/
REVIEWOpenAccessMechanismsforcopingwithsubmergenceandwaterlogginginric REVIEWOpenAccessMechanismsforcopingwithsubmergenceandwaterlogginginric

REVIEWOpenAccessMechanismsforcopingwithsubmergenceandwaterlogginginric - PDF document

giovanna-bartolotta
giovanna-bartolotta . @giovanna-bartolotta
Follow
362 views
Uploaded On 2015-11-05

REVIEWOpenAccessMechanismsforcopingwithsubmergenceandwaterlogginginric - PPT Presentation

CorrespondencenakazonoagrnagoyauacjpLaboratoryofPlantGeneticsandBreedingGraduateSchoolofBioagriculturalSciencesNagoyaUniversityFurochoChikusaNagoya4648601Japanetalhttpwwwthericejour ID: 183676

*Correspondence:nakazono@agr.nagoya-u.ac.jpLaboratoryofPlantGeneticsandBreeding GraduateSchoolofBioagriculturalSciences NagoyaUniversity Furo-cho Chikusa Nagoya464-8601 Japanetalhttp://www.thericejour

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "REVIEWOpenAccessMechanismsforcopingwiths..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

REVIEWOpenAccessMechanismsforcopingwithsubmergenceandwaterlogginginriceShunsakuNishiuchi,TakakiYamauchi,HirokazuTakahashi,LukaszKotulaandMikioNakazonoAbstractRice(OryzasativaL.),unlikeothercereals,cangrowwellinpaddyfieldsandishighlytolerantofexcesswaterstress,fromeithersubmergence(inwhichpartoralloftheplantisunderwater)orwaterlogging(inwhichexcess *Correspondence:nakazono@agr.nagoya-u.ac.jpLaboratoryofPlantGeneticsandBreeding,GraduateSchoolofBioagriculturalSciences,NagoyaUniversity,Furo-cho,Chikusa,Nagoya464-8601,Japanetal ©2012Nishiuchietal;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. totheinternalaerationduringsubmergence,thereby increasingsubmergencetoleranceinrice(Colmerand Pedersen2008b;Pedersenetal.2009;RaskinandKende 1983). Manylowlandricecultivars,despitehavinganability ofinternalaeration,arestill sensitivetocompletesub- mergence.Theirleavesandstemsmoderatelyelongate undercompletesubmergencetoreachtheair-water interface,buttheirelongationgrowthcanexhaust energyreservesandcausedeathwhentheflooding depthisdeepandthefloodingperiodislong(Bailey- Serresetal.2010;JacksonandRam2003).However, somecultivarsusetwodistinctstrategiesofgrowthcon- trolstosurviveundersubmergedconditions.Oneofthe strategiesisaquiescencestrategy[ i.e .,thelow-oxygen quiescencesyndrome(Col merandVoesenek2009)] (Figure1),inwhichshootelongationissuppressedto preservecarbohydratesforalongperiod(10-14days) underflash-floodconditions.Submergence-tolerantcul- tivarscanrestarttheirgrowthduringdesubmergenceby usingpreservedcarbohydrates.Anotherstrategyisan escapestrategy[ i.e .,thelow-oxygenescapesyndrome (Bailey-SerresandVoesenek2008;ColmerandVoese- nek2009)](Figure1),whichinvolvesfastelongationof internodestoriseabovethewaterlevelandisusedby deepwaterricecultivars.Bothstrategiesdependonethy- lene-responsivetranscriptionfactors(Hattorietal.2009; Xuetal.2006). Figure1 Strategiesofadaptationtoexcesswaterstressesintheformofsubmergenceorwaterlogginginriceplants .Ricecanadapt tosubmergencebyinternalaerationandgrowthcontrol.Forinternalaeration,ricedevelopslongitudinallyformingaerenchymaandleafgas films.Ontheotherhand,somericecultivarscansurviveundersubmergencebyusingspecialstrategiesofgrowthcontrol:aquiescencestrategy oranescapestrategy.The Submergence-1A ( SUB1A )geneisresponsibleforthequiescencestrategy,whichisimportantforsurvivalunderflash- floodconditions.The SNORKEL1 ( SK1 )and SNORKEL2 ( SK2 )genesareresponsiblefortheescapestrategy,whichisimportantforsurvivalunder deepwater-floodconditions.RicecanadapttosoilwaterloggingbyformingaerenchymaandabarriertoradialO 2 loss(ROL)intheroots. Nishiuchi etal . Rice 2012, 5 :2 http://www.thericejournal.com/content/5/1/2 Page2of14 Themainadaptationoflowlandricetosoilwaterlog- gingistheformationofaerenchyma,whichpermits relativelyunhinderedtransportofO 2 fromwell-aerated shootstosubmergedroots(Figures1,2;Armstrong 1979;JacksonandArmstrong1999).Longitudinaldiffu- sionofO 2 towardstherootapexcanbefurther enhancedbyinductionofabarriertoradialO 2 loss (ROL)thatminimizeslossofO 2 tothesurrounding environment(Figures1,2).Furthermore,thisbarrier mayimpedethemovementofsoil-derivedtoxins( i.e ., reducedmetalions)andgases( e.g .methane,CO 2 ,and ethylene)intotheroots(Armstrong1979;Colmer 2003a;Greenwayetal.2006).Bothuplandandlowland ricespeciesusethesetraitsunderwaterloggedcondi- tions(Colmer2003b). Somerecentreviewssummarizedthemechanismsof floodingtoleranceinplants(Bailey-SerresandVoesenek 