Possibility theory lies at the crossroads between fuzzy sets probability and nonmonotonic reasoning Possibility theory can be cast either in an ordinal or in a numerical setting Qualitative possibility theory is closely related to belief revision th ID: 26543 Download Pdf
bigotiritfr Helene Fargier IRITCNRS Toulouse University 31400 Toulouse France helenefargieriritfr Jerome Mengin IRITCNRS Toulouse University 31400 Toulouse France jeromemenginiritfr Bruno Zanuttini GREYC Caen University 14000 Caen France brunozanutti
fr Abstract Many AI problems can be modeled as constraint satisfaction problems CSP but many of them are actually dynamic the set of constraints to consider evolves because of the environment the user or other agents in the framework of a dis tribute
dauphinefr Abstract This paper presents a lowlevel system for boundary ex traction and segmentation of natural images and the eval uation of its performance We study the problem in the framework of hierarchical classication where the geomet ric struc
thierrymartinezinriafr Abstract Implementations of CHR follow a committedchoice forward chaining execution model the nondeterminism of the abstract semantics is partly re64257ned with extralogical syntactic convention on the program order and possib
,robert.dannecker@dlr.de ,berthold.noll@dlr.de 2CERFACSCentreEuropeendeRechercheetdeFormationAvanceeenCalculScientique,Toulouse,France,mauro.porta@cerfacs.fr Abstract
While SIFT is fully invariant with respect to only four parameters namely zoom rotation and translation the new method treats the two left over parameters the angles de64257ning the camera axis orientation Against any prognosis simulating all views
72 8 0 2 5 R La Garenne-Colombes, July 10th, 2015 CECA-Brenntag: a new exclusive agreement CECA and Brenntag signed an exclusive agreement for the distribution of Molecular Sieves in Oil and Gas appl
Mini-Compositions . in Collage. LTC 4240: Art for Children. Spring Semester 2013. Henri Matisse was born in Northern. France in 1869.. His formal education was in law, but . was introduced to painting.
Various problems lead to the same class of functions from integers to integers functions having integral di64256erence ratio ie verifying 0 mod for all a b In this paper we characterize this class of functions from to via their a la Newton serie
Various problems lead to the same class of functions from in tegers to integers functions having integral di64256erence ratio ie verifying 0 mod for all ab In this paper we characterize this class of functions from to via their a la Newton series
Published bygiovanna-bartolotta
Possibility theory lies at the crossroads between fuzzy sets probability and nonmonotonic reasoning Possibility theory can be cast either in an ordinal or in a numerical setting Qualitative possibility theory is closely related to belief revision th
Download Pdf - The PPT/PDF document "Possibility Theory and its Applications ..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
2HistoricalBackgroundZadehwasnottherstscientisttospeakaboutformalisingnotionsofpossibility.ThemodalitiespossibleandnecessaryhavebeenusedinphilosophyatleastsincetheMiddle-AgesinEurope,basedonAristotle'sandTheophrastus'works[22].MorerecentlytheybecamethebuildingblocksofModalLogicsthatemergedatthebeginningoftheXXthcenturyfromtheworksofC.I.Lewis(seeHughesandCresswell[31]).Inthisapproach,possibilityandnecessityareall-or-nothingnotions,andhandledatthesyntacticlevel.Morerecently,andindependentlyfromZadeh'sview,thenotionofpossibility,asopposedtoprobability,wascentralintheworksofoneeconomist,andinthoseoftwophilosophers.G.L.S.ShackleAgradednotionofpossibilitywasintroducedasafull- edgedap-proachtouncertaintyanddecisioninthe1940-1970'sbytheEnglisheconomistG.L.S.Shackle[127],whocalleddegreeofpotentialsurpriseofaneventitsdegreeofimpossibil-ity,thatis,thedegreeofnecessityoftheoppositeevent.Shackle'snotionofpossibilityisbasicallyepistemic,itisa\characterofthechooser'sparticularstateofknowledgeinhispresent."Impossibilityisunderstoodasdisbelief.Potentialsurpriseisvaluedonadisbeliefscale,namelyapositiveintervaloftheform[0;y],whereydenotestheabsoluterejectionoftheeventtowhichitisassigned.Incaseeverythingispossible,allmutuallyexclusivehypotheseshavezerosurprise.Atleastoneelementaryhypothesismustcarryzeropotentialsurprise.Thedegreeofsurpriseofanevent,asetofelementaryhypotheses,isthedegreeofsurpriseofitsleastsurprisingrealisation.Shacklealsointroducesanotionofconditionalpossibility,wherebythedegreeofsurpriseofaconjunctionoftwoeventsAandBisequaltothemaximumofthedegreeofsurpriseofA,andofthedegreeofsurpriseofB,shouldAprovetrue.ThedisbeliefnotionintroducedlaterbySpohn[130]employsthesametypeofconventionaspotentialsurprise,butusingthesetofnaturalintegersasadisbeliefscale;hisconditioningruleusesthesubtractionofnaturalintegers.D.LewisInhis1973book[109]thephilosopherDavidLewisconsidersagradednotionofpossibilityintheformofarelationbetweenpossibleworldshecallscomparativepossibility.Heequatesthisconceptofpossibilitytoanotionofsimilaritybetweenpossibleworlds.Thisnon-symmetricnotionofsimilarityisalsocomparative,andismeanttoexpressstatementsoftheform:aworldjisatleastassimilartoworldiasworldkis.Comparativesimilarityofjandkwithrespecttoiisinterpretedasthecomparativepossibilityofjwithrespecttokviewedfromworldi.Suchrelationsareassumedtobecompletepre-orderingsandareinstrumentalindeningthetruthconditionsofcounterfactualstatements.Comparativepossibilityrelationsobeythekeyaxiom:foralleventsA;B;C,ABimpliesC[AC[B:Thisaxiomwaslaterindependentlyproposedbytherstauthor[42]inanattempttoderiveapossibilisticcounterparttocomparativeprobabilities.Independently,theconnection2 Possibilitytheoryisdrivenbytheprincipleofminimalspecicity.Itstatesthatanyhypothesisnotknowntobeimpossiblecannotberuledout.Apossibilitydistributionissaidtobeatleastasspecicasanother0ifandonlyifforeachstateofaairss:(s)0(s)(Yager[141]).Then,isatleastasrestrictiveandinformativeas0.Inthepossibilisticframework,extremeformsofpartialknowledgecanbecaptured,namely:Completeknowledge:forsomes0;(s0)=1and(s)=0;8s6=s0(onlys0ispossible)Completeignorance:(s)=1;8s2S(allstatesarepossible).Givenasimplequeryoftheform\doeseventAoccur?"whereAisasubsetofstates,theresponsetothequerycanbeobtainedbycomputingdegreesofpossibilityandnecessity,respectively(ifthepossibilityscaleL=[0;1]):(A)=sups2A(s);N(A)=infs=2A1(s):(A)evaluatestowhatextentAisconsistentwith,whileN(A)evaluatestowhatextentAiscertainlyimpliedby.Thepossibility-necessitydualityisexpressedbyN(A)=1(Ac),whereAcisthecomplementofA.Generally,(S)=N(S)=1and(;)=N(;)=0.Possibilitymeasuressatisfythebasic\maxitivity"property(A[B)=max((A);(B)).Necessitymeasuressatisfyanaxiomdualtothatofpossi-bilitymeasures,namelyN(A\B)=min(N(A);N(B)).Oninnitespaces,theseaxiomsmustholdforinnitefamiliesofsets.Humanknowledgeisoftenexpressedinadeclarativewayusingstatementstowhichbeliefdegreesareattached.Itcorrespondstoexpressingconstraintstheworldissupposedtocomplywith.Certainty-qualiedpiecesofuncertaininformationoftheform\Aiscertaintodegree"canthenbemodeledbytheconstraintN(A).Theleastspecicpossibilitydistributionre ectingthisinformationis[67]:(A;)(s)=1;ifs2A1otherwise(1)Thispossibilitydistributionisakey-buildinglocktoconstructpossibilitydistributions.Acquiringfurtherpiecesofknowledgeleadstoupdating(A;)intosome(A;).ApartfromandN,ameasureofguaranteedpossibilitycanbedened[71,54]:(A)=infs2A(s).ItestimatestowhatextentallstatesinAareactuallypossibleaccordingtoevidence.(A)canbeusedasadegreeofevidentialsupportforA.Uncertainstatementsoftheform\Aispossibletodegree"oftenmeanthatallrealizationsofAarepossibletodegree.Theycanthenbemodeledbytheconstraint(A).Itcorrespondstotheideaofobservedevidence.Thistypeofinformationisbetterexploitedbyassuminganinformationalprincipleoppositetotheoneofminimalspecicity,namely,4 