xatimelikevectore3andde neH2asthecon-nectedcomponentwithB(v;e3)0.TheLorentzianmetricde nedbyBrestrictstoaRiemannianmetricofconstantcurvature�1onH2.TheidentitycomponentG0oftheisometrygroupofR2;1isthegroupoforientationpreservingisometriesofH2.3 2.2TheLorentzProductOnthespaceR2;1de nedasabovewede neacrossproductcalledtheLorentziancrossproductasfollows::R2;1R2;1�!R2;1suchthat,(u;v)7�!24u2v3�u3v2u3v1�u1v3u2v1�u1v235.Notethatisaskew-symmetricandbilinearform,satisfyingthefollowingproperties:B(u;uv)=B(v;uv)=0uv=�vuB(uv;uv)=B(v;u)2�B(u;u)B(v;v)Letk:kbetheeuclideannormonthespaceR3.Denotebyv1;v2;:::;vn&#x-278;thesubspacegeneratedbyv1;v2;:::;vnandthesphereofuniteuclideanlengthbyS2.Foranyv2R2;1itsLorentzperpendicularplaneisdenotedbyP(v).LetCbethelightcone.ItconsistsofallnullvectorsanditstwocomponentsformthetimeorientationsofR2;1.Wede neC+andC�respectivelytobethepositiveandthenegativetimeorientation.SimilarlywedenotebyUthespaceofalltimelikevectorsanditstwocomponentsasU+andU�.Ifa;b2C+\S2aretwononzeronullvectorswithpositivetimeorientation,thenv=abisspacelikeandisavectorparalleltotheintersectionP(a)\P(b).LetvbeanullvectorthentheplaneP(v)equalstheplanetangenttothelightconecontainingthelineRvandthenulllineRvdividestheplaneintotwocomponents.Themappingx7�!xvde nesadi eomorphismofC+nR+vontoonecomponent.WedenotetheclosureofthiscomponentbyP+(v),thatis,P+(v):=cl((C+nR+v)v)andtheothercomponentbyP�(v),thatis,P�(v):=cl(v(C+nR+v)).IfvisaspacelikevectorthenP(v)\Cistheunionoftwonulllines.Thereexistsauniquepairx�(v);x+(v)2P(v)\C+suchthatkx�(v)k=kx+(v)k=1andB(v;x�(v)x+(v))&#x-278;0.Ifvisaspacelikethen,x�(v)x+(v)=2B(v;v)v=(B(v;v)+kvk2)vx+(v)=�B(v;v)1=2x+(v).4 Wede neaconicalneighbourhoodAC+ofv2C+tobeanopenconnectedsubsetofC+containingvsuchthatifw2AthenR+wA.FordisjointconicalopensetsAandBwede ne,T(A;B):=fv2R2;1:B(v;ab)�0foralla2cl(A)andb2cl(B)g:Inparticular,ifA,BareconnectedthenT(A;B)isanopenin nitepyramidwhosevertexistheoriginandwhosefouredgesareparalleltovectorsintheboundaryofAandB.5 Chapter3AneGeometryInthischapterwecollectgeneralpropertiesofanespaces,anetransformationsandanedeformationsoflineargroupactions.Weareprimarilyinterestedinanede-formationsoflinearactionsfactoringthroughtheirreducible2r+1dimensionalrealrepresentationVrofG0whererisapositiveinteger.Wenotethatforr=1wegetV1=R2;1.3.1AneSpacesandtheirautomorphismsLetVbearealvectorspace.AnanespaceE(modelledonV)isaspaceequippedwithasimplytransitiveactionofV.WecallVthevectorspaceunderlyingE,andrefertoitselementsastranslations.Translationvbyavectorv2Visdenotedbyaddition,thatis,v:E�!Egivenbyx7�!x+v.LetEbeananespacewithassociatedvectorspaceV.ChoosinganarbitrarypointO2E(theorigin)identi esEwithVviathemap,f:V�!Egivenbyv7�!O+v.AnaneautomorphismofEisthecompositionofalinearmapping(usingtheaboveidenti cationofEandV)andatranslation,thatis,g:E�!EgivenbyO+v7�!O+L(g)(v)+u(g)whereL(g)2GL(V)andu(g)2V.TheaneautomorphismsofEformagroupA (E).Themapping,(L;u):A (E)�!GL(V)nVgivenbyg7�!(L(g);u(g))givesanisomorphismofgroups.ThelinearmappingL(g)2GL(V)iscalledthelinearpartoftheanetransformationg,andL:A (E)�!GL(V)givenbyg7�!L(g)isahomomorphism.Thevectoru(g)2Viscalledthetranslationalpartofg.Themapping,6 u:A (E)�!Vgivenbyg7�!u(g)satis esthefollowingidentity(alsoknownasthecocycleidentity):u(g1g2)=u(g1)+L(g1)u(g2)forg1;g22A (E).3.2AnedeformationsoflinearactionsLet�0GL(V)beagroupoflinearautomorphismsofavectorspaceV.Denotethecorresponding�0moduleasVaswell.Ananedeformationof�0isarepresentation,:�0�!A (E)suchthatListheinclusion�0,!GL(V).Weconfusewithitsimage�:=(�0),towhichweasorefertoasananedeformationof�0.Notethatembedds�0asthesubgroup�ofGL(V).Intermsofthesemi-directproductdecompositionA (E)=GL(V)nVananedeformationisthegraph=u(withimagedenotedby�=�u)ofacocycleu:�0�!V,thatis,amapsatisfyingtheaforementionedcocycleidentity.Wewriteg=(g0)=(g0;u(g0))2�0nVforthecorrespondinganetransformationg(x)=g0(x)+u(g0).CocyclesformavectorspaceZ1(�0;V).Cocyclesu1;u22Z1(�0;V)arecohomologousiftheirdi