/
REVIEWARTICLEpublished:04December2013doi:10.3389/\fmmu.2013.00416
... REVIEWARTICLEpublished:04December2013doi:10.3389/\fmmu.2013.00416
...

REVIEWARTICLEpublished:04December2013doi:10.3389/\fmmu.2013.00416 ... - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
368 views
Uploaded On 2016-04-26

REVIEWARTICLEpublished:04December2013doi:10.3389/\fmmu.2013.00416 ... - PPT Presentation

Aguidetobioinformaticsforimmunologists FionaJWhelanNicholasVLYapMichaelGSuretteGBrianGoldingandDawnMEBowdishDepartmentofBiochemistryandBiomedicalSciencesMcMasterUniversityHamiltonONCanad ID: 293838

Aguidetobioinformaticsforimmunologists FionaJ.Whelan NicholasV.L.Yap MichaelG.Surette G.BrianGoldingandDawnM.E.BowdishDepartmentofBiochemistryandBiomedicalSciences McMasterUniversity Hamilton Canad

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "REVIEWARTICLEpublished:04December2013doi..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

REVIEWARTICLEpublished:04December2013doi:10.3389/\fmmu.2013.00416 Aguidetobioinformaticsforimmunologists FionaJ.Whelan,NicholasV.L.Yap,MichaelG.Surette,G.BrianGoldingandDawnM.E.BowdishDepartmentofBiochemistryandBiomedicalSciences,McMasterUniversity,Hamilton,ON,CanadaDepartmentofBiology,McMasterUniversity,Hamilton,ON,Canada Keywords:bioinformatics,immunology,sequencealignments,single-nucleotidepolymorphisms,transcriptionalpro\fling,scavengerreceptorAlthoughpublicperceptionindicatesthatbioinformaticsisarela-tivelynewdisciplineborneoutofthe“omics”age,bioinformatics Whelanetal.Guidetobioinformaticsforimmunologists name(12).Sincethistime,ithasbecomethedefacto leformatformost,ifnotall,bioinformaticsequenceanalyses.Simplyput,thisformatisadescriptionofasequenceprecededbyagreater-than(“�”)symbol,followedbythesequenceinthestandardIUPACnucleotideorproteincode.Anaccuratelyannotatedandappropriatelyformattedsequenceofthegene(s)ofinterestisaprerequisiteofmanybioinfor-matictechniques.Since2007,theNationalCenterforBiotech-nologyInformation(NCBI)hasmadethenucleotidesequencesofmorethan260,000organismsaccessiblethroughitspubliclyavailabledatabase,GenBank(13).GenBank'sglobalcoverageofsequencedataisensuredbydailyexchangesofinformationwiththeEuropeanMolecularBiologyLaboratory's(EMBL)NucleotideSequenceDatabase,andtheDNADataBankofJapan(DDBJ)(13).TheinformationstoredinGenBankismadeaccessiblethroughEntrez,NCBI'scomprehensivesearchengine(13).UsersofEntrezhavetheoptionofsearchingwithinspeci cdatabases,suchasnucleotideandproteinsequences,ExpressedSequenceTags(ESTs),andmacromolecularstructures(14).OnesuchdatabaseisEntrezGene,whichprovidesgene-centeredinformation(15).EntrezGeneincludesonlythosegenerecordscorrespondingtogenomeswhichhavebeenfullysequencedortogenesthathaveactiveresearchgroupsassociatedwiththem(15);searchesofthisorothercurateddatabasesavoidpoorsearchresults.Additionally,becausesomeannotationsincompletegenomesarequitesuspect,theuseofEntrezGenepreventstheuseofinappropriatelyannotatedorlowqualitysequences.Searchingthisdatabaseprovidesusefulinformationsuchasthe“Genomicregions,transcripts,andproducts”section,whichishelpfulinvisualizingtheexonicstructureandchro-mosomalorientationofagene.The“Bibliography”sectionsum-marizespeer-reviewedarticlesinwhichthegeneisatthefore-front.Additionally,amultiplesequencealignmentofthegeneofinteresttoknownhomologscanbegeneratedbychoosingthe“Homology”sectionunder“