Animportantexampleofapossibilitydistributionisthefuzzyinterval,whichisafuzzysetofthereallinewhosecutsareintervals[62,67].Thecalculusoffuzzyintervalsisanextensionofintervalarithmeticsbasedonapossibilisticcounterpartofacomputationofrandomvariable.TocomputetheadditionoftwofuzzyintervalsAandBonehastocomputethemembershipfunctionofABasthedegreeofpossibilityAB(z)=(f(x;y):x+y=zg),basedonthepossibilitydistributionmin(A(x);B(y)).Thereisalargeliteratureonpossibilisticintervalanalysis;see[58]forasurveyofXXthcenturyreferences.4QualitativePossibilityTheoryThissectionisrestrictedtothecaseofanitestatespaceS,supposedtobethesetofin-terpretationsofaformalpropositionallanguage.Inotherwords,SistheuniverseinducedbyBooleanattributes.Aplausibilityorderingisacompletepre-orderofstatesdenotedby,whichinducesawell-orderedpartitionfE1;;EngofS.Itisthecomparativecounterpartofapossibilitydistribution,i.e.,ss0ifandonlyif(s)(s0).Indeeditismorenaturaltoexpectthatanagentwillsupplyordinalratherthannumericalinfor-mationabouthisbeliefs.ByconventionE1containsthemostnormalstatesoffact,Entheleastplausible,ormostsurprisingones.Denotingbymax(A)anymostplausiblestates02A,ordinalcounterpartsofpossibilityandnecessitymeasures[42]arethendenedasfollows:fsg;foralls2SandABifandonlyifmax(A)max(B)ANBifandonlyifmax(Bc)max(Ac):PossibilityrelationsarethoseofLewis[109]andsatisfyhischaracteristicpropertyABimpliesC[AC[BwhilenecessityrelationscanalsobedenedasANBifandonlyifBcAc,andsatisfyasimilaraxiom:ANBimpliesC\ANC\B:Thelattercoincidewithepistemicentrenchmentrelationsinthesenseofbeliefrevisiontheory[92,69].Conditioningapossibilityrelationbyannon-impossibleeventC;meansderivingarelationCsuchthatACBifandonlyifA\CB\C:ThenotionofindependenceforcomparativepossibilitytheorywasstudiedinDuboisetal.[46],forindependencebetweenevents,andBenAmoretal.[11]betweenvariables.6 4.2PossibilisticLogicQualitativepossibilityrelationscanberepresentedby(andonlyby)possibilitymeasuresrangingonanytotallyorderedsetL(especiallyaniteone)[42].Thisabsoluterepresen-tationonanordinalscaleisslightlymoreexpressivethanthepurelyrelationalone.WhenthenitesetSislargeandgeneratedbyapropositionallanguage,qualitativepossibilitydistributionscanbeecientlyencodedinpossibilisticlogic[90,59,75].ApossibilisticlogicbaseKisasetofpairs(;),whereisaBooleanexpressionandisanelementofL.ThispairencodestheconstraintN()whereN()isthedegreeofnecessityofthesetofmodelsof.Eachprioritizedformula(;)hasafuzzysetofmodels(describedinSection3)andthefuzzyintersectionofthefuzzysetsofmodelsofallprioritizedformulasinKyieldstheassociatedplausibilityorderingonS.Syntacticdeductionfromasetofprioritizedclausesisachievedbyrefutationusinganextensionofthestandardresolutionrule,whereby(_ ;min(;))canbederivedfrom(_;)and( _:;).Thisrule,whichevaluatesthevalidityofaninferredpropositionbythevalidityoftheweakestpremiss,goesbacktoTheophrastus,adiscipleofAristotle.Possibilisticlogicisaninconsistency-tolerantextensionofpropositionallogicthatprovidesanaturalsemanticsettingformechanizingnon-monotonicreasoning[17],withacomputationalcomplexityclosetothatofpropositionallogic.Anothercompactrepresentationofqualitativepossibilitydistributionsisthepossibilis-ticdirectedgraph,whichusesthesameconventionsasBayesiannets,butreliesonanordinalnotionofconditionalpossibility[67](BjA)=1;if(B\A)=(A)(B\A)otherwise.Jointpossibilitydistributionscanbedecomposedintoaconjunctionofconditionalpossi-bilitydistributions(usingminimum)inawaysimilartoBayesnets[14].Itisbasedonasymmetricnotionofqualitativeindependence(B\A)=min((A);(B))thatisweakerthanthecausal-likecondition(BjA)=(B)[46].BenAmorandBenferhat[12]investi-gatethepropertiesofqualitativeindependencethatenablelocalinferencestobeperformedinpossibilisticnets.Uncertaintypropagationalgorithmssuitableforpossibilisticgraphicalstructureshavebeenstudied[13].Othertypesofpossibilisticlogiccanalsohandleconstraintsoftheform(),or()[75].Possibilisticlogiccanbeextendedtologicprogramming[1,10],similarityreasoning[2],andmany-valuedlogicasextensivelystudiedbyGodoandcolleagues[38].4.3Decision-theoreticfoundationsZadeh[142]hintedthat\sinceourintuitionconcerningthebehaviourofpossibilitiesisnotveryreliable",ourunderstandingofthem\wouldbeenhancedbythedevelopmentofanaxiomaticapproachtothedenitionofsubjectivepossibilitiesinthespiritofaxiomatic8 1.(XS;)isacompletepreorder.2.Therearetwoactssuchthatfg.3.8A;8gandhconstant,8f;ghimpliesgAfhAf.4.Iffisconstant,fhandghimplyf^gh.5.Iffisconstant,hfandhgimplyhf_g.thenthereexistsanitechainL,anL-valuedmonotonicset-function onSandanL-valuedutilityfunctionu,suchthatisrepresentablebyaSugenointegralofu(f)withrespectto .Moreover isanecessity(resp.possibility)measureassoonasproperty(4)(resp.