erenceu1�u2isacoboundary,acocycleoftheform,v0:�0�!Vgivenbyg7�!v0�gv0wherev02V.Moreover,cohomologousclassesofcocyclesformavectorspaceH1(�0;V).Anedeformationsu1;u2areconjugatebytranslationbyv0ifandonlyifu1�u2=v0.ThusH1(�0;V)parametrizestranslationalconjugacyclassesofanedeformationsof�0GL(V).Notethatwhenu=0,theanedeformation�uequals�0itself.3.3TheMargulisInvariantConsiderthecasethatG0=PSL(2;R)andLisanirreduciblerepresentationofG0.Foreverypositiveintegerr,letLrdenotetheirreduciblerepresentationofG0onthe2r-symmetricpowerVrofthestandardrepresentationofSL(2;R)onR2.ThedimensionofVrequals2r+1.Thecentralelement�I2SL(2;R)actsby(�1)2r=1.SothisrepresentationofSL(2;R)de nesarepresentationofPSL(2;R)=SL(2;R)=fIg.NotethattherepresentationR2;1introducedbeforeisV1,thecasewhenr=1.Fur-thermoretheG0invariantnon-degenerateskew-symmetricbilinearformonR2inducesanon-degeneratesymmetricbilinearformBonVr,whichwenormalizeinthefollowingparagraph.7 Anelementg2G0ishyperbolicifitcorrespondstoanelement~gofSL(2;R)withdis-tinctrealeigenvalues.Necessarilytheseeigenvaluesarereciprocals;�1whichwecanuniquelyspecifybyrequiringjj1.Furthermorewechooseeigenvectorsv+;v�2R2suchthat:~g(v+)=v+~g(v�)=�1v�Theorderedbasisfv�;v+gispositivelyoriented.ThentheactionLrhaseigenvalues2j,forj2f�r;1�r;:::;0;:::;r�1;rgwherethesymmetricproductvr�j�vr+j+2Vrisaneigenvectorwitheigenvalue2j.Inparticularg xesthevectorx0(g):=cvr�vr+,wherethescalarcischoosensothatB(x0(g);x0(g))=1.Callx0(g)theneutralvectorofg.Thesubspaces,V�(g):=rXj=1R(vr+j�vr�j+),V+(g):=rXj=1R(vr�j�vr+j+)areginvariantandVenjoysag-invariantB-orthogonaldirectsumdecomposition,V=V�(g)R(x0(g))V+(g).Foranynormk:konV,thereexistsC;k&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.45; 0 ;&#xTd [;0suchthat,kgn(v)k6Ce�knkvkforv2V+(g)andkg�n(v)k6Ce�knkvkforv2V�(g).Furthermore,x0(gn)=jnjx0(g)ifn2Znf0gandV(gn)=V(g)ifn&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.45; 0 ;&#xTd [;0V(g)ifn0.Now,letussupposethatg2A (E)isananetransformationwhoselinearpartL(g)ishyperbolic.ThenthereexistsauniqueanelinelgEwhichisg-invariant.Thelinelgisparalleltox0(L(g)).Therestrictionofgtolgisatranslationbythevector,B(gx�x;x0(L(g)))x0(L(g))wherex0(L(g))isasde nedabovewithB(x0(L(g));x0(L(g)))=1.Supposethat�0G0beaSchottkygroup,thatis,anon-abeliandiscretesubgroupcontainingonlyhyperbolicelements.Suchadiscretesubgroupisafreegroupofrankatleasttwo.Wede netheMargulisinvarianttobethefunction, u:�0�!Rgivenbyg7�!B(u(g);x0(g))whereu2Z1(�0;V).TheMargulisinvariant uassociatedtoananedeformation�uisawellde nedclassfunctionon�0satisfyingthefollowingproperties:8  [u](gn)=jnj [u](g)forg2�0and[u]2H1(�0;V) [u](g)=0,g xesapointinV.Thefunction [u]dependslinearlyon[u].Themap :H1(�0;V)�!Rgivenby[u]7�! [u]isinjective.Inhis1983paperMargulisusedthisinvarianttodetectproperness.Thesigni canceoftheMargulisinvariantcomesfromthefollowingresultduetoMargulis:Theorem3.3.1(TheOppositeSignLemma).Suppose�actsproperly.Theneither [u](g)�0forallg2�0or [u](g)0forallg2�0.WewillgiveaproofofthisresultatthelastchapterusingtoolsdevelopedjointlybyMargulis,GoldmanandLabourie.9 Chapter4MargulisSpaceTimesCompleteanely atmanifoldscorrespondtosubgroups�A (Rn)whichactproperlydiscontinuouslyonRn,and1(M)=�forM=Rn=�.Milnorshowedthatif�isvirtuallypolycyclicthenthereexistssomecompleteanely atmanifoldMsuchthat1(M)=�,andheaskediftheconversewastrue.Margulisdemonstratedthatthereexistfreesubgroups�A (R3)actingproperlydis-continuouslyonR3,thusansweringMilnor'squestionnegatively.ByFriedandGoldman,theunderlyinglineargroupof�mustbeconjugatetoasubgroupofG0.Thecorrespond-ingquotientmanifoldsM=R3=�arecalledMargulisspace-times.Wenotethat�,agroupofanehomeomorphismsofR3actsproperlydiscontinuouslyandfreelyonR3ifthereexistsathreedimensionalsubmanifoldXwithboundary(afundamentaldomain)suchthatnotwoelementsoftheinteriorofXare�-equivalentandeveryelementofR3is�-equivalenttoanelementofX.InthefollowingsectionswetrytoconstructanicefundamentaldomainforalargeclassofMargulisspace-times.4.1FundamentalPolyhedraforthelinearpartLetG=g1;g2;:::;gn&#x-278;wheregi2G0fori2f1;2;:::;ng.DenoteGi=gi&#x-278;.Wenotethat,G\actsasaSchottkygrouponC+"[9]ifthereareconicalneighbourhoodsAiofx(gi)suchthatcl(Ai)\cl(Ai[i6=j(A+j[A�j)=;andcl(gi(A�i))=C+nA+i.DenotethesetCnfv2C:v=kx(gi)forsomek2RgbyCandthecomplementoftheset(A+i[(�A+i)[A�i[(�A�i))byA.Theorem4.1.1.AisafundamentaldomainfortheactionofGionC.Proof.Wenotethatcl(gi(A�i))=C+nA+i.Usingthiswegetthatforg2Giandg6=ewehavegi(A)\A=;.Now,ifwetakex2Cthengni(x)!x+(gi).Soforanyy2Cthereexistsax2Asuchthatgmi(y)=xforsomeintegerm.HenceAisafundamentaldomainfortheactionofGionC. 10 De nevijforj2f1;2gtobeofeuclideannorm1andintheboundaryofAisatisfyingvi1vi26=0andgi(v�ij)=kgi(v�ij)k=v+ij.Theactionunderconsiderationislinear.SousingtheabovetheoremandlinearityoftheactionwegetthatafundamentaldomainfortheactionofGionU+istheregionboundedbyA,F+i:=fv2v+i1;v+i2&#x-278;:B(v;v)60gandF�i:=fv2v�i1;v�i2&#x-278;:B(v;v)60g.ConsiderthehalfplanesP(vij).Notethatgi(P+(v�ij))=P+(v+ij)andgi(P�(v�ij))=P�(v+ij),sinceg(xv)=kg(xv)k=xg(v)forhyperbolicg2G0andv2R2;1.De nethewedgesWitobetheopenregionboundedbyFi[P+(vi1)[P+(vi2)andnotcontainingFi[P+(vi1)[P+(vi2)andthewedgesMitobetheopenregionboundedbyFi[P�(vi1)[P�(vi2)andnotcontainingFi[P�(vi1)[P�(vi2).Theorem4.1.2.AfundamentaldomainfortheactionofGionR2;1n(P+(x�gi)[P+(x+gi))isR2;1n(W+i[W�i)andonR2;1n(P�(x�gi)[P�(x+gi))isR2;1n(M+i[M�i).Proof.Theresultfollowsfromthepreviousdiscussionandusingthelasttheorem. 4.2AneFundamentalPolyhedraInthissectionwewilldiscussaboutthefundamentaldomainsinvolvingtheP+(v)'s.TheargumentforthefundamentaldomainsforP�(v)iscompletelyanalogous.LetH=h1;h2;:::;hn&#x-278;A (R3)issuchthatL(hi)=giandu(hi)=viwherevi2R3.DenoteHi=hi&#x-278;.Thefundamentaldomainofacyclicanegroupisboundedbytranslatesofcomponentsoftheboundaryofafundamentaldomainforthecorrespondingcycliclineargroup.Wenotethatcl(hi(W�i))=cl(gi(W�i)+vi)=(R2;1nW�i)+viandafundamentaldomainfortheactionofHionR2;1isthecomplementofW�iandW+i+viifthesetwosetshavedisjointclosures.Let%denotetheeuclideandistancebetweentwopointsinR3.If%(y;z+vi)&#x-278;0forallchoicesofy2cl(W�i)andz2cl(W+i)thencl(W�i)\cl(W+i+vi)=;.Inparticular,ifforeachpairofvectorsy2cl(W�i)andz2cl(W+i)thereisavectoru2R2;1suchthatB(y;u)6=B(z+vi;u)thencl(W�i)\cl(W+i+vi)=;.Toconstructugiventhevectorsy2W�iandz2W+i, rstexaminethecaseinwhichyandzarebothspacelike.Inthiscase,x+y2cl(A�i),x+z2cl(A+i)andu=x+yx+z.11 Ifyisnotspacelikeandzisspacelike,letu=y=kykx+z.Ifzisnotspacelikeandyisspacelike,letu=x+yz=kzk.Ifneitherynorzarespacelike,letu=(y=kyk)(z=kzk).NotethatB(y;u)=0ifyisnotspacelike.Ifyisspacelikethenx+y=x�uandB(y;u)0.Similarly,B(z;u)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0.IfB(vi;u)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0forallpossiblevectorsudescribedabovethencl(W�i)\cl(W+i+vi)=;andafundamentaldomainforHiisthecomplementofW�iandW+i+vi.Fory2cl(W�i)andz2cl(W+i)onecanconstructavectoruasabovesuchthatB(z+vi;u)=B(z;u)+B(vi;u)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;kandB(y;u)60.Thesetofvi'ssuchthatB(vi;u)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0fora xeduisahalfspaceboundedbyP(u).ThesetoftranslationsgivingrisetoafundamentaldomainforthegivenAiinthisconstructionisT(A�i;A+i),thesetofallowabletranslations.Anothersetofallowabletranslationsisobtainedbynotingthatcl(hi(W�i�g�1i(vi)))=R2;1nW+i.InthiscasethewedgesseparateifB(�g�1i(vi);u)0forallu=zwwherew2cl(A+i)andz2cl(A�i).Equivalently,B(vi;gi(u))&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.60; 0 ;&#xTd [;0forallgi(u)=zwwherew2cl(gi(A+i))andz2cl(gi(A�i))andthesetofallowabletranslationisT(gi(A�i);gi(A+i)).Thesetwosetsofallowabletranslationscanbecombinedtogethertomakealargerthirdsetofallowabletranslations.Ifvi12T(A�i;A+i)andvi22T(gi(A�i);gi(A+i))thenvi=vi1+vi2isalsoanallowabletranslation.Weseethatthesetfv:vi=vi1+vi2wherevi12T(A�i;A+i)andvi22T(gi(A�i);gi(A+i))gissameasthesetT(A�i;gi(A+i)).De neW�i:=W�i�g�1i(vi2)andW+i:=W+i+vi1.Theorem4.2.1.AfundamentaldomainfortheactionofHionR2;1isR2;1n(W�i[W+i),ifvi2T(A�i;gi(A+i))wherevi12T(A�i;A+i)andvi22T(gi(A�i);gi(A+i))aresuchthatvi=vi1+vi2.Proof.Theresultfollowseasilyfromthediscussionabove. ThefundamentaldomainfortheactionofHonR2;1istheintersectionofthefunda-mentaldomainsoftheactionofHi'sonR2;1providedthefundamentaldomainforeachHicompletelycontainsthecomplementofthefundamentaldomainfortheotherHj'swherej6=i.InpassingfromthefundamentaldomainofHitothefundamentaldomainofH,itisusefultodemandbothwedgesbetranslatedawayfromtheorigin.Wenote12 that,inordertoguaranteethattheclosuresofthetranslatedwedgesaredistinct,itisusefultoconsidereachwedgepairedwiththeotherwedges.LetAi=Ai[j6=i(A+j[A�j).Ifvi2T(gi(A+i);A�i)thenvi=vi1+vi2forsomevi12T(A+i;A�i)andvi22T(gi(A+i);gi(A�i),andif�vi2T(gi(A+i);A�i)thenvi=vi1+vi2forsome�vi12T(A+i;A�i)and�vi22T(gi(A+i);gi(A�i).Inthiscase,letW+i=W+i+vi1,W�i=W�i�g�1i(vi2),M+i=M+i+vi1andM�i=M�i�g�1i(vi2).Theorem4.2.2.Lethi(x)=gi(x)+vifori2f1;2;:::;ngandH=h1;h2;:::;hn&#x-278;.IfL(H)actsasaSchottkysubgrouponC+and:vi2T(gi(A+i);A�i),thenHactsproperlydiscontinuouslyonR2;1.Inthiscase,R2;1n([i(W�i[W+i))isafundamentalpolyhedronfortheactionofHonR2;1.�vi2T(gi(A+i);A�i),thenHactsproperlydiscontinuouslyonR2;1.Inthiscase,R2;1n([i(M�i[M+i))isafundamentalpolyhedronfortheactionofHonR2;1.Proof.Itsucestoprovethetheoremforthecasevi2T(gi(A+i);A�i).ItisclearfromtheconstructionthatnotwoelementsofX:=R2;1n([i(W�i[W+i))areH-equivalent.Assumethatthereexistsap2R2;1whichisnotH-equivalenttoanypointinX.Thus,onecanconstructanin nitesequenceofembeddedimagesofthewedgesallcontainingpinthefollowingmanner:Let 0=eandWj0i0=!.Forintegersn&#x-278;1choose n2H,in2f1;2gandjn2f�1;1g,sothatp2 n(Wjnin), n+1(Wjn+1in+1) n(Wjnin)and n+1= nhjnin.Theleadingtermof nishj0i0andbyanapplicationoftheBrouwer xedpointtheorem[9]itcanbeshownthatx+( n)2Aj0i0.Let n+1=2isde nedtobehk n,wherek2f1;2gischosensothatk6=i0.UsingthesameargumentandapplyingtheBrouwer xedpointtheorem[9]onegetsthatx+( n+1=2)2gk(Aj0i0).De netheplaneSm:=x+( m);x0( m)&#x-278;forallm2f0;1=2;1;3=2;2;:::g.ConsidertheintersectionoftheembeddedimagesofthewedgesandtheplaneP:=fx2R2;1:x3=p3g.pisH-equivalenttoelementsinallofthewedgesWi.Onecanassumethatpiscontainedina"small"wedge!,wheretheanglebetweeneverypairofrayscontainedin!\Pis6=2.Inparticular,Sn\Pcontainsaraylyingcompletelywithin!\Pforallpositiveintegersn.ChooseL0PtobethelineclosesttopwhichboundsahalfplaneinPcontainingallof!\PandwhosenormalinPformsanangleoflessthan=4withalltherayscontainedin!\P.LetLnPbetheclosestlinetopparalleltoL0andboundingahalfplaneinPcontaining n(Wjnin)\P.ThesetfL0;L1;L2;:::gisanin nitesequenceofparallellinesinPconstructedsothat%(p;Ln+1)6%(p;Ln).Toarriveatacontradictionitisenough13 toshowthat(%(p;Ln)�%(p;Ln+1))isboundedfrombelow.Nowthereexistsan"�0suchthatforanyx2Xthe"-ballcenteredatx,B(x;"),iscon-tainedinX\h1(X)\h�11(X)\h2(X)\h�12(X).Thereforewegetthat(%(p;L0)�%(p;L1))�".Nowweconsiderthecasewhen nis-hyperbolicforpositiveintegern.Foreveryy2 �1n(Ln),B(y;")iscontainedinthecomplementofhjnin(Wjn+1in+1).Andsincethean-glebetweenP\SnandthenormaltoLninPwasconstructedtobelessthan=4,B(x;"=23=2)forallx2Lniscontainedinthecomplementof n+1(Wjn+1in+1)and(%(p;Ln)�%(p;Ln+1))�"=23=2.Nowif nisnot-hyperbolicthenbyatheoremfromanotherpaperbyDrummandGoldmanwegetthat n+1=2is-hyperbolic.Wealsonoticethattheactionofg�1kdoesnotcontractanyvectorbymorethanafactorof(gk).Combiningthesefactswegetthat(%(p;Ln)�%(p;Ln+1))�(gk)"=23=2.Thereforewehavethat(%(p;Ln)�%(p;Ln+1))isboundedfrombelow.Sowegetacontradiction.Thus,thereisnop2R2;1whichisnotH-equivalenttoanelementofX.Hence,XisafundamentaldomainfortheactionofHonR2;1. 