Generalgeneinformation”;thismaybeofinteresttothoseconductingcross-speciesorevolutionarystudies.Whengatheringsequencedata,theusershouldrefertothesectionentitled“NCBIReferenceSequences(RefSeq)”(Figure1).UsingRefSeqsisimportantbecausethesesequencesmeetastrin-gentstandardsetbyNCBI,includingtheassurancethatsupportingevidenceforthegeneisavailable(16).Here,atleastonesetofmRNAandproteinsequenceswillbedisplayed;isoformsofagivenproteinaredisplayedwithmultipleentries.AlthoughwehavechosentousetheNCBI'sEntrezplatforminthisexampleitshouldbenotedthatthereareotherequally FIGURE1|RetrievalofnucleicacidandproteinFASTAformattedsequencesfromanEntrezGenesearch.UponsearchingforandselectingtheHomosapiensSCARA3gene,avarietyofinformationcanberetrievedincludingidenti ersfortheEnsembl,MendelianInheritanceofMan(MIM),andHumanProteinReferenceDatabase,inadditiontoinformationaboutthegenomiccontextofthegene.Fromthe“NCBIReferenceSequences(RefSeq)”section,themostup-to-dateandthoroughlycuratedFASTAformattedsequencesmaybeobtained.SequenceswithAccessionIdenti ersbeginningwithNMorXMaremRNAandNPorXPareprotein.MultipleRefSeqentriesmaybepresentinthecaseofgeneisoforms.SelectingtheNP_057324.2AccessionIdenti er,informationconcerningtheSCARA3isoform1,proteinisdisplayed,includinglinkstopublicationsinvolvingthisprotein.Byselecting“FASTA”atthetopofthepage,theFASTAformattedsequenceisprovided,whichincludesthereferencenumber,species,andname.Thissequenceissuitableforinputintomostonlinebioinformatictools. FrontiersinImmunology|MolecularInnateImmunityDecember2013|Volume4|Article416|2 Whelanetal.Guidetobioinformaticsforimmunologists Table1|PublicdatabasescontainingDNA,mRNAandproteinsequences. AcronymNameHostedbyURLFeaturesReference GenBankGenBankNationalCenterforBiotechnologyInformationhttp://www.ncbi.nlm.nih.gov/genbank/AnannotatedcollectionofallpubliclyavailableDNAsequences(EST,geneandtranscriptsequencesandunannotatedsinglereadsequencesfromgenomesequencingprojects)Bensonetal.(13)EMBL-BANKEMBLNucleotideSequenceDatabaseEuropeanMolecularBiologyLaboratory(EMBL)http://www.ebi.ac.uk/embl/AcollectionofDNAandRNAsequencessubmittedbyresearchers,genomesequencingprojects,andpatentapplications.Inadditiontoqueryingindividualgenes,wholegenomesmaybebrowsedKulikova(56)DDBJDNADataBankofJapanDNADataBankofJapanhttp://www.ddbj.nig.ac.jp/AcollectionofnucleotidesequenceswheresequencesofrecentlysequencedgenomesareparticularlywellrepresentedMiyazaki(57)UCSCUCSCGenomeBioinformaticssiteGenomeBioinformaticsGroupattheUniversityofCaliforniaSantaCruzhttp://genome.ucsc.edu/Containsreferencesequencesandworkingdraftassembliesforalargecollectionofgenomes.Sourceofsequencesforgenomesthathavenotbeencomprehensivelysequencedandannotated(e.g.,Neadertal)Kentetal.(58) appropriatedatabasesavailable.Althoughitisbeyondthescopeofthisreviewtodescribethemindetail,Table1providesanoverview.PREDICTINGPOST-TRANSLATIONALMODIFICATIONSPost-translationalmodi cationsofaproteincanincludephos-phorylation,glycosylation,ubiquitination,methylation,andlipi-dationamongstmanyothers.Post-translationalmodi cationmaychangethefunction,cellularlocalization,orabundanceofapro-tein.Justasunderstandingproteindomainsandgenomiccontextcaninformthefunctionofaprotein,understandinghowapro-teinispost-translationallymodi edmayprovideimportantcluesregardingfunction.Forexample,signaltransductionmediatedbytheimmunoreceptortyrosine-basedactivationmotif(ITAM)oftheT-cellreceptor,requiresthedualphosphorylationoftwoofitstyrosineresidues[reviewedinRef.