(5))holdsforallacts.ThepreferencefunctionalisthenW(f)(resp.W+(f)).Axioms(4-5)contradictexpectedutilitytheory.Theybecomereasonableifthevaluescaleisnite,decisionsareone-shot(nocompensation)andprovidedthatthereisabigstepbetweenanylevelinthequalitativevaluescaleandtheadjacentones.Inotherwords,thepreferencepatternfhalwaysmeansthatfissignicantlypreferredtoh,tothepointofconsideringthevalueofhnegligibleinfrontofthevalueoff.Theaboveresultprovidesdecision-theoreticfoundationsofpossibilitytheory,whoseaxiomscanthusbetestedfromobservingthechoicebehaviorofagents.See[49]foranotherapproachtocomparativepossibilityrelations,morecloselyrelyingonSavageaxioms,butgivingupanycomparabilitybetweenutilityandplausibilitylevels.Thedrawbackoftheseandotherqualitativedecisioncriteriaistheirlackofdiscriminationpower[47].Toovercomeit,renementsofpossibilisticcriteriawererecentlyproposed,basedonlexicographicschemes[89].Thesenewcriteriaturnouttoberepresentablebyaclassical(butbig-stepped)expectedutilitycriterion.Qualitativepossibilisticcounterpartsofin uencediagramsfordecisiontreeshavebeenrecentlyinvestigated[98].Morerecently,possibilisticqualitativebipolardecisioncriteriahavebeendened,ax-iomatized[48]andempiricallytested[23].TheyarequalitativecounterpartsofcumulativeprospecttheorycriteriaofKahnemanandTverski[133].5QuantitativePossibilityTheoryThephrase\quantitativepossibility"referstothecasewhenpossibilitydegreesrangeintheunitinterval.Inthatcase,aprecisearticulationbetweenpossibilityandprobabilitytheoriesisusefultoprovideaninterpretationtopossibilityandnecessitydegrees.Severalsuchinterpretationscanbeconsistentlydevised:adegreeofpossibilitycanbeviewedasanupperprobabilitybound[70],andapossibilitydistributioncanbeviewedasalikelihoodfunction[60].ApossibilitymeasureisalsoaspecialcaseofaShaferplausibilityfunction[126].Followingaverydierentapproach,possibilitytheorycanaccountforprobabilitydistributionswithextremevalues,innitesimal[130]orhavingbigsteps[16].Thereare10 5.2ConditioningTherearetwokindsofconditioningthatcanbeenvisageduponthearrivalofnewinforma-tionE.Therstmethodpresupposesthatthenewinformationaltersthepossibilitydis-tributionbydeclaringallstatesoutsideEimpossible.Theconditionalmeasure(:jE)issuchthat(BjE)(E)=(B\E).ThisisformallyDempsterruleofconditioningofbelieffunctions,specialisedtopossibilitymeasures.Theconditionalpossibilitydistributionrepresentingtheweightedsetofcondenceintervalsis,(sjE)=((s) (E);ifs2E0otherwise.)DeBaetsetal.[33]provideamathematicaljusticationofthisnotioninaninnitesetting,asopposedtothemin-basedconditioningofqualitativepossibilitytheory.Indeed,themaxitivityaxiomextendedtotheinnitesettingisnotpreservedbythemin-basedconditioning.Theproduct-basedconditioningleadstoanotionofindependenceoftheform(B\E)=(B)(E)whosepropertiesareverysimilartotheonesofprobabilisticindependence[34].Anotherformofconditioning[73,37],moreinlinewiththeBayesiantradition,considersthatthepossibilitydistributionencodesimprecisestatisticalinformation,andeventEonlyre ectsafeatureofthecurrentsituation,notofthestateingeneral.Thenthevalue(BjjE)=supfP(BjE);P(E)0;PgistheresultofperformingasensitivityanalysisoftheusualconditionalprobabilityoverP()(Walley[135]).Interestingly,theresultingset-functionisagainapossibilitymeasure,withdistribution(sjjE)=(max((s);(s) (s)+N(E));ifs2E0otherwise.)ItisgenerallylessspecicthanonE,asclearfromtheaboveexpression,andbecomesnon-informativewhenN(E)=0(i.e.ifthereisnoinformationaboutE).Thisisbecause(jjE)isobtainedfromthefocusingofthegenericinformationoverthereferenceclassE.Onthecontrary,(jE)operatesarevisionprocessonduetoadditionalknowledgeassertingthatstatesoutsideEareimpossible.SeeDeCooman[37]foradetailedstudyofthisformofconditioning.5.3Probability-possibilitytransformationsTheproblemoftransformingapossibilitydistributionintoaprobabilitydistributionandconverselyismeaningfulinthescopeofuncertaintycombinationwithheterogeneoussources(somesupplyingstatisticaldata,otherlinguisticdata,forinstance).Itisusefultocastallpiecesofinformationinthesameframework.ThebasicrequirementistorespecttheconsistencyprincipleP.TheproblemistheneithertopickaprobabilitymeasureinP(),ortoconstructapossibilitymeasuredominatingP.12 