2008;Bailey-Serresetal.2010;ColmerandVoesenek 2009;Hattorietal.2011;Nagaietal.2010).Inthisreview, weincluderecentdiscoveriesthatwerenotcoveredinthe previousreviewsandsummarizewhatisknownaboutthe physiologicalandmolecularmechanismsthatcontribute totoleranceto,oravoidanceof,submergence( i.e .,internal aerationandgrowthcontrols)andalsoadaptationto waterlogging( i.e .,formationsofaerenchymaandabarrier toROL)inriceandothergramineousplants. Internalaerationinsubmergedplants Effectiveinternalaerationinplantsiscrucialtosurvive undersubmergence.Inrice,aerenchymaiswelldeveloped Figure2 DifferencesinlysigenousaerenchymaformationandpatternsofradialO 2 loss(ROL)inricerootsunderdrainedsoil conditionsandwaterloggedsoilconditions .Underdrainedsoilconditions,lysigenousaerenchymaisconstitutivelyformed,butabarrierto ROLisnotformed;thusROLatthebasalpartoftherootdecreasesO 2 diffusiontotheapicalpart.Bycontrast,underwaterloggedsoil conditionslysigenousaerenchymaformationisenhancedandformationofthebarriertoROLisinduced,resultinginthepromotionof longitudinalO 2 diffusiontotherootapex.Underdrainedsoilconditions,lysigenousaerenchymaisconstitutivelyformedatthebasalpartofthe roots(a),butitisnotusuallyformedattheapicalpartoftheroots(b).Underwaterloggedsoilconditions,lysigenousaerenchymaisinducedat thebasalpart(c)andtheapicalpart(d)oftheroots.Lysigenousaerenchymaismorehighlydevelopedatthebasalpartoftheroots(a,c)than attheapicalpart(b,d).ArrowthicknessreflectstheamountofO 2 available.Ep,epidermis;Ex,exodermis;Sc,sclerenchyma;Co,cortex;En, endodermis. Nishiuchi etal . Rice 2012, 5 :2 http://www.thericejournal.com/content/5/1/2 Page3of14 inroots,internodes,sheaths,andthemid-ribofleaves(ColmerandPedersen2008a;Matsukuraetal.2000;Steffensetal.2011)andcontributestotheeffectiveinter-nalaerationbetweenshootsandroots(Colmer2003a;ColmerandPedersen2008a).SubmergedleaveshavegasfilmsthataidOandCOexchangebetweenleavesandthesurroundingwater,andthusincreaseunderwaternetphotosynthesisbysupplyingCOduringtheday(underlightconditions)andpromoteOuptakeforrespirationatnight(ColmerandPedersen2008b;Pedersenetal.2009;RaskinandKende1983).Asaresult,leafgasfilmscontri-butetoleafsugarproductionbyphotosynthesiswhenunderwater,andinturnshootandrootdrymass(Pedersenetal.2009).RemovalofleafgasfilmscausedadecreaseofOpartialpressure(pO)inrootswhenshootswereindarkness,suggestingthatleafgasfilmspartiallycontributetoOtransportfromshoottoroot(Pedersenetal.2009;Winkeletal.2011).Takentogether,thesefind-ingsindicatethatleafgasfilmsareimportantforsubmer-gencetoleranceinrice(Pedersenetal.2009;RaskinandKende1983).Strategiesofadaptationtoflash-floodconditionsCatling(1992)definedsubmergencetoleranceasabilityofariceplanttosurvive10-14daysofcompletesubmergenceandrenewitsgrowthwhenthewatersub-sides;thereisnostemelongationduringsubmergence.Underthisdefinition,submergencetoleranceindicatesflash-floodtolerance.Generally,theseedlingsofmanylowlandricecultivarselongatetheirleavestogetoxygenatthewaterssurfaceundersubmergedconditions.However,becausethisshootelongationrequireslargeamountsofenergy,mostricecultivars(.,flash-flood-intolerantcultivars)havepoorabilitytorecoverfullyafterthewaterrecedesandeventuallysustainseveredamageordie(JacksonandRam2003).Bycontrast,theflash-flood-tolerantEastIndianricecultivarFR13Ashowsrestrictedshootelongationandreducedenergyconsumptionundersubmergence(SetterandLaureles1996).TheenergyinFR13Aplantsispreservedduringsubmergence,andupondesubmergencetheirgrowthcanberestartedbyusingthisenergy(Fukaoetal.2006;Singhetal.2001).Thereisthereforeanegativecorrela-tionbetweenshootelongationandsurvivalrateundercompletesubmergence(SetterandLaureles1996).FR13AhastheSubmergence-1SUB1)locusonchro-mosome9(XuandMackill1996).Xuetal.(2006)dis-coveredthatthelocuscontainsSUB1BSUB1C,allofwhichencodeethyleneresponsefac-torsandareupregulatedundersubmergence,butonlySUB1Aisresponsiblefortheflash-floodtolerance.Thenear-isogeniclineM202(SUB1),whichwasgeneratedbyintrogressionoftheSUB1regionfromFR13Aintotheflash-flood-intolerantcultivarM202,showsrestrictedshootelongationundersubmergence,asdoesFR13A(Bailey-Serresetal.2010;Fukaoetal.2006;Xuetal.2006).Topreserveenergyandcarbohydrates,M202(SUB1)suppressestheexpressionofgenesencod--amylaseandsucrosesynthase,whichareinvolvedinstarchandsucrosemetabolism(Fukaoetal.2006).Inaddition,positivelyregulatesthegenesinvolvedinalcoholfermentationandthuspromotesacclimationofplantstoflash-floodconditions