(17)].Predictionsastowhichofthemanypossiblepost-translationalmodi cationsarestatis-ticallylikelyinagivenproteinmayexplaincellularlocalizationpatterns,regulationofproteinabundance,andindicatewhethertheproteincontainsspeci csignalingproperties.Asanexample,previousresearchhasdemonstratedthattheprototypicalmemberoftheclassAscavengerreceptors,SRAI,hasaserineinthecytoplasmicdomainofthisprotein,which,whenphosphorylated,isessentialforitsphagocyticfunction(18,19).However,itisnotknownwhethertheothermembersoftheclassAscavengerreceptorfamily,suchasSCARA3,containsimilarsitesofpost-translationalmodi cations.KnowledgeofsuchsiteswouldsuggestthatSCARA3,likeSRAI,isalsoaphagocyticrecep-torwhosesignalingpathwaysareconservedwithinthisreceptorfamily.TheSCARA3FASTAformattedproteinsequenceobtainedfromNCBIwasanalyzedusingtheNetPhos2.0Server(Figure2).Thistoolwasbuiltontheknowledgethatthe7-to12-aminoacidsneighboringaphosphorylatedresiduetendtohaveaspeci- edcompositioninordertoberecognizedbyspeci ckinasesandphosphatases(20).Usingthisinformation,NetPhospredictssitesofphosphorylationinaproteinsequence.InthecaseofSCARA3,multiplesiteswereidenti edoverthethresholdprobabilityvaluede nedbythesoftwaretobeserine(S)-,threonine(T)-,ortyrosine(Y)-phosphorylated(Figure2),indicatingthateventhoughtheseresiduesdifferfromthoseidenti edinSRAI,SCARA3maypossesssimilarfunctionality.InadditiontoNetPhos,therearemanypost-translationalmod-i cationpredictiontoolspublicallyavailablewhichrequirethesoleinputofaproteinsequence.ArepresentativecollectionofthesetoolsissummarizedinTable2.IDENTIFYINGCONSERVEDMOTIFSSomeregionsofagenearemoresusceptibletotheaccumulationofmutationalchangeoverevolutionarytimethanothersandpro-tectionfromchangeislargelyduetothebiologicalimportanceofsucharegion(21).Highlyconservedregionshavegenerallybeendemonstratedtoencodeforareasessentialforaprotein'sexpres-sionorfunctionwhereevenslightchangeswouldthreatentheorganism'ssurvival.Incontrast,inotherareasofaprotein,neu-tralmutationsthatdonotaffectproteinfunctionmayaccumulateovertime(21).Byexaminingareasofconservationinaproteinofinterestacrossitsorthologs(i.e.,genesseparatedbyaspeciationevent;thesamegeneindifferentspecies)andparalogs(i.e.,genesseparatedbyageneduplicationevent;similargenesinthesamespecies)onecanpredictregionsthatareimportantforexpressionorfunction(22).Thisisaccomplishedbyperformingsequencealignments.Analignmentofsequencessimplyput,istheadditionofgaps(repre-sentedas“-”s)atvariablepositionsinasetofinputsequencesinordertomaximizethenumberofsimilarresiduespercolumninthealignment(22).Thesealignmentscomeinavarietyofforms: rst,theycaneitherbe“pairwise,”involveonlytwosequences,or“multiple,”involvemorethantwosequences.Second,theycanbe“global,”whichmeansthefulllengthofallsequencesarealigned,or“local,”indicatingthatthebestalignmentisdisplayed,evenifthatmeansonlyaligningaportionoftheinputtedsequencestoeachother(23).Theuseofpairwiseversusmultiplesequencealign-mentsdependsonhowmanycloselyrelatedproteinstheuserhasattheirdisposal;themoresequences,iftheyarecloselyrelated,willbetterinformthealignment.However,thechoiceoflocal www.frontiersin.orgDecember2013|Volume4|Article416|3 Whelanetal.Guidetobioinformaticsforimmunologists Table2|Arepresentativecollectionofbioinformatictoolsforpost-translationalmodi