denedasP(si)=Pj=i;:::;mpj,withpj=P(fsjg).NotethatPisakindofcumula-tivedistributionofP,alreadyknownasaLorentzcurveinthemathematicalliterature[112].Ifthereareequiprobableelements,theunicityofthetransformationispreservedifequipossibilityofthecorrespondingelementsisenforced.Inthiscaseitisabijectivetransformationaswell.Recently,thistransformationwasusedtoprovearathersurpris-ingagreementbetweenprobabilisticindeterminatenessasmeasuredbyShannonentropy,andpossibilisticnon-specicity.Namelyitispossibletocompareprobabilitymeasuresonnitesetsintermsoftheirrelativepeakedness(aconceptadaptedfromBirnbaum[21])bycomparingtherelativespecicityoftheirpossibilistictransforms.NamelyletPandQbetwoprobabilitymeasuresonSandP,Qthepossibilitydistributionsinducedbyourtransformation.ItcanbeprovedthatifPQ(i.e.PislesspeakedthanQ)thentheShannonentropyofPishigherthantheoneofQ[55].ThisresultgivesomegroundstotheintuitionsdevelopedbyKlir[106],withoutassuminganycommensurabilitybetweenentropyandspecicityindices.PossibilitydistributionsinducedbypredictionintervalsInthecontinuouscase,movingfromobjectiveprobabilitytopossibilitymeansadoptingarepresentationofuncer-taintyintermsofpredictionintervalsaroundthemodeviewedasthe\mostfrequentvalue".Extractingapredictionintervalfromaprobabilitydistributionordevisingaprobabilisticinequalitycanbeviewedasmovingfromaprobabilistictoapossibilisticrepresentation.Namelysupposeanon-atomicprobabilitymeasurePontherealline,withunimodalden-sityp,andsupposeonewishestorepresentitbyanintervalIwithaprescribedlevelofcondenceP(I)= ofhittingit.Themostnaturalchoiceisthemostpreciseintervalensuringthislevelofcondence.Itcanbeprovedthatthisintervalisoftheformofacutofthedensity,i.e.I =fs;p(s)gforsomethreshold.Movingthedegreeofcondencefrom0to1yieldsanestedfamilyofpredictionintervalsthatformapossibilitydistributionconsistentwithP,themostspeciconeactually,havingthesamesupportandthesamemodeasPanddenedby([84]):(infI )=(supI )=1 =1P(I )Thiskindoftransformationagainyieldsakindofcumulativedistributionaccordingtotheorderinginducedbythedensityp.Similarconstructscanbefoundinthestatisticalliterature(Birnbaum[21]).MorerecentlyMaurisetal.[81]noticedthatstartingfromanyfamilyofnestedsetsaroundsomecharacteristicpoint(themean,themedian,...),theaboveequationyieldsapossibilitymeasuredominatingP.Well-knowninequalitiesofprobabilitytheory,suchasthoseofChebyshevandCamp-Meidel,canalsobeviewedaspossibilisticapproximationsofprobabilityfunctions.Itturnsoutthatforsymmetricunimodaldensities,eachsideoftheoptimalpossibilistictransformisaconvexfunction.Givensuchaprobabilitydensityonaboundedinterval[a;b],thetriangularfuzzynumberwhosecoreisthemodeofpandthesupportis[a;b]isthusapossibilitydistribution14 PossibilitytheoryanddefuzzicationPossibilisticmeanvaluescanbedenedusingChoquetintegralswithrespecttopossibilityandnecessitymeasures[65,37],andcomeclosetodefuzzicationmethods[134].Afuzzyintervalisafuzzysetofrealswhosemem-bershipfunctionisunimodalandupper-semicontinuous.Its-cutsareclosedintervals.InterpretingafuzzyintervalM,associatedtoapossibilitydistributionM,asafamilyofprobabilities,upperandlowermeanvaluesE(M)andE(M),canbedenedas[66]:E(M)=Z10infMd;E(M)=Z10supMdwhereMisthe-cutofM.ThenthemeanintervalE(M)=[E(M);E(M)]ofMistheintervalcontainingthemeanvaluesofallrandomvariablesconsistentwithM,thatisE(M)=fE(P)jP2P(M)g;whereE(P)representstheexpectedvalueassociatedtotheprobabilitymeasureP.Thatthe\meanvalue"ofafuzzyintervalisanintervalseemstobein-tuitivelysatisfactory.Particularlythemeanintervalofa(regular)interval[a;b]isthisintervalitself.Theupperandlowermeanvaluesarelinearwithrespecttotheaddi-tionoffuzzynumbers.DenetheadditionM+NasthefuzzyintervalwhosecutsareM+N=fs+t;s2M;t2Ngdenedaccordingtotherulesofintervalanalysis.ThenE(M+N)=E(M)+E(N),andsimilarlyforthescalarmultiplicationE(aM)=aE(M),whereaMhasmembershipgradesoftheformM(s=a)fora6=0.Inviewofthisproperty,itseemsthatthemostnaturaldefuzzicationmethodisthemiddlepoint^E(M)ofthemeaninterval(originallyproposedbyYager[140]).Otherdefuzzicationtechniquesdonotgen-erallypossessthiskindoflinearityproperty.