(Fukaoetal.2006).FukaoandBailey-Serres(2008)reportedthatalsoenhancestheexpressionofgenesencodingSLEN-DERRICE-1(SLR1)andSLR1like1(SLRL1),whicharekeyrepressorsofgibberellin(GA)signalinginrice;italsonegativelyregulatestheGAresponseinordertorestrictshootelongationundersubmergence.Recently,itwasshownthatSUB1Aexpressionisalsoinducedbydroughtandoxidativestressupondesubmergence(Fukaoetal.2011).SUB1ApositivelyregulatestheexpressionsofgenesinvolvedinABA-mediatedacclima-tiontodroughtconditions.Moreover,underoxidativestress,SUB1Apromotestheexpressionofgenesrelatedtothedetoxificationofreactiveoxygenspecies(ROS)andreducestheaccumulationofROS.Asaresult,M202()hasahigherdroughtandoxidativetoler-ancethanM202(Fukaoetal.2011).Inrain-fedricefields,inadequatewatermanagementispronetocausefloodinganddrought.Thus,assubmergenceanddroughtstressescancauseseveredecreasesinricepro-ductioninrain-fedricefields,introgressionofthegeneintoricecultivarsintolerantofsubmer-genceanddroughtisapromisingwayofincreasingriceproductivityinthesefields(Fukaoetal.2011).Strategiesforadaptationtodeepwater-floodconditionsDeepwaterfloodinglastsforseveralmonths,andOdeficiencycausesenergydepletioninplants.Tosurviveunderdeepwater-floodconditions,riceplantsmustescapefromtheflooding.Auniquetraitofdeepwaterriceisthatitsinternodesrapidlyandsubstantiallyelon-gatetoavoiddeepwaterflooding.Remarkably,somedeepwaterricecultivarscanincreasetheirheightby25cm/day(Vergaraetal.1976).Thisrapidelongationallowstheleaftipstoextendabovethewatersurfaceandenablesthericeplantstoefficientlyphotosynthesizeandexchangegasesforrespiration(Bailey-SerresandVoesenek2008).Duringinternodeelongation,ethylenebiosynthesisisactivatedandtheaccumulatedethyleneregulatestheincreasesinGAcontentanddecreaseinABAcontent.AsinternodeelongationispromotedbyGAorrepressedbyABA,theincreasedGA/ABAratiocontributestotheelongation(Kendeetal.1998;Sauter2000).Indeed,GAactivatestheexpressionofcelldivi-sion-relatedgenes(Sauteretal.1995;vanderKnaapetal.1997),andthusactivecelldivisionisobservedatetalhttp://www.thericejournal.com/content/5/1/2Page4of14 theintercalarymeristemintheinternodeundersubmer-gence(MétrauxandKende1984).Moreover,highlevelsofexpressionofgenesencodingexpansin,whichisinvolvedincell-wallloosening(ChoandKende1997a,b,c;LeeandKende2001),andchangesintheorienta-tionofcellulosemicrofibrilsareobservedintheinter-nodeduringinternodeelongation(Sauteretal.1993).Aerenchymaformationoccursintheinternodessimul-taneouslywiththeirelongation,andisenhancedbyethylene(Steffensetal.2011).Growthofadventitiousroots,whichisprecededbydeathofepidermalcellsthatcovertherootprimordia(MergemannandSauter2000;SteffensandSauter2005),isalsopromotedbyethylene(Steffensetal.2006).Recently,Hattorietal.(2009)identifiedtheKEL1SK1)andSNORKEL2SK2)genesresponsibleforinternodeelongationindeepwaterrice.Non-deepwaterrice(.,lowlandrice)intowhichSK1SK2hadbeenintroducedshowedinternodeelongationinthesamewayasdeepwaterrice,indicatingthatthegenesarekeyfactorsfortheescapestrategyofdeepwaterriceunderdeepwater-floodconditions.Becauseofspaceconsiderations,detailsofthefunctionofgeneshavenotbeenincludedinthisreview,buttheyhavebeensummarizedbyNagaietal.(2010)andHattorietal.Strategiesofadaptationtowaterlogging:(1)aerenchymaFormationofaerenchymaisessentialtothesurvivalandfunctioningofplantssubjectedtowaterlogging.Theaer-enchymacontributestoOsupplyfromshootstorootsandtotheventilationofgases(.COandmethane)fromrootstoshoots(Colmer2003a;Evans2003).Theventilationofgasesinaerenchymaismainlycausedbygasdiffusioninrice,butinsomewetlandspecieswiththrough-flowpathwayse.g.alongrhizomes),gasflowscanalsooccurbyhumidity-andVenturi-inducedpres-sureflows(e.gPhragmitesaustralis;Armstrongetal.1996).TheaerenchymamayprovideaphotosyntheticbenefitbyconcentratingCOfromrootrespirationandtransportingittotheleafintercellularspacesinsomewetlandplantspecies(ConstableandLongstreth1994).Ingeneral,aerenchymacanbeclassifiedintotwotypes:(i)schizogenousaerenchyma,whichdevelopsbycellseparationanddifferentialcellexpansionthatcre-atesspacesbetweencells,inRumexpalustris;and(ii)lysigenousaerenchyma,formedbythedeathandsubsequentlysisofsomecells,e.g.,inrice(Jacksonetal1985a),maize(Drewetal1981),wheat(TroughtandDrew1980),andbarley(ArikadoandAdachi1955).Intheroots,lysigenousaerenchymaformsinthecortex(Figure2),whereasinthestemsitcanforminthecor-texandpithcavity(Armstrong1979).Insomewetlandplantspeciessuchasrice,rootlysi-genousaerenchymaisconstitutivelyformedunderdrainedsoilconditions(.,aerobicconditions;Jacksonetal.1985a),anditsformationcanbefurtherenhancedduringsoilwaterlogging(Figure2;Colmeretal2006;JustinandArmstrong1991;Shionoetal.2011;VisserandBögemann2006).Inrice,aerenchymaformationisinitiatedattheapicalpartsoftherootsandgraduallyexpandstothebasalpartsoftheroots(Figure2;Ranathungeetal.2003).Fullydevelopedaerenchyma,whichisobservedonthebasalpartsofroots,separatestheinnerstelefromtheoutercelllayers(.,sclerench-yma,hypodermis/exodermis,andepidermis)oftheroots(Figure2;ArmstrongandArmstrong1994;KozelaandRegan2003;Ranathungeetal.2003).Strandsofremain-ingcellsandcellwallsseparategasspacesinthecortex,formingradialbridges,whichareimportantforthestructuralintegrityoftherootandforbothapoplasticandsymplastictransportofnutrients(Figure2;DrewandFourcy1986).Duringaerenchymaformationinriceroot,celldeathbeginsatthecellsinthemid-cortexandthenspreadsoutradiallytothesurroundingcorticalcells(Kawaietal.1998).Theepidermis,hypodermis/exodermis,endodermis,andsteleareunaffected,indicat-ingthatlysigenousaerenchymaformationoccursbyclo-selycontrolledmechanisms(Yamauchietal.2011).Bycontrast,innon-wetlandplantspeciessuchasmaize,wheat,andbarley,rootlysigenousaerenchymadoesnotformunderwell-drainedsoilconditions,butitmaybeinducedbypooraeration(McDonaldetal.2001;McPherson1939;TroughtandDrew1980).Gen-erally,inductionofaerenchymaformationtakes24-72hoursafterthestartofanaerobictreatment(Haqueetal.2010;Maliketal.2003;Rajhietal.2011).Inaddition,aerenchymaformationislessextensiveinnon-wetlandplantspeciesthaninwetlandplantspecies(Armstrong1979;ColmerandVoesenek2009).Thus,non-wetlandplantsarelesstoleranttowaterloggingthanwetlandplants,suchasrice.SignalingoflysigenousaerenchymaformationInriceandmaize,ethyleneisimplicatedintheinduc-tionoflysigenousaerenchymaformation(Drewetal.2000;JacksonandArmstrong1999;JustinandArm-strong1991;Konings1982;Shionoetal.2008).Ricerootsformlysigenousaerenchymaconstitutivelyevenunderwell-aeratedconditions(Jacksonetal.1985a;Jus-tinandArmstrong1991;Shionoetal.2011).Lysigenousaerenchymaformationinricerootscanbefurtherincreasedbyethylenetreatmentunderaeratedcondi-tionsanddecreasedbytreatmentwithanethyleneper-ceptioninhibitor(e.g.silverions)understagnant(0.1%agar)deoxygenatedconditions(whichmimicshypoxic/anoxicconditionsinwaterloggedsoils;Wiengweeraetal.1997),althoughcultivars(e.g.Norin36andRB3)etalhttp://www.thericejournal.com/content/5/1/2Page5of14 differintheirsensitivitytoethylene(JustinandArm-strong1991).JustinandArmstrong(1991)alsopointedoutthatconsiderationofthelengthsoftherootssampledwasimportantforcomparisonofaerenchymaformationsbetweentreatments.Morerecently,ethylenehasbeenshowntoincreaserootaerenchymaformationinanotherricecultivar,Calrose(Colmeretal.2006).Inmaizeroots,ethylenebiosynthesisisstimulatedbyenhancingtheactivityof1-aminocyclopropene-1-car-boxylicacid(ACC)synthaseandACCoxidaseatthebeginningofaerenchymaformation(Heetal.1996a).Thus,treatmentofmaizerootswithinhibitorsofethy-lenebiosynthesis(.aminoethoxyvinylglycine,ami-nooxyaceticacid(AOA),andcobaltchloride)oractione.g.silverions)effectivelyblocksaerenchymaformationunderhypoxicconditions(Drewetal.1981;Jacksonetal.1985b;Konings1982).Theseobservationsindicatethatethyleneworksasatriggerfortheinductionofaer-enchymaformationinriceandmaize.Ontheotherhand,intherootsofanotherwetlandspecies(),lysigenousaerenchymaformationisnotaffectedbytreatmentwithethyleneortheethyleneperceptioninhibitor1-methylcyclopropene(1-MCP;VisserandBögemann2006).Todeterminewhetherethyleneis(orisnot)acommonfactorinregulationoftheinductionoflysigenousaerenchymaformationintherootsofwet-landspecies,theeffectofethyleneonaerenchymafor-mationshouldbestudiedbytreatmentofawiderrangeofwetlandspecieswhileconsideringthepossibleinflu-encesofrootlengthandtissueagealongtherootaxes(JustinandArmstrong1991;VisserandBögemannEthylene-responsivelysigenousaerenchymaformationisaffectedbychemicalinhibitorsorstimulatorsofpro-grammedcelldeath(PCD)andothersignalingpathways.HeterotrimericG-protein-,phospholipaseC(PLC)-,ino-sitol1,4,5-trisphosphate(IP3)-,orCa-dependentsig-nalingpathwaysareinvolvedintheprocessoflysigenousaerenchymaformationinmaizeroots(Drewetal.2000;Heetal.1996b).Ithasbeenproposedthat,underoxygendeprivation,Caisreleasedfrommitochondriaintothecytosol(Subbaiahetal.1994);theelevatedcytosolicCamayprovokesubsequentactivationofkinasesandphos-phatasesduringaerenchymaformation(SubbaiahandSachs2003).Lysigenousaerenchymaformationisalsoinducedbyokadaicacid,aninhibitorofproteinphospha-tases,andisrepressedbyK252a,aninhibitorofproteinkinases(Drewetal.2000;Heetal.1996b).Thesecal-cium-dependentsignalingsmayresultinactivationofexpressionofthegenesresponsibleforaerenchymafor-mation(Drewetal.2000;SubbaiahandSachs2003).PCDisatightlyregulatedpathwaythataccompaniestheactivationofspecificbiochemicalpathways(Greenberg1996).PCDisdistinguishedfromnecrosis,whichoccursbyuncontrolled,accidentalcelldeathwithoutactivationofsignalingpathways(Drewetal.2000;Gunawardenaetal.2001a).Celldeathduringlysigenousaerenchymaformationissimilartoapoptosisinanimalcells,whichincludesDNAfragmentation,nuclearcondensation,andnuclearandplasmamembraneblebbing(Drewetal.Oneofthefinalstepsinlysigenousaerenchymafor-mationisdegradationofthecellwall,whichismediatedbycell-wallmodificationordegradationenzymes.Changesinesterifiedandde-esterifiedpectinsinthecellwallofthemaizecortexareobservedduringcelldeath(Gunawardenaetal.2001b).Subsequently,thecellwallisdegradedbythecombinedactionofpectolytic,xyla-nolytic,andcellulosolyticenzymes(Evans2003;JacksonandArmstrong1999).Theactivityofcellulase(CEL)isincreasedbytreatmentwithethylene,okadaicacids,andreagentsthatincreaseintracellularCalevels,whereasCELactivityisdecreasedbytreatmentwithK252aandinhibitorsofCaincrease(Heetal.1996b).Inmaizeroots,expressionofageneencodingxyloglucanendo-transglycosylase(XET)isinducedbywaterlogging,anditsinductionisinhibitedbytreatmentwiththeethylenebiosynthesisinhibitorAOA(SaabandSachs1996).TreatmentwithAOApreventstheformationoflysigen-ousaerenchyma,suggestingthatinductionofXETpro-ductioninresponsetoethyleneisinvolvedinaerenchymaformationthroughcell-wallmodification(SaabandSachs1996).Onthebasisofthisevidence,Evans(2003)proposedthatcelldeathintherootcortexduringlysigenousaer-enchymaformationcanbeclassifiedintofivesteps:(1)perceptionofhypoxiaandinitiationofethylenebio-synthesis;(2)perceptionofethylenesignalingbycellsofthemid-cortex;(3)initiationofcelldeathwithlossofionstothesurroundingenvironment,plasmamembraneinvagination,andformationofsmallvesicles;(4)chro-matincondensation,increasedactivityofcell-wallhydrolyticenzymes,andthesurroundingoforganellesbymembranes;and(5)cell-walldegradation,celllysis,andabsorptionofthecellcontentsandwaterbythesurroundingcells.GenesassociatedwithlysigenousaerenchymaformationSofar,studiesoflysigenousaerenchymaformationhavebeendonemainlyfromaphysiologicalperspective.However,thegenesinvolvedinlysigenousaerenchymaformationintheroothavenotbeenidentified.Recently,Rajhietal.(2011)identifiedgenesassociatedwithlysi-genousaerenchymaformationinmaizerootsbyusingamicroarrayanalysiscombinedwithlasermicrodissec-tion.TheyfoundthatCasignaling-relatedgenesencodingCalcineurinB-likeproteinandCalmodulin-likeproteinwereupregulatedunderwaterloggedcondi-tions,andtheirexpressionlevelswerehigherintheetalhttp://www.thericejournal.com/content/5/1/2Page6of14 corticalcellsthaninthestelarcells.Waterloggingalso inducestheexpressionofcell-wallmodification-related genes( e.g . XET and CEL ).Inductionoftheexpressions ofcalciumsignaling-andcellwallmodification-related genesissuppressedbytreatmentwith1-MCP.These resultssupportthepreviouslyproposedmechanismof ethylene-mediatedlysigenousaerenchymaformation (JacksonandArmstrong1999;Drewetal.2000;Evans 2003). Ageneencodingrespiratoryburstoxidasehomolog (RBOH;aplanthomologofgp91 phox inmammalian NADPHoxidase),whichhasaroleinROSgeneration (TorresandDangl2005),isupregulatedstronglyinthe corticalcellsandslightlyles sstronglyinthestelarcells andtheoutercelllayersofmaizeroots(Figure3;Rajhi etal.2011;Yamauchietal.2011).Ontheotherhand,a geneencodingmetallothionein(MT),whichhasarole inROSscavenging(Wongetal.2004,Xueetal.2009), isconstitutivelyexpressedinallofthecorticalcells,the stelarcells,andtheoutercelllayersofmaizeroots underaerobicconditions.Bycontrast,underwater- loggedconditionsthe MT geneishardlyexpressedatall inthecorticalcellsbutisst illhighlyexpressedinthe stelarcellsandtheoutercelllayers(Figure3;Rajhi etal.2011;Yamauchietal.2011).Theseresultssuggest thatH 2 O 2 andotherROSarescavengedbytheconsti- tutivelyexpressedMTinstelarcellsandtheoutercell layers,whereasinthecorticalcellsdecreased MT expressionpreventsROSscavenging,therebyleadingto greaterROSaccumulation,w hichactivatesthesubse- quentprocessesofPCD( i.e .,lysigenousaerenchymafor- mation)inmaizeroots(Figure3).Interestingly, upregulationof