cation(PTM)prediction. NameHostedbyPTMpredictedURL/Reference NetCGlyc1.0ServerCenterforBiologicalSequenceAnalysis(CBS)C-mannosylationsitesinmammalianproteinshttp://genome.cbs.dtu.dk/services/NetCGlyc/;Julenius(59)NMTTheResearchInstituteofMolecularPathology(IMP)BioinformaticsGroupTheMYRpredictorforpredictionofN-terminalN-myristoylationofproteinshttp://mendel.imp.univie.ac.at/myristate/SUPLpredictor.htmPrePS:PrenylationPredictionSuiteTheResearchInstituteofMolecularPathology(IMP)BioinformaticsGroupPredictswhetheraproteinisprenylatedhttp://mendel.imp.ac.at/PrePS/;Maurer-StrohandEisenhaber(60)NetPhos2.0ServerCenterforBiologicalSequenceAnalysis(CBS)Predictionsofphosphorylationsitesonserine,threonine,andtyrosineresidueshttp://genome.cbs.dtu.dk/services/NetPhos/;Blometal.(20)TheSul natorExPASyBioinformaticsResourcePortalPredictionoftyrosinesulfationsiteshttp://web.expasy.org/sul nator/;Monigattietal.(61)SUMOplotAnalysistoolAbgentPredicttheprobabilityofsumoylationsiteswithinaproteinsequencehttp://www.abgent.com/tools/ProP1.0ServerCenterforBiologicalSequenceAnalysis(CBS)Predictsarginineandlysinepropeptidecleavagesiteshttp://genome.cbs.dtu.dk/services/ProP/;Duckertetal.(62)UBPredIndianaUniversity,ColumbiaUniversity,UniversityofCalifornia,SanDiego,CA,USAPredictsproteinubiquitinationsiteshttp://www.ubpred.org/;Radivojacetal.(63) TherearemanypublicallyavailablePTMpredictiontoolsthatrequireonlytheinputofaproteinsequence.Thistableoutlinesarepresentativesubsetthatareavailableasonlinetools.versusglobalalignmentsisnotasstraightforward.Theresultsoflocalalignmentsareoftenmoremeaningfulbecausethemethodemphasizesregionsofhighsimilaritybetweensequences(23).Thesetypesofalignmentsarequiteinformativewhencompar-ingdivergentproteinsequencesthatarehypothesizedtoshareaspeci cproteindomain.However,oftenaresearcherisinterestedincomparingfull-lengthsequencesofhighsimilaritytoeachother,inwhichcaseaglobalalignmentmustbeemployed.Inourcase,wewereinterestedinthesimilaritiesofSCARA3totheothermembersoftheclassAscavengerreceptors(itsparalogs)that,todate,havebeenbettercharacterizedintermsofbiologicalfunctionandexpression.Anysimilaritiesbetweenspeci cregionsofSCARA3andthesewell-characterizedcousinswouldallowustohypothesizethattheseregionsperformsimilarfunctionsinbothproteins.Assuch,wecomputedaglobalalignmentofthehumanSCARA3proteinwiththeotherfourmembersofthispro-teinfamily(Figure3).Aglobalsequencealignmentisusedinthiscasebecausepreviousresearchhassuggestedthattheseproteinshaveevolvedinparallelformanymillionsofyears,resultinginsomesimilarbiologicalfunctions,suggestingthattheyshareareasofsimilarityacrossthefulllengthsoftheseproteins(11,24).EuropeanMolecularBiologyLaboratory'sEuropeanBioinfor-maticsInstitute(EBI)hasasetoftoolsavailableforbothpairwise1andmultiplesequencealignments2.IntheexampleinFigure3,weperformaglobalmultiplesequencealignmentoftheclassAscavengerreceptorproteinsequencesfromHomosapiensusingtheClustalW2tool(Figure3A).ClustalW2waschosenbecauseit 1http://www.ebi.ac.uk/Tools/psa2http://www.ebi.ac.uk/Tools/msaissuitablefor“medium-length”alignments,whichisperfectforanalysisofthescavengerreceptors,whichareapproximately500basepairsinlength.Additionally,ClustalW2producesacolor-fuloutput,whichmakesiteasytovisualizeconservedresiduesandpatternsofchargeorresiduerepeatsbyvisualinspection.AportionoftheresultsofthisalignmentcanbevisualizedinFigure3B.Notably,thisalignmentidenti