^E(M)hasanaturalinterpretationintermsofsimulationofafuzzyvariable[28],andisthemeanvalueofthepignistictransformationofM.Indeeditisthemeanvalueoftheempiricalprobabilitydistributionobtainedbytherandomprocessdenedbypickinganelementintheunitintervalatrandom,andthenanelementsinthecutMatrandom.6SomeApplicationsPossibilitytheoryhasnotbeenthemainframeworkforengineeringapplicationsoffuzzysetsinthepast.However,onthebasisofitsconnectionstosymbolicarticialintelligence,todecisiontheoryandtoimprecisestatistics,weconsiderthatithassignicantpotentialforfurtherapplieddevelopmentsinanumberofareas,includingsomewherefuzzysetsarenotyetalwaysaccepted.Onlysomedirectionsarepointedouthere.1.Possibilitytheoryalsooersaframeworkforpreferencemodelinginconstraint-directedreasoning.Bothprioritizedandsoftconstraintscanbecapturedbypos-sibilitydistributionsexpressingdegreesoffeasibilityratherthanplausibility[51].Possibilityoersanaturalsettingforfuzzyoptimizationwhoseaimistobalancethelevelsofsatisfactionofmultiplefuzzyconstraints(insteadofminimizinganoverall16 [79].Thisapproachcanbesystematizedtofuzzyoruncertainversionsofformalconceptanalysis.GeneralisedpossibilisticlogicPossibilisticlogic,initsbasicversion,attachesdegreesofnecessitytoformulas,whichturnthemintogradedmodalformulasofthenecessitykind.Howeveronlyconjunctionofweightedformulasareallowed.Yetveryearlywenoticedthatitmakessensetoextendthelanguagetowardshandingconstraintsonthedegreeofpossibilityofaformula.Thisrequiresallowingfornegationanddisjunctionsofnecessity-qualiedproposition.Thisextension,stillunderstudy[78],putstogethertheKDmodallogicandbasicpossibilisticlogic.Recentlyithasbeenshownthatnon-monotoniclogicprograminglanguagescanbetranslatedintogeneralizedpossibilisticlogic,makingthemeaningofnegationbydefaultinrulemuchmoretransparent[85].Thismovefrombasictogeneralizedpossibilisticlogicalsoenablesfurtherextensionstothemulti-agentandthemulti-sourcecase[76]tobeconsidered.Besides,ithasbeenrecentlyshownthataSugenointegralcanbealsorepresentedintermsofpossibilisticlogic,whichenablesustolaybarethelogicaldescriptionofanaggregationprocess[80].Qualitativecapacitiesandpossibilitymeasures.Whileanumericalpossibilitymea-sureisequivalenttoaconvexsetofprobabilitymeasures,itturnsoutthatinthequalitativesetting,amonotoneset-functioncanberepresentedbymeansofafamilyofpossibilitymeasures[5,43].ThislineofresearchenablesqualitativecounterpartsofresultsinthestudyofChoquetcapacitiesinthenumericalsettingstobeestab-lished.Especially,amonotoneset-functioncanbeseenasthecounterpartofabelieffunction,andvariousconceptsofevidencetheorycanbeadaptedtothissetting[119].Sugenointegralcanbeviewedasalowerpossibilisticexpectationinthesenseofsection4.3[43].Theseresultsenablethestructureofqualitativemonotonicset-functionstobelaidbare,withpossibleconnectionwithneighborhoodsemanticsofnon-regularmodallogics.RegressionandkrigingFuzzyregressionanalysisisseldomenvisagedfromthepointofviewofpossibilitytheory.OneexceptionisthepossibilisticregressioninitiatedbyTanakaandGuo[132],wheretheideaistoapproximatepreciseorset-valueddatainthesenseofinclusionbymeansofaset-valuedorfuzzyset-valuedlinearfunctionobtainedbymakingthelinearcoecientsofalinearfunctionfuzzy.ThealternativeapproachisthefuzzyleastsquaresofDiamond[40]wherefuzzydataareinterpretedasfunctionsandacrispdistancebetweenfuzzysetsisoftenused.However,fuzzydataarequestionablyseenasobjectiveentities[110].Theintroductionofpossibilitytheoryinregressionanalysisoffuzzydatacomesdowntoanepistemicviewoffuzzydatawherebyonetriestoconstructtheenvelopeofalllinearregressionresultsthatcouldhavebeenobtained,hadthedatabeenprecise[44].Thisviewhasbeenappliedtothekrigingproblemingeostatistics[111].Anotheruseofpossibilitytheoryconsistsin18 [12]N.BenAmor,S.Benferhat,Graphoidpropertiesofqualitativepossibilisticindepen-dencerelations.Int.J.Uncert.Fuzz.&Knowl.-B.Syst.13,59-97,2005.[13]N.BenAmor,S.Benferhat,K.Mellouli,Anytimepropagationalgorithmformin-basedpossibilisticgraphs.SoftComput.,8,50-161,2003.[14]S.Benferhat,D.Dubois,L.GarciaandH.Prade,Onthetransformationbetweenpos-sibilisticlogicbasesandpossibilisticcausalnetworks.Int.J.ApproximateReasoning,29:135-173,2002.[15]S.Benferhat,D.DuboisandH.Prade,Nonmonotonicreasoning,conditionalobjectsandpossibilitytheory,ArticialIntelligence,92:259-276,1997.[16]S.Benferhat,D.DuboisandH.PradePossibilisticandstandardprobabilisticseman-ticsofconditionalknowledgebases,J.LogicComput.,9,873-895,1999.[17]S.Benferhat,D.Dubois,andH.Prade,PracticalHandlingofexception-taintedrulesandindependenceinformationinpossibilisticlogicAppliedIntelligence,9,101-127,1998.[18]S.Benferhat,D.Dubois,H.PradeandM.