RBOH anddownregulationof MT also occurinricerootsduringinducibleaerenchymaforma- tionunderanaerobicconditions(YamauchiandNaka- zono,unpublished).Simila rly,ethylene-promoted Figure3 Modeloflysigenousaerenchymaformation .Waterloggingpromotesbiosynthesisandaccumulationofethylene,followedby inductionof RBOH expression.RBOHactivityleadstoproductionandaccumulationofO 2 ·- attheapoplast.TheO 2 ·- isspontaneouslyor enzymaticallyconvertedtoH 2 O 2 ,whichcaneasilydiffuseintothecytosolthroughtheplasmamembrane.Underwaterloggedconditions,inthe cytosolofstelarcellsandcellsintheoutercelllayers,H 2 O 2 andotherROSarescavengedbyconstitutively-expressedMT.Bycontrast,inthe corticalcells,thedecreased MT expressionpreventsROSscavenging,therebyleadingtogreaterROSaccumulation,whichactivatesthe subsequentprocessesofprogrammedcelldeathandlysisofthecorticalcells( i.e .,lysigenousaerenchymaformation).Underaerobicconditions, the RBOH geneisexpressedatlowlevelandthe MT geneisconstitutivelyexpressedinthecorticalcells.WL,waterloggedconditions;Aer, aerobicconditions;OCL,outercelllayers;ap,apoplast;cs,cytosol. Nishiuchi etal . Rice 2012, 5 :2 http://www.thericejournal.com/content/5/1/2 Page7of14 downregulationofexpressionofageneencodingMT2benhancestheaccumulationofHproducedbyNADPHoxidaseandthusinducesepidermalcelldeathinrice(SteffensandSauter2009)oraerenchymaforma-tioninriceinternodes(Steffensetal.2011).Theseresultssuggestthatdownregulationofgenesplaysanimportantroleintissue-specificorcelltype-specificPCDinriceandmaize.Strategiesofadaptationtowaterlogging:(2)formationofabarriertoROLOxygenmoleculesdiffusinglongitudinallythroughaer-enchymatowardtheroottipsmaybeeitherconsumedbyrespirationordiffusedradiallytotherhizosphere(Armstrong1979;Colmer2003a).ROL,thefluxofOfromtheaerenchymatothesoil,isdeterminedbytheconcentrationgradient,thephysicalresistancetoOfusioninaradialdirection,andconsumptionofOcellsalongthisradialdiffusionpath(Armstrong1979;Colmer2003a).ROLaeratestherhizosphereandisthereforeconsideredtobeofadaptivesignificanceinplantsgrowinginwaterloggedsoil(Armstrong1979;Blossfeldetal.2011;Colmer2003a;Neubaueretal.2007).However,ROLreducesthesupplyofOtotherootapexandtherebycausesadecreaseinrootlengthinanaerobicsoil(Armstrong1979;Colmer2003a;Colmeretal.1998;JacksonandArmstrong1999).Therootsofmanywetlandspecies,includingrice,havetheabilitytopreventROLtotherhizospherebyformingabarrierintherootperipheralcelllayersexter-iortotheaerenchyma(Figure2;McDonaldetal.2002;Visseretal.2000).Thisadaptivetraitenhanceslongitu-dinalOdiffusionthroughtheaerenchymatowardstherootapexbydiminishinglossesofOtotherhizo-sphere,therebyenablingtherootstoelongateintoanae-robicsubstrates(Armstrong1979).TherootsofsomewetlandspecieshaveconstitutivelypresentbarrierstoROL(e.gJ.effusus;Visseretal.2000),whereasinotherspeciessuchasriceandHordeummari-thebarriertoROLisinducedduringgrowthunderanaerobicconditions(Colmer2003b;Colmeretal.1998;Garthwaiteetal.2003;Kotulaetal.2009a;Shionoetal.2011).AnalysisofthespatialpatternsofROLalongricerootshasrevealedthatOleakagefromthebasalregionsofthelongrootsunderstagnantconditionsisquitelow(Figure4),buttherearelargeamountsofOfluxfromtherootapexes(Figure4)andnumerousshortlateralrootsthatappearnearthebaseofthemainaxes(Armstrong1971a;Armstrongetal.1996,Colmer2003b).ThebarriertoROL,togetherwithreoxidationoftherhizospherearoundtheroottipsandlateralroots,enableselongationoftherootsintotheanoxicenviron-mentandrestrictstheentryoftoxiccompoundsfromhighlyreducedsoils(Armstrong1979;Armstrongetal.1996;ColmerandVoesenek2009).DespitetheimportanceofthebarriertoROL,therearefewdataavailableontheOpermeabilitycoeffi-cientacrossthecelllayersexteriortotheaerenchyma.Recently,KotulaandSteudle(2009)developedagasperfusiontechniquetomeasuretheOpermeabilityoftheoutercelllayersoftherootsandappliedthetech-niquetoricegrownundereitheraeratedorstagnantdeoxygenatedconditions.Plantsgrowninthestagnant-deficientconditionsoftheexternalgrowthmediumshowedmuchlowerOpermeabilitythanplantsgrowninanaeratedsolution.ThevariationinOmeability,eitherbyblockingapoplasticporesorkillinglivingtissues,indicatedthatphysicalresistanceisthedominatingfactorimpedingOlossfromriceroots,althoughrespiratoryOconsumptionmaycontributetolowratesofROL(Kotulaetal.2009b).Strongphy-sicalimpedancetoradialOdiffusioninricerootshasalreadybeenshownbyArmstrong(1971b).Inthisstudy,abarriertoROLwasevidentintheadventitiousrootsofrice,evenwhenrespirationwasinhibitedbycoolingtherootmediumto3°C.SimilarfindingshavebeenreportedbyArmstrongetal.