edanareaofconser-vationattheC-terminalregionofthecollagenousdomainacrossall vemembersoftheclassAscavengerreceptors(Figure3C).Thisarea,consistingofpredominantlychargedaminoacids,hasbeenpreviouslyimplicatedinligandbindinginSRAI(25).Con-sequentlywemightpredictthatthisregionisaligand-bindingsitenotonlyinSRAI,butalsointheotherfourmembersofthisproteinfamily.Anotherapproachtotheidenti cationofconservedmotifs,especiallyusefulwhennoknownhomologsexist,arespecial-izedtoolsthatexamineaninputsequenceforknowndomains.AnexampleofsuchatoolisNCBI'sConservedDomainSearch(CD-search)whichcomparesauser-providedsequenceagainstanNCBI-curateddatabaseofknowndomains(26).Thesetoolsdonot ndtheintricaciesofsequencealignmentsbutcan,however,beveryinformative.STRUCTURALANALYSISACQUIRINGPUBLICALLYAVAILABLEMACROMOLECULARSTRUCTURESOfcourse,whilecluestoaprotein'sfunctioncanbehiddenwithinitssequence,attheendoftheday,it'stheprotein'sstructurethatdictatesitsfunction.BecauseoftheeaseofDNAandpro-teinsequencinggiventoday'stechnologies,thereismoresequencedataavailablecomparedtostructuralevidence;however,databases www.frontiersin.orgDecember2013|Volume4|Article416|5 Whelanetal.Guidetobioinformaticsforimmunologists resourcessuchasIRIS(Immuneresponseinsilico)takeasimilarapproachtocharacterizingthetranscriptionalpro lesofhumanleukocytesubsetsandincludedifferentactivationstates(47).GENETICVARIATIONANALYSISOFSINGLE-NUCLEOTIDEPOLYMORPHISMThemostcommontypeofvariationwithinthehumangenomearesingle-nucleotidepolymorphisms(SNPs),whichoccur,onaver-age,every1200basepairs(48).SNPscanbenon-synonymousorsynonymous;non-synonymousSNPsresultinachangeintheaminoacidsequenceofthetranslatedprotein,whilesynonymousSNPsdonotaltertheaminoacidcompositionbecauseoftheredundancyofthegeneticcode.Single-nucleotidepolymorphismanalysisofaproteincangreatlyaidintheunderstandingofitsfunctionasthesesmallalterationscanresultinsubstantialchangesinthefunctional-ityoftheprotein.Forexample,aSNPatareceptor'sbindingsitemayaltertheoriginalproteinsuchthatitwouldbeabletobindapathogenthatitpreviouslywasunableto,or,incon-trast,mayabolishitsabilitytobinditsusualbindingpartner.Inonestudy,researchersstudieddifferencesinSNPfrequenciesofMal/TIRAPtoexplaindifferencesinTLR2andTLR4signalingbetweenEuropeanandAfricanpopulations(49).Aftercloningthetwovariants,S180LandS180,resultsindicatedthatS180LheterozygousindividualshadahighercytokineproductionlevelthanS180homozygousindividuals(49).LowerallelefrequenciesofS180LinAfricanandAsianpopulationsmightindicateselec-tionoccurredafterhumansmigratedfromAfricasincethevariantmayhavegrantedaddedbacterialresistanceinthechanginghabi-tat(49).ThisstudydemonstrateshowSNPanalysescanbeusedtoidentifyfunctionaldomainsofaproteinaswellasuncoveraprotein'spotentialevolutionaryhistory.ThereareseveralpubliclyavailableonlinedatabasesfortheanalysisofSNPsinaproteinofinterest(summarizedinTable5);here,weuseTheUniversityofCalifornia,SantaCruz(UCSC)GenomeBrowser7toperformananalysisofSNPspresentwithinSCARA3.Regionsofinterestcanbesearchedforbyenteringthenameofageneoritscorrespondingchromosomalposition.TheGenomeBrowsercontainsmultiple“tracks”thatcontaindiffer-enttypesofannotation,includingthosebasedonNCBIRefSeqs,mRNAalignments,andUCSCGenes(50)(Figure7).Inaddition,thebrowsercandisplayreportsregardinggeneexpression,regu-lation,andvariation,amongotherinformation(50).TheUCSCGenomeBrowserincludesanannotatedSNPtrackwithover23millionreferenceSNPsfromNCBI'sSNPDatabase(dbSNP)(50) 7http://genome.ucsc.edu Table5|Publiclyavailablesingle-nucleotidepolymorphism(SNP)databases. NameHostedbyURLFeaturesAvailabilityReference UCSCUniversityofCalifornia,SantaCruz,CA,USAhttp://genome.ucsc.edu/IntegratedbrowserdisplayingtracksbuiltfromannotationsetsincludingSNPs,mRNA,diseaseassociationstudies,andmoreWebappletKent(68)dbSNPNationalCenterforBiotechnologyInformationhttp://ncbi.nlm.nih.gov/SNP/CentraldatabaseofSNPswithintegrateddatafrommultiplepopulationstudiesincludingthe1000genomeprojectWebappletSherryetal.(48)GWAScentral(formerlyHGVbasedatabase)Institutes,Consortia,andindividuallaboratorieshttp://gwascentral.org/Databaseofhumangeneticvariation.Displaysinformationonphenoytpes,genes,regions,ormarkersbasedonSNPsWebappletFredmanetal.(69)ENSEMBLEuropeanBioinformaticsInstitute(EBI)http://ensembl.org/Containsavailablegenomesofmultiplespecies.Displayssummaryinformationregardingisoforms,SNPs,andotherfeaturesofgenesorproteinsWebappletFliceketal.(70)HapMapNationalCenterforBiotechnologyInformationhttp://hapmap.ncbi.nlm.nih.gov/ContainsintegrateddataofSNPsforhaplotypeanalysis, ndingtagSNPs,andforidentifyingGWAShitsWebappletGibbsetal.(71)1000GenomeProjectEuropeanBioinformaticsInstitutehttp://1000genomes.orgContains1092availablehumangenomesforanalysisaswellassummarydocumentationregardingSNPsandothervariationFTPdownloadAbecasisetal.(72)HaploViewTheBroadInstitutehttp://broadinstitute.org/Calculatesr2andD0valuesforperforminghaplotypeanalysisofSNPswithHapMapdataoruserinputdataFordownloadonallmajorplatformsBarrettetal.(73) ThislistincludesonlySNPdatabasesthatfocusonhumanand/ormousesequences;other,morespecializeddatabasesmayexistforotherorganisms.AlldatabaseslistedacceptnovelSNPsfromprivateandpublicorganizations. www.frontiersin.orgDecember2013|Volume4|Article416|11 Whelanetal.Guidetobioinformaticsforimmunologists FIGURE7|UsingtheUCSCGenomeBrowsertosearchforsingle-nucleotidepolymorphisms(SNPs)inSCARA3.Thisbrowsercontainsmultiple“tracks,”includingthelocationofSNPsacrossthelengthofaprotein.HereweshowtheoutputfrominputtingtheNCBIRefSeqforSCARA3isoform(A).Furtheroptionstohideorshowmoreannotationtracksareavailabledirectlybelowthegraphicaloutput.Underthe“VariationandRepeats”tab,selecting“pack”underthe“CommonSNPs”optionupdatestheoutputtoincludeafulldisplayofSNPsrepresentedbytheirrefSNPclusterIDnumbers[(B),circled].ClickingonanyoftherefSNPclusterIDsleadstoalinkdisplayingfurtherinformationregardingtheSNPaswellasalinktoNCBI'sdbSNPdatabase. (Figure7B).SNPsareannotatedusingarefSNPclusterIDnumber(rs#)whichrepresentsallSNPs,oftenfrommultiplepopulationstudies,thatmaptothesamelocationinthegene.Additionally,eachindividualSNPwithinaclusterisassociatedwithaSNPAccessionnumber(ss#)(48).SelectingarefSNPclusterwithintheGenomeBrowserwilldisplayinformationsuchasthenucleotide FrontiersinImmunology|MolecularInnateImmunityDecember2013|Volume4|Article416|12 Whelanetal.Guidetobioinformaticsforimmunologists FIGURE8|ExampleresultspagefromtheNCBIdbSNPdatabaseforSCARA3SNPrs17057523.ByfollowingthelinkfromtheUCSCGenomeBrowsertodbSNP,moreinformationisprovidedforSNPrs17057523includingallelefrequencies,ancestralalleles,andchromosomalposition(A).Followingthisinformationonthedatabasewebsite,areothertabsthatshowmoreinformationregardingtheSNPthatmaybeusefultoinvestigators.The“PopulationDiversity”sectiondisplaysinformationregardingallelefrequenciesfromdifferentsampledpopulations(B).ClickinganyofthepopulationlinksshowsinformationonhowtheSNPwasgenotyped,thepopulationsamplesize,andotherexperimentalconditionsused. www.frontiersin.orgDecember2013|Volume4|Article416|13 Whelanetal.Guidetobioinformaticsforimmunologists 60.Maurer-StrohS,EisenhaberF.Re nementandpredictionofproteinprenylationmotifs.GenomeBiol(2005)6:R55.doi:10.1186/gb-2005-6-6-r5561.MonigattiF,GasteigerE,BairochA,JungE.TheSul nator:predictingtyro-sinesulfationsitesinproteinsequences.Bioinformatics(2002)18:769–70.doi:10.1093/bioinformatics/18.5.76962.DuckertP,BrunakS,BlomN.Predictionofproproteinconvertasecleavagesites.ProteinEngDesSel(2004)17:107–12.doi:10.1093/protein/gzh01363.RadivojacP,VacicV,HaynesC,CocklinRR,MohanA,HeyenJW,etal.Identi -cation,analysis,andpredictionofproteinubiquitinationsites.Proteins(2010)78:365–80.doi:10.1002/prot.2255564.AndreiRM,LoniT,CallieriM,ZiniMF,MarazitiG,PanMC.BioBlender:ASoftwareforIntuitiveRepresentationofSurfacePropertiesofBiomolecules.(2010).p.1–19.Availableat:http://cds.cern.ch/record/129440265.Jmol:AnOpen-SourceJavaViewerforChemicalStructuresin3D.Availableat:http://www.jmol.org/66.ColeC,BarberJD,BartonGJ.TheJpred3secondarystructurepredictionserver.NucleicAcidsRes(2008)36:W197–201.doi:10.1093/nar/gkn23867.ChouP,FasmanG.Predictionofproteinconformation.Biochemistry(1974)13:222–45.doi:10.1021/bi00699a00268.KentWJ.BLAT–theBLAST-likealignmenttool.GenomeRes(2002)12:656–64.doi:10.1101/gr.22920269.FredmanD,SiegfriedM,YuanYP,BorkP,LehväslaihoH,BrookesAJ.HGVbase:ahumansequencevariationdatabaseemphasizingdataqualityandabroadspectrumofdatasources.NucleicAcidsRes(2002)30:387–91.doi:10.1093/nar/30.1.38770.FlicekP,AhmedI,AmodeMR,BarrellD,BealK,BrentS,etal.Ensembl2013.NucleicAcidsRes(2012)41:D48–55.doi:10.1093/nar/gks123671.GibbsRA,BelmontJW,HardenbolP,WillisTD,YuF,YangH,etal.TheinternationalHapMapproject.Nature(2003)426:789–96.doi:10.1038/nature0216872.AbecasisGR,AutonA,BrooksLD,DePristoMA,DurbinRM,HandsakerRE,etal.Anintegratedmapofgeneticvariationfrom1,092humangenomes.Nature(2012)490:56–65.doi:10.1038/nature1163273.BarrettJC,FryB,MallerJ,DalyMJ.Haploview:analysisandvisualizationofLDandhaplotypemaps.Bioinformatics(2005)21:263–5.doi:10.1093/bioinformatics/bth457ConictofInterestStatement:Theauthorsdeclarethattheresearchwasconductedintheabsenceofanycommercialor nancialrelationshipsthatcouldbeconstruedasapotentialconictofinterest.Received:10September2013;accepted:13November2013;publishedonline:04December2013.Citation:WhelanFJ,YapNVL,SuretteMG,GoldingGBandBowdishDME(2013)Aguidetobioinformaticsforimmunologists.Front.Immunol.4:416.doi:10.3389/ mmu.2013.00416ThisarticlewassubmittedtoMolecularInnateImmunity,asectionofthejournalFrontiersinImmunology.Copyright©2013Whelan,Yap,Surette,GoldingandBowdish.Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(CCBY).Theuse,distributionorreproductioninotherforumsispermitted,providedtheoriginalauthor(s)orlicensorarecreditedandthattheoriginalpublicationinthisjournaliscited,inaccordancewithacceptedacademicpractice.Nouse,distributionorreproductionispermittedwhichdoesnotcomplywiththeseterms. FrontiersinImmunology|MolecularInnateImmunityDecember2013|Volume4|Article416|16