-A.Williams.Apracticalapproachtore-visingprioritizedknowledgebases,StudiaLogica,70,105-130,2002.[19]S.Benferhat,D.Dubois,S.Kaci,H.Prade,Bipolarpossibilitytheoryinpreferencemodeling:Representation,fusionandoptimalsolutions.InformationFusion,7,135-150,2006.[20]S.Benferhat,D.Dubois,S.Kaci,H.Prade,Modelingpositiveandnegativeinforma-tioninpossibilitytheory.Int.J.Intell.Syst.,23,1094-1118,2008.[21]Z.W.BirnbaumOnrandomvariableswithcomparablepeakedness.Ann.Math.Stat.19,76-81,1948.[22]I.M.Bochenski,LaLogiquedeTheophraste.Librairiedel'UniversitedeFribourgenSuisse.1947.[23]J.-F.Bonnefon,D.Dubois,H.Fargier,S.Leblois,Qualitativeheuristicsforbalancingtheprosandthecons,TheoryandDecision,65,71-95,2008.[24]C.Borgelt,J.GebhardtandR.Kruse,Possibilisticgraphicalmodels.InG.DellaRicciaetal.editors,ComputationalIntelligenceinDataMining,Springer,Wien,pages51-68,2000.[25]P.BoscandH.Prade,Anintroductiontothefuzzysetandpossibilitytheory-basedtreatmentofsoftqueriesanduncertainofimprecisedatabases.In:P.Smets,A.Motro,eds.UncertaintyManagementinInformationSystems,Dordrecht:Kluwer,285-324,1997.20 [40]P.Diamond(1988)Fuzzyleastsquares.InformationSciences,46,141-157[41]Y.Djouadi,H.Prade:Possibility-theoreticextensionofderivationoperatorsinformalconceptanalysisoverfuzzylattices.FuzzyOptimization&DecisionMaking10,287-309,2011.[42]D.Dubois,Beliefstructures,possibilitytheoryanddecomposablemeasuresonnitesets.ComputersandAI,5,403-416,1986.[43]D.DuboisFuzzymeasuresonnitescalesasfamiliesofpossibilitymeasures,Proc.7thConf.oftheEurop.Soc.forFuzzyLogicandTechnology(EUSFLAT'11),Annecy,AtlantisPress,822-829,2011.[44]D.DuboisOnticvs.epistemicfuzzysetsinmodelinganddataprocessingtasks,Proc.Inter.JointConf.onComputationalIntelligence,Paris,pp.IS13-IS19.[45]D.Dubois,F.DupindeSaint-Cyr,H.Prade:Apossibility-theoreticviewofformalconceptanalysis.Fundam.Inform.,75,195-213,2007.[46]D.Dubois,L.FarinasdelCerro,A.HerzigandH.Prade,Qualitativerelevanceandin-dependence:Aroadmap,Proc.ofthe15hInter.JointConf.onArtif.Intell.,Nagoya,62-67,1997.[47]D.Dubois,H.Fargier.Qualitativedecisionrulesunderuncertainty.InG.DellaRiccia,etal.editors,PlanningBasedonDecisionTheory,CISMcoursesandLectures472,SpringerWien,3-26,2003.[48]D.Dubois,H.Fargier,J.-F.Bonnefon.Onthequalitativecomparisonofdecisionshavingpositiveandnegativefeatures.J.ofArticialIntelligenceResearch,AAAIPress,32,385-417,2008.[49]D.Dubois,H.Fargier,andP.PernyH.Prade,Qualitativedecisiontheorywithpref-erencerelationsandcomparativeuncertainty:Anaxiomaticapproach.ArticialIn-telligence,148,219-260,2003.[50]D.Dubois,H.FargierandH.Prade:Fuzzyconstraintsinjob-shopscheduling.J.ofIntelligentManufacturing,6:215-234,1995.[51]D.Dubois,H.Fargier,andH.Prade,Possibilitytheoryinconstraintsatisfactionproblems:Handlingpriority,preferenceanduncertainty.AppliedIntelligence,6:287-309,1996.[52]D.Dubois,H.Fargier,andH.Prade,Ordinalandprobabilisticrepresentationsofacceptance.J.ArticialIntelligenceResearch,22,23-56,200422 [67]D.DuboisandH.Prade,PossibilityTheory,NewYork:Plenum,1988.[68]D.DuboisandH.Prade,Randomsetsandfuzzyintervalanalysis.FuzzySetsandSystems,42:87-101,1991.[69]D.DuboisandH.Prade,Epistemicentrenchmentandpossibilisticlogic,ArticialIntelligence,1991,50:223-239.[70]D.DuboisandH.Prade,Whenupperprobabilitiesarepossibilitymeasures,FuzzySetsandSystems,49:s65-74,1992.[71]D.Dubois,H.Prade:Possibilitytheoryasabasisforpreferencepropagationinau-tomatedreasoning.Proc.ofthe1stIEEEInter.Conf.onFuzzySystems(FUZZ-IEEE'92),SanDiego,Ca.,March8-12,1992,821-832.[72]D.DuboisandH.Prade,Whatarefuzzyrulesandhowtousethem.FuzzySetsandSystems,84:169-185,1996.[73]D.DuboisandH.Prade,Bayesianconditioninginpossibilitytheory,FuzzySetsandSystems,92:223-240,1997.[74]D.DuboisandH.Prade,Possibilitytheory:Qualitativeandquantitativeaspects.In:D.M.GabbayandP.SmetsP.,editorsHandbookofDefeasibleReasoningandUncertaintyManagementSystems,Vol.1.,Dordrecht:KluwerAcademic,169-226,1998.[75]D.Dubois,H.Prade.Possibilisticlogic:Aretrospectiveandprospectiveview.FuzzySetsandSystems,144,3-23,2004.[76]D.Dubois,H.Prade.Towardmultiple-agentextensionsofpossibilisticlogic.Proc.IEEEInter.Conf.onFuzzySystems(FUZZ-IEEE'07),London,July23-26,187-192,2007.