(2000)andGarthwaiteetal.(2008)intherootsofP.australisH.marinum,respectively.InH.marinumthephysicalbarrierappearedtoaccountfor84%ofthereductioninOlossandrespiratoryactivityfor16%(Garthwaiteetal.2008).AnatomicalandchemicalnatureofthebarriertoROLItseemsthatsuberizationand/orlignificationofthecellwallsintherootlayersexteriortotheaerenchymaisimplicatedinthedevelopmentofatightbarriertoROL(Figure5;Armstrongetal.2000;Garthwaiteetal.2008;Kotulaetal.2009a;Soukupetal.2007).Inarecentstudyinrice,ratesofROLfromtherootsofplantsgrownunderaeratedordeoxygenatedcondi-tionswerequantified,andtheresultswerecombinedwithparallelhistochemistryandanalyticalchemistry(Kotulaetal.2009a).DeoxygenatedconditionsinducedtheearlydevelopmentofCasparianbandsandsuberinlamellaeintheexodermisandofligninindenselypacked,uniseriatesclerenchymalcellslocatedinteriortotheexodermis(Figure5).Inagreementwiththeresultsofthehistochemicalanalyses,quantitativeana-lysesusinggaschromatographyandmassspectrometryhaveshownthatthelevelsofsuberin(botharomaticandaliphaticdomains),aswellaslignin,releasedfromtheouterrootsleevesareseveraltimesgreaterinplantsgrowninoxygen-deprivedmediacomparedwithplantsgrowninaeratedsolution(Kotulaetal.2009a;Ranathungeetal.2011).Independentofthegrowthconditions,thetotalamountsofsuberinandligninetalhttp://www.thericejournal.com/content/5/1/2Page8of14 Figure4 RatesofROLalongintactadventitiousrootsofricegrownunderaeratedorstagnantdeoxygenatedconditions .The experimentwasconductedfollowingthemethodsofColmeretal.(1998)withminormodifications.Rice(cv.Nipponbare)wasgrownina28°C, continuallylitgrowthchamber.Nine-day-oldplantsweregrowninaeratednutrientsolution(Aeratedconditions)orstagnantdeoxygenatedagar solution(Stagnantconditions)for14or15daysbeforemeasurementsweretakenalongadventitiousroots(80-130mmlong).ROL measurementswereperformedat27-29°Cunderlightconditionsusingcylindricalroot-sleevingO 2 electrode.Valuesaremeans( n =3)±SD. Figure5 Stainingforsuberinandligninintheoutercelllayersofricerootsgrownunderaeratedorstagnantdeoxygenated conditions .Nine-day-oldriceplantsweregrowninaeratednutrientsolution(Aeratedconditions;a,c)orstagnantdeoxygenatedagarsolution (Stagnantconditions;b,d)for14days.Basalparts(10-20mmregionsfromtheroot-shootjunction)oftheadventitiousrootswereslicedinto 80-  m-thicksections,andwereincubatedinlacticacidsaturatedwithchloralhydrateat70°Cfor1hforclearing.Forsuberinstaining,sections werestainedwithFluorolYellow088atroomtemperaturefor1handobservedunderUV-lightwithepifluorescencemicroscopy(a,b).For ligninstaining,sectionswerestainedfor5minwithphloroglucinol/hydrochlorideatroomtemperaturetovisualizeligninwithcinnamyl aldehydegroups(c,d).Whitearrowindicatesyellow-greenfluorescenceofsuberinathypodermis/exodermisandblackarrowindicatesorange- redpigmentationofstainedligninatthesclerenchyma.Ep,epidermis;Ex,exodermis;Sc,sclerenchyma;Co,cortex.Scalebars=50  m. Nishiuchi etal . Rice 2012, 5 :2 http://www.thericejournal.com/content/5/1/2 Page9of14 increasealongtherootstowardsthebasalzones(Kotulaetal.2009a;Ranathungeetal.2011).AlthoughthesestudieshaveshownadirectrelationshipbetweenchangesinOpermeabilityandtheformationofapo-plasticbarriers,theprecisenatureoftheROLbarrierremainsunclear.Namely,therelativecontributionsofsuberinandlignininlimitingROLarenotwellknown;potentially,oneofthetwomightnotbeneededforformationofthebarrier(Kotulaetal.2009a).FunctionoflignininpreventingROLmaynotbeappliedtoallplantspecies.InAmazoniantreespecies(DeSimoneetal.2003),aswellasinP.australis(Soukupetal.2007),resistancetoROLiscorrelatedonlywiththedepositionofsuberin,butnotlignin.HistochemicalsolutepenetrationstudiesusingperiodicacidhavefurtherconfirmedthatintherootsofP.australissuberizedexodermisnotthelignifiedsclerenchyma,whichiseasilypenetratedbyperiodicacidistheradialpermeationbarrier(Soukupetal.2007).Shionoetal.