14 Chapter5TheGeometryofCrookedPlanesWesawinthelastchapterthatthefundamentaldomainsthatweconstructedforcertainMargulisspacetimes,areboundedbycertainpolyhedralhyper-surfacesinR2;1.Thesepolyhedralhyper-surfacesarecalledtheCrookedplanes.Acrookedplaneconsistsofthreeparts:twohalfplanes,calledwingsandapairofoppositeplanarsectors,calleditsstem.Thewingslieinnullplanesandthestem(whoseinteriorhastwoconnectedcomponents)liesinatimelike(inde nite)plane. Inthischapterwestudytheintersectionsoftwocrookedplanes.5.1AnatomyofaCrookedPlaneLetp2R2;1beapointandv2R2;1aspacelikevector.De nethepositivelyorientedcrookedplaneC(v;p)R2;1withvertexpanddirectionvectorvtobetheunionoftwowingsW+(v;p):=p+P+(x+(v)),W�(v;p):=p+P+(x�(v))andastemS(v;p):=p+fx2R2;1:B(v;x)=0;B(x;x)60g.15 Eachwingisahalfplaneandthestemistheunionoftwoquadrantsinaspacelikeplane.Thepositivelyorientedcrookedplaneitselfisapiecewiselinearsubmanifold,whichstrati esintofourconnectedopensubsetsofplanes,fournullraysandavertex.NotethatforacrookedplaneC(v;p)withv2R2;1avectorandp2R2;1apointwecallthelinep+Rv,thespineofthegivencrookedplane.Wealsode nethenegativelyorientedcrookedplaneK(v;p)R2;1withvertexpanddirectionvectorvtobetheunionoftwowingsM+(v;p):=p+P�(x+(v)),M�(v;p):=p+P�(x�(v))andastemS(v;p):=p+fx2R2;1:B(v;x)=0;B(x;x)60g.Inthefollowingsectionswewillonlyconsiderpositivelyorientedhalfplanes.Furthermore,anunspeci edorientationforacrookedplanewillassumedtobethepositiveone.Thecaseforthenegativelyorientedhalfplanesissimilar.Thefollowingsectionsdescribeintersectionsoftwowings,awingandastem,andtwostems.Fromtheseresultsfollownecessaryandsucientconditionsfortheintersectionoftwocrookedplanes.5.2IntersectionofWingsAplaneinR2;1maybewrittenasp+P(v),forp2R2;1andv2R2;1.Supposethatp1;p22R2;1andthatv1;v22R2;1arelinearlyindependent.ThentheintersectionP1\P2ofthetwoplanesPi:=pi+P(vi)isalinewhichcanbeparametrizedasp+R(v1v2)forsomep2P1\P2.Lemma5.2.1.Letx1;x22C+betwolinearlyindependentnullvectorsandp1;p22R2;1betwopoints.ThecorrespondingnullhalfplanesP+i:=pi+P+(xi)fori2f1;2garedisjointifandonlyifB(p2�p1;x1x2)�0.Otherwise,P+1\P+2isapointifandonlyifB(p2�p1;x1x2)=0andP+1\P+2isaspacelikelinesegmentifandonlyifB(p2�p1;x1x2)0.Proof.LetlbetheintersectionoftheplanesthatcontainP+1andP+2.ThenP+1\P+2l.Letw:=x1x2andp=l\(p1+P(w))sothatl=p+Rw.Thesubsetsl\P+ioflarecharacterizedasthesetofallp+kwwherek2RsatisfyingtheinequalitiesB((p+kw)�p1;�w)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0andB((p+kw)�p2;w)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0respectively.NowpwaschosensothatB(p�p1;w)=0andforthegivenparametrizationofll\P+1 !(�1;0]andl\P+2 ![B(p2�p1;w)=B(w;w);1).16 ThenP+1\P+2isemptyifandonlyifB(p2�p1;w)�0P+1\P+2isapointifandonlyifB(p2�p1;w)=0andP+1\P+2isaspacelikelinesegmentifandonlyifB(p2�p1;w)0.andtheproofiscomplete. Hereisthecorrespondinglemmaforpairsofhalfplaneswithoppositeorientations.Lemma5.2.2.Letx1;x22C+betwolinearlyindependentnullvectorsandp1;p22R2;1betwopoints.TheintersectionofthehalfplanesP+:=p1+P+(x1)andP�:=p2+P�(x2)isneverempty.Proof.Usingasimilarmethodofargumentasusedintheprevioustheoremwegettheresult. Nowweconsidertheintersectionofnullhalfplanesforthedegeneratecasewhenthenullhalfplanesareparallel:Lemma5.2.3.Letx2C+beanullvectorsandp1;p22R2;1betwopoints.ThecorrespondingnullhalfplanesP+i:=pi+P+(x)fori2f1;2garedisjointifandonlyifB(p2�p1;x)6=0.Otherwise,oneofthehalfplanescontainsthesimilarlyorientedhalfplaneandtheirintersectionisanullhalfplane.Proof.Usingasimilarmethodofargumentasusedinthe rsttheoremofthissectionwegettheresult. 5.3IntersectionofStemwithWingInthissectionwedescribewhenapositivelyorientednullhalfplaneintersectsastem.Fromthissectiononwardswewilljuststatethelemmasastheprooffollowsasimilarlineofreasoningaswasusedtoprovethe rsttheoremoftheprevioussection.17 