[77]D.Dubois,H.Prade.Anoverviewoftheasymmetricbipolarrepresentationofpositiveandnegativeinformationinpossibilitytheory.FuzzySetsandSystems,160,1355-1366,2009.[78]D.Dubois,H.Prade:Generalizedpossibilisticlogic.Proc.5thInter.Conf.onScalableUncertaintyManagement(SUM'11),Dayton,Springer,LNCS6929,428-432,2011.[79]D.Dubois,H.Prade.Possibilitytheoryandformalconceptanalysis:Characterizingindependentsub-contextstoappearinFuzzySetsandSystems.[80]D.Dubois,H.Prade,A.Rico.ApossibilisticlogicviewofSugenointegrals.Proc.EurofuseWorkshoponFuzzyMethodsforKnowledge-BasedSystems(EUROFUSE24 [94]J.GebhardtandR.Kruse,Thecontextmodel.IInt.J.ApproximateReasoning,9,283-314,1993.[95]M.Gil,ed.,FuzzyRandomVariables,SpecialIssue,InformationSciences,133,2001.[96]J.F.GeerandG.J.Klir,Amathematicalanalysisofinformation-preservingtransfor-mationsbetweenprobabilisticandpossibilisticformulationsofuncertainty,Int.J.ofGeneralSystems,20,143-176,1992.[97]M.Grabisch,T.MurofushiandM.Sugeno,editors,FuzzymeasuresandIntegralsTheoryandApplications,Heidelberg:Physica-Verlag,2000.[98]W.Guezguez,N.BenAmor,K.Mellouli,Qualitativepossibilisticin uencediagramsbasedonqualitativepossibilisticutilities.Europ.J.ofOperationalResearch,195,223-238,2009.[99]D.Guyonnet,B.Bourgine,D.Dubois,H.Fargier,B.C^ome,J.-P.Chiles,Hybridapproachforaddressinguncertaintyinriskassessments.J.ofEnviron.Eng.,129,68-78,2003.[100]J.C.Helton,W.L.Oberkampf,editors(2004)AlternativeRepresentationsofUncer-tainty.ReliabilityEngineeringandSystemsSafety,85,369p.[101]E.Huellermeier,D.DuboisandH.Prade.Modeladaptationinpossibilisticinstance-basedreasoning.IEEETrans.onFuzzySystems,10,333-339,2002.[102]M.Inuiguchi,H.Ichihashi,Y.KumeModalityconstrainedprogrammingproblems:Auniedapproachtofuzzymathematicalprogrammingproblemsinthesettingofpossibilitytheory,InformationSciences,67,93-126,1993.[103]C.Joslyn,Measurementofpossibilistichistogramsfromintervaldata,Int.J.ofGeneralSystems,26:9-33,1997.[104]S.Kaci,H.Prade,Masteringtheprocessingofpreferencesbyusingsymbolicprioritiesinpossibilisticlogic.Proc.18thEurop.Conf.onArticialIntelligence(ECAI'08),Patras,July21-25,376-380,2008.[105]G.JKlirandT.FolgerFuzzySets,UncertaintyandInformation.EnglewoodClis,NJ:PrenticeHall,1988.[106]G.J.Klir,Aprincipleofuncertaintyandinformationinvariance,Int.J.ofGeneralSystems,17:249-275,1990.[107]G.J.KlirandB.ParvizB.Probability-possibilitytransformations:Acomparison,Int.J.ofGeneralSystems,21:291-310,1992.26 [122]H.Prade,M.Serrurier.Maximum-likelihoodprincipleforpossibilitydistributionsviewedasfamiliesofprobabilities.Proc.IEEEInter.Conf.onFuzzySystems(FUZZ-IEEE'11),Taipei,2987-2993,2011.[123]A.Puhalskii,LargeDeviationsandIdempotentProbability,ChapmanandHall,2001[124]E.Raufaste,R.DaSilvaNeves,C.MarineTestingthedescriptivevalidityofpossi-bilitytheoryinhumanjudgementsofuncertainty.ArticialIntelligence,148:197-218,2003.[125]L.J.SavageTheFoundationsofStatistics,NewYork:Dover,1972.[126]G.Shafer,Belieffunctionsandpossibilitymeasures.InJ.C.Bezdek,editor,AnalysisofFuzzyInformationVol.I:MathematicsandLogic,BocaRaton,FL:CRCPress,pages51-84,1987.[127]G.L.S.ShackleDecision,OrderandTimeinHumanAairs,2ndedition,Cam-bridgeUniversityPress,UK,1961.[128]R.SlowinskiandM.Hapke,editors(2000)SchedulingunderFuzziness,Heidelberg:Physica-Verlag,2000.[129]P.Smets(1990).Constructingthepignisticprobabilityfunctioninacontextofun-certainty.In:M.Henrionetal.,editors,UncertaintyinArticialIntelligence,vol.5,Amsterdam:North-Holland,pages29-39,1990.[130]W.Spohn,Ageneral,nonprobabilistictheoryofinductivereasoning.InR.D.Shachter,etal.,editors,UncertaintyinArticialIntelligence,Vol.4.Amsterdam:NorthHolland.pages149-158,1990.[131]T.Sudkamp,Similarityandthemeasurementofpossibility.ActesRencontresFran-cophonessurlaLogiqueFloueetsesApplications(Montpellier,France),Toulouse:CepaduesEditions,pages13-26,2002.[132]H.Tanaka,P.J.Guo,PossibilisticDataAnalysisforOperationsResearch,Heidelberg:Physica-Verlag,1999.[133]A.TverskyandD.Kahneman.Advancesinprospecttheory:cumulativerepresenta-tionofuncertainty.J.ofRiskandUncertainty,5,297-323,1992.[134]W.VanLeekwijckandE.E.Kerre,Defuzzication:criteriaandclassication,FuzzySetsandSystems,108:303-314,2001.[135]P.Walley,StatisticalReasoningwithImpreciseProbabilities,ChapmanandHall,1991.28
© 2021 docslides.com Inc.
All rights reserved.