(2011)foundthatsuberinincreasedpriortochangesinlignininrice,suggestingthatdepositionofsuberinismoreimportantfortheROLbarrierformationthanlignin.However,thesuberinandlignindepositswerenotevidentintherootswithinthefirst2daysofstag-nanttreatment,duringwhichtimebarrierinductionwasalreadycomplete.Inlongadventitiousroots(105-130mminlength),barriertoROLwaswellformedwithin24hoursunderstagnantdeoxygenatedcondi-tionsanddarkgranulesofhigh-densitymaterialwereobservedbytransmissionelectronmicroscopyinthespacesbetweentheexodermalcellsandalsobetweenthesclerenchymacellsinrootsat48hoursafterthestagnanttreatment(Shionoetal.2011).Thisresultsuggeststhatthesemicrostructuralchangesalsocon-tributetothediminutionofROLinthericeroot.TheprecisenatureofthebarriertoROLstillneedstobemoreclearlyelucidated(seebelow).ThebarriertoROLvs.nutrientandwateruptakeAlthoughthebarriertoROLhelpswetlandplantstotoleratewaterlogging,itmayalsoreducewaterandnutrientuptake(Armstrong1979;Koncalová1990).Forexample,theratesofNHandNOnetuptakeinthebasalregionofricerootswereabout30%ofthoseinmaize,evenwhentheplantsweregrowninaeratedsolution(ColmerandBloom1998)andthepermeabilityofrootstowaterissubstantiallysmallerinricethaninmaize(Hoseetal.2001;Miyamotoetal.2001).How-ever,arecentstudydemonstratedthattheearlyforma-tionofapoplasticbarriersintheendodermisandexodermisofricerootsinstagnantsolutionsdoesnotsignificantlyaffecthydraulicconductivity(Ranathungeetal.2011).Thisisinagreementwiththeearlierfind-ingsofGarthwaiteetal.(2006)instagnantlygrownH.marinum,inwhichinductionofthebarriertoROLdidnotimpedethewaterpermeabilityoftheroots.Incontrasttowaterflow,stagnantgrowthconditionsmarkedlyreducethepermeabilityofthericerootstooxygenandtoionssuchasFe,Cu,andNaCl(Arm-strongandArmstrong2005;Kotulaetal.2009b;Krish-namurthyetal.2009;Ranathungeetal.2011).Theextrasuberinandlignindepositedintherootsinstagnantsolutionsmayeffectivelyclogthewallpores,makingabarriersufficienttoblockthepassageofoxygenandions,butnotwater,whichismainlybulkandviscousinnature(Kotulaetal.2009b;Ranathungeetal.2004,2011).Itappearsthatricerootslivinginanaerobicmediacanretainoxygenintheaerenchymawhiletakingupsufficientwater(Kotulaetal.2009b;Ranathungeetal.2011).Thisisachievedbecauseofdifferencesinthetransportmechanismsofoxygenandwater.Whenmeasuredwithheavywater,thediffusionalwaterperme-abilityoftheouterpartofthericerootwasanorderofmagnitudesmallerthanthatofoxygen(Ranathungeetal.2004;Kotulaetal.2009b;KotulaandSteudle2009).However,diffusionalwaterpermeabilitywassmallerthanthebulkwaterpermeabilitybyafactorof600-1400.Thelatterparameteristheonethatisimportantduringwateruptake(SteudleandPeterson1998).ThissuggeststhatricehasevolvedanoptimumbalancebetweenwateruptakeandOloss.Watermovespredo-minantlythroughtheporousapoplasticpathwaybyusingahydrostaticpressuregradient(Ranathungeetal.2004),whereasthemovementofOoughttobeappre-ciableoverthewholeinter-cellinterfaceandisdiffu-sionalinnature(Kotulaetal.2009b;Ranathungeetal.FormationofthebarriertoROLTherearemajoruncertaintiesregardingthesignalsinvolvedintheformationofaninduciblebarriertoROL.Colmeretal.(2006)showedthatethylene,whichpromotestheinductionoflysigenousaerenchymafor-mation(JustinandArmstrong,1991),didnotinduceatightbarriertoROLinriceroots,indicatingthatthesetworootaerationtraits,whichareconsideredtoactsynergisticallytoenhanceOdiffusiontotherootapex,appeartobedifferentiallyregulated.Bycontrast,asig-nificantdeclineinROL,whichiscorrelatedwithsuberi-zationandlignificationoftheoutercelllayers,isobservedaftertheexposureofricerootstocarboxylicacids(.aceticacid,propanoicacid,butyricacid,andcaproicacid;ArmstrongandArmstrong2001)andsulfide(intheformofphytotoxinsproducedbymicro-organismsinwaterloggedsoils;ArmstrongandArm-strong2005).SimilareffectsarefoundwhencarboxylicacidsareappliedtotherootsofH.marinumColmer,andNakazono,unpublished).However,thereductioninROLfromtherootsofriceandH.mari-exposedtotoxiclevelsofcarboxylicacidsandetalhttp://www.thericejournal.com/content/5/1/2Page10of14 sulfidewasassociatedwithinjury,ratherthanwithaspecificsignalforinductionofthebarriertoROL(Arm-strongandArmstrong2001;Colmer2003a).Recently,Flecketal.(2011)showedthatSinutritionincreasedsuberizationandlignificationofriceroots,whichwasaccompaniedbysilicicacid-triggeredtran-scriptionofgenesassociatedwithsuberinandligninbiosynthesis.Asaconsequenceofsuberizationandlig-nificationoftheouterrootcelllayers,theoxidationpowerofthericerootswasreduced.Althoughitissug-gestedbyFlecketal.(2011)thatalteredlevelsofsilicicacidplayaroleinpromotingthebiosynthesisofsuberinandlignin,thesignalinvolvedininducibleROLbarrierformationremainsunclear.Althoughgreatprogresshasbeenmadeinourunder-standingofthemechanismsinvolvedinadaptationtosubmergenceorwaterlogging,therearestillgapsinourknowledge,mainlyinregardtothesignalingpathwaysandmolecularprocesses.ThegeneticregulationoftheformationoflysigenousaerenchymaandthebarriertoROLremainstobedetermined.Recently,