Lemma5.3.1.LetxbeapositivelyorientednullvectorandvaunitspacelikevectorsuchthatB(x;v)0.Letp1;p22R2;1bepoints.ThenthestemS1:=S(v;p1)andthepositivelyorientednullhalfplaneP+2:=p2+P+(x)aredisjointifandonlyifB(p2�p1;vx)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;jB(p2�p1;x)j.OtherwiseS1\P+2consistsof,apoint(whichlieson@S1butnoton@P+2)ifandonlyifB(p2�p1;vx)0=B(p2�p1;x).apoint(whichlieson@S1andon@P+2)ifandonlyifB(p2�p1;vx)=jB(p2�p1;x)j.aspacelikelinesegment(withatleastonevertexon@S1)ifandonlyifB(p2�p1;vx)jB(p2�p1;x)jwheretheotherendpointlieson@P+2ifandonlyifB(p2�p1;vx)&#x]TJ/;ཅ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;�jB(p2�p1;x)jandon@S1ifandonlyifB(p2�p1;vx)6�jB(p2�p1;x)j. Nowweconsiderthecasewhenthenullhalfplaneandthestemareorthogonal:Lemma5.3.2.LetxbeapositivelyorientednullvectorandvaunitspacelikevectorsuchthatB(x;v)=0.Letp1;p22R2;1bepoints.ThenthestemS1:=S(v;p1)andthepositivelyorientednullhalfplaneP+2:=p2+P+(x)aredisjointifandonlyifB(p2�p1;v)0whenxisamultipleofx�(v)B(p2�p1;v)&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0whenxisamultipleofx+(v)OtherwiseS1\P+2isaraywithendpointon@P+2(exceptifB(p2�p1;x)=0,inwhichcaseitisanentireline).18 5.4IntersectionofStemsLetC(v1;p1)andC(v2;p2)betwocrookedplaneswherep1;p22R2;1arepointsandv1;v22R2;1areunitspacelikevectors.Wecallthetwovectorsv1andv2:ultraparalleli P(v1)\P(v2)isaspacelikelineorequivalentlyB(v1v2;v1v2)�0.asymptotici P(v1)\P(v2)isanulllineorequivalentlyB(v1v2;v1v2)=0.crossingi P(v1)\P(v2)isatimelikelineorequivalentlyB(v1v2;v1v2)0.Wedescribetheintersectionoftwostemsseparatelyfortheabovementionedthreedif-ferentcases.Lemma5.4.1.Letv1andv2beultraparallelunitspacelikevectors.ThestemsS(v1;p1)andS(v2;p2)aredisjointifandonlyifjB(p2�p1;v1v2)j&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;jB(p2�p1;v1)j+jB(p2�p1;v2)j.OtherwiseS(v1;p1)\S(v2;p2)isalinesegmentwhoseendpointslieontwodistinctlinescontainedin@S(v1;p1)[@S(v2;p2).Lemma5.4.2.Letv1andv2beasymptoticunitspacelikevectorssuchthatx�(v1)=x+(v2).ThestemsS(v1;p1)andS(v2;p2)aredisjointifandonlyifB(p2�p1;x�(v2)x+(v1))hasadi erentsignfromB(p2�p1;v1)andB(p2�p1;v2).OtherwiseS(v1;p1)\S(v2;p2)isapointifandonlyifB(p2�p1;x�(v2)x+(v1))=0andB(p2�p1;v1)andB(p2�p1;v2)havethesamesigns.alinesegmentifandonlyifB(p2�p1;x�(v2)x+(v1))andB(p2�p1;v1)andB(p2�p1;v2)havethesamesigns.arayifandonlyifeitherB(p2�p1;vi)=0foronlyoneiorB(p2�p1;v1)andB(p2�p1;v2)haveoppositesigns.alineifandonlyifB(p2�p1;vi)=0forbothi.Lemma5.4.3.Letv1andv2becrossingunitspacelikevectors.TheintersectionofthestemsS(v1;p1)andS(v2;p2)liesonalineandiseitheraline,theunionoftwodisjointrays,ortworaysandalinesegment,whereallendpointslieontheset@S(v1;p1)[@S(v2;p2).5.5IntersectionofCrookedPlanesInthissectionwedescribetheintersectionoftwocrookedplanes.Whileconsideringtheintersectionoftwocrookedplanes,someterminologyregardingtheorientationofthevectorsde ningthecrookedplanesisuseful.Saythatspacelikevectorsv1;v2;:::vnareconsistentlyorientedifB(vi;vj)0andB(vi;x(vj))6019 fori6=j.Geometrically,consistentorientationmeansthefollowing:Aunitspacelikevectorvde nesahalfplaneH(v)inthehyperbolicplaneH2asfollows:H(v):=fu2U+:B(u;v)�0g.Supposev1;v22R2;1areultraparallel(respectivelyasymptotic)unitspacelikevectors.ThenthehalfplanesH(v1);H(v2)areboundedbyultraparallel(respectivelyasymp-totic)geodesicsinH2.Apairv1;v22R2;1ofultraparallel(respectivelyasymptotic)unitspacelikevectorsareconsistentlyorientedifandonlyifthehalfplanesH(v1);H(v2)aredisjoint.InthatcaseH(v1)\H(v2)isastripwithtwoidealboundarycomponentsandboundarycomponents@H(v1);@H(v2).Lemma5.5.1.Ifv1;v22R2;1aretwoconsistentlyorientedunitspacelikevectors,thenx+(v1)x+(v2)isapositivescalarmultipleof(v1v2)�v1+v2.x+(v1)x�(v2)isapositivescalarmultipleof(v1v2)+v1+v2.x�(v1)x+(v2)isapositivescalarmultipleof(v1v2)�v1�v2.x�(v1)x�(v2)isapositivescalarmultipleof(v1v2)+v1�v2.Proof.WeknowthatG0actstransitivelyonthesetofLorentzunitvectorssowithoutlossofgeneralitywecantakev1=2410035andx(v1)=1=p22401135:Applyingahyperbolicelementwithv1asa xedeigenvectorweget,v1=24�a0c35wherejcj=p a2�1.Furthermore,x(v2)=1=p224�c=a1=a135:Sincev1;v2areconsistentlyoriented,a;c�0.Thusa�1andc=p a2�1.Andforj;k2f�;+gwehavev1v2�kv1+jv2=24�k�ja�cjc35xj(v1)xk(v2)=24�j�k=a�c=ajc=a3520 xj(v1)xk(v2)isamultipleofv1v2�kv1+jv2,sinceB(xj(v1);v1v2v1+jv2)=0,B(xk(v2);v1v2�kv1v2)=0.Furthermore,xj(v1)xk(v2)isapositivemultipleofv1v2�kv1+jv2sinceB(xj(v1)xk(v2);v1v2�kv1+jv2)=(a1)2=a�0.Hencewehaveourdesiredresult. Theorem5.5.2.Letv1;v22R2;1betwoconsistentlyorientedultraparallelunitspacelikevectorsandp1;p22R2;1betwopoints.ThepositivelyorientedcrookedplanesC(v1;p1)andC(v2;p2)aredisjointifandonlyifjB(p2�p1;v1v2)j�jB(p2�p1;v1)j+jB(p2�p1;v2)j.Otherwisetheintersectioniseitherasinglepointorapolygon.Proof.Theresultfollowsfromthelemma5.4.1. Theorem5.5.3.Letv1;v22R2;1betwoconsistentlyorientedasymptoticunitspacelikevectorssuchthatx�(v1)=x+(v2)andp1;p22R2;1betwopoints.ThepositivelyorientedcrookedplanesC(v1;p1)andC(v2;p2)aredisjointifandonlyifB(p2�p1;v1)0,B(p2�p1;v2)0,B(p2�p1;x�(v2)x+(v1))&#x]TJ/;༕ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0.Proof.Theresultfollowsfromapplyingthelemma5.4.2. Theorem5.5.4.Letv1andv2betwocrossingunitspacelikevectors.Theintersectionofcrookedplanesofindeterminateorientationwithspinesparalleltov1andv2isalwaysnonempty.Proof.Inthiscase,sincethestemsintersect,theorientationsareirrelevantandtheprooffollowseasilyfromthelemma5.4.3. Nowweconsidertheintersectionoftwocrookedplanesofdi erentorientations.Theorem5.5.5.Letv1andv2betwounitspacelikevectorswhicharenotparallel.TheintersectionofthepositivelyorientedcrookedplaneC(v1;p1)andthenegativelyorientedcrookedplaneK(v2;p2)isalwaysnonempty.Proof.Theresultfollowseasilyfromthelemmasintheprevioussections. 21 Chapter6TheExtendedMargulisInvariantandItsApplicationsInthischapterwetakeanalternateapproachtoattacktheoriginalproblem.WedescribeanextensionoftheMargulisinvarianttoacontinuousfunctiononhigherdimensionsgivenbyLabourieandfollowingtherecentworksofMargulis,Goldmanandlabourie,usetheextendedMargulisinvarianttogiveanequivalentcriterionforproperness.6.1FlatBundlesassociatedtoAneDeformationsInthissectionwemakethenecessarygroundworktoextendtheMargulisinvariant.LetusconsidertheLiegroupG0,thevectorspaceV=Vrandalinearrepresentation,L:G0�!GL(V).LetGbethecorrespondingsemi-directproductVoG0.MultiplicationinGisde nedby(v1;g1)(v2;g2):=(v1+g1v2;g1g2).Theprojection:G�!G0givenby(v;g)7�!gde nesatrivialbundlewith berVoverG0.Wenotethatwhenr=1,thatis,V=R2;1,GisthetangentbundleofG0withitsnaturalLiegroupstructure.Sincethe berofequalsthevectorspaceV,the brationcanbegiventhestructureofa(trivial)anebundleoverG0.Futhermore,thisstructureisG-invariant.DenotethetotalspaceofthisG-homogeneousanebundleoverG0by~E.Notethatwecanalsoconsiderasa(trivial)vectorbundle.ThisstructureisthenG0-invariant.ViaL,thisG0-homogeneousvectorbundlebecomesaG-homogeneousvectorbundle~VoverG0.Thisvectorbundleunderlies~E.TheG-homogeneousanebundle~EandtheG-homogeneousvectorbundle~Vadmit atconnections.Wedenotebothoftheseconnectionsby~r.WehaveseeninchaptertwothatLpreservesabilinearformBonV.TheG0invariantbilinearformB:VV�!Rde nesabilinearpairing22 B:~V~V�!Rofvectorbundles.Wenotethat,ifLpreservesabilinearformBonV,thebilinearpairingBon~Visparallelwithrespectto~r.Nowleta(t):=241000cosh(t)sinh(t)0sinh(t)cosh(t)35fort2R.Wenoticethatforp2H2,a(t)pdescribesthegeodesicthroughpandtangentto_p.Rightmultiplicationbya(�t)onG0identi eswiththegeodesic ow~'tonUH2whereUH2denotestheunittangentbundleonH2.Wedenotethevector eldcorrespondingtothegeodesic owby~'.Similarly,rightmultiplicationbya(�t)onGidenti eswiththegeodesic ow~ton~E.Wenotethatthis owcoversthe ow'tonG0de nedbyrightmultiplicationbya(�t)onG0.Alsothevector eld~on~Egenerating~tcoversthevector eld~'generating~'t.Wenotethatthe ow~tcommuteswiththeactionofG.Thus~tisa owonthe atG-homogeneousanebundle~Ecovering't.Wealsonotethatidentifying~Vasthevectorbundleunderlying~E,theR-actionisjustthelinearizationD~toftheaction~t.TheG-actionandthe owD~ton~Vpreserveasection~ofthebundle~V.Thissectioniscalledtheneutralsection.Wenotethatalthough~isnotparallelineverydirection,itisparallelalongthe ow~'t.Let�Gbeananedeformationofadiscretesubgroup�0G0.WedenotethequotientmanifoldH2=�0by.Since�isadiscretesubgroupofG,thequotientE:=~E=�isananebundleoverU=UH2=�0andinheritsa atconnectionrfromthe atconnection~ron~E.Furthermore,the ow~ton~Edescendstoa owtonEwhichisthehorizontalliftofthe ow'tonU.ThevectorbundleVunderlyingEisthequotientV:=~V=�=~V=�0andinheritsa atlinearconnectionrfromthe atlinearconnection~ron~V.The owD~ton~Vcovering~'tandtheneutralsection~bothdescendtoa owDtandasectionrespectively.WedenoteUrecUtobetheunionofallrecurrentorbitsof'.Letusde neageodesiccurrentasaBorelprobabilitymeasureontheunittangentbundleUofinvariantunderthegeodesic ow't.WedenotethesetofallgeodesiccurrentsonbyC()andthesubsetofC()consistingofmeasuressupportedonperiodicorbitsbyCper().WenotethatC()hasthestructureofatopologicalspacewiththeweak?-topologyandhasanotionofconvexity.6.2Labourie'sdi usionoftheMargulisInvariantWerecallthattheMargulisinvariant = uisanRvaluedclassfunctionon�0whosevalueon 2�0equals23 B(u( )O�O;x0( ))whereOistheoriginandx0( )2Vistheneutralvectorof .NowtheoriginOwillbereplacedbyasectionsofE,theneutralvectorwillbereplacedbytheneutralsectionofV,andthelinearactionof�0onVwillbereplacedbythegeodesic owonU.LetsbeaC1sectionofE.Itscovariantderivativewithrespectto'isasmoothsectionr'(s).Andletbethenullsection.Wede neafunction,Fu;s:U�!RwhereFu;s:=B(r'(s);).LetS(E)denotethespaceofcontinuoussectionssofEoverUrecwhicharedi er-entiablealong'andthecovariantderivativer'(s)iscontinuous.Ifs2S(E),thenFu;siscontinuous.Nowletusde ne, [u];s():=RUFu;sd.Wenotethat [u];s()isindependentofthesectionswhichwasusedtode neit.Sowegetawellde nedfunction, [u]:C()�!Rgivenby [u]()= [u];s()wheresisasection.Wealsonotethat [u]iscontinuousintheweak?-topologyonC().ThefollowingtheoremestablishesthelinkbetweenthisinvariantandtheMargulisinvariant.Itshowsthat [u]isindeedanextensionoftheMargulisinvariant.Theorem6.2.1.Let 2�0behyperbolicandlet 2Cper()bethecorrespondinggeodesiccurrent.Then ( )=`( )RUFu;sdwhere`( )isthelengthoftheclosedgeodesiccorrespondingtotheelement 2�0.6.3AnequivalentconditionforPropernessInthissectionwegiveanequivalentconditionforpropernessusingtheextendedMargulisinvariantandweconcludethissectionbygivingaconceptualproofoftheoppositesignlemma.Theorem6.3.1.Let�udenoteananedeformationof�0.Then�uactsproperlyifandonlyif [u]()6=0forall2C().NowusingthistheoremwegiveaproofoftheOppositesignlemma.Corollary6.3.2(OppositeSignLemma).Let 1; 22�0besuchthat ( 1)and ( 2)hasoppositesign.Then�doesnotactproperly.24 Proof.As ( 1)and ( 2)hasoppositesign,wecanwithoutlossofgeneralityassumethat ( 1)0 ( 2).Usingtheorem6:2:1weget [u]( 1)0 [u]( 2).NowconvexityofC()impliesthatthereexistsacontinuouspatht2C()witht2[1;2],forwhich1= 1and2= 2.Weknowthatthefunction [u]:C()�!Riscontinuous.Thereforetheintermediatevaluetheoremimpliesthat [u](t)=0forsomet2(1;2).Nowtheorem6:3:1impliesthat�doesnotactproperly. 25 Bibliography[1]SvetlanaKatok,FuchsianGroups(1992),UniversityofChicagoPress,ChicagoISBN978-0-226-42583-2.[2]J.Milnor,Onfundamentalgroupsofcompleteanelyatmanifolds,Adv.inMath.25(1977),178-187.[3]J.Tits,Freesubgroupsinlineargroups,J.Algebra20(1972),250-270.[4]G.Margulis,Freecompletelydiscontinuousgroupsofanetransformations,Dokl.Akad.NaukSSSR272(1983),785-788.[5]T.A.Drumm,FundamentalpolyhedraforMargulisspace-times,Topology,31,No.4(1992),pp.677-683.[6]T.A.DrummandW.M.Goldman,Thegeometryofcrookedplane,Topology38,No.2(1999),pp.323-35.[7]W.M.Goldman;F.LabourieandG.Margulis,Properaneactionsandgeodesicowsofhyperbolicsurfaces.Ann.ofMath.(2)170(2009),no.3,1051-1083.[8]W.M.Goldman,TheMargulisInvariantofIsometricActionsonMinkowski(2+1)-Space,ErgodicTheory,GeometricRigidityandNumberTheory,Springer-Verlag(2002),149-164.[9]T.A.DrummandW.M.Goldman,Complete atLorentz3-manifoldswithfreefundamentalgroup,Int.J.Math.1(1990),149-161.[10]F.Labourie,Fuchsianafneactionsofsurfacegroups,J.Di erentialGeom.59(2001),15-31.[11]V.Charette;T.A.Drumm;W.M.GoldmanandMariaMorrill,CompleteFlatAneandLorentzianmanifolds,Geom.Ded..97(2003),187-98.[12]V.Charette,Non-properaneactionsoftheholonomygroupofapuncturedtorus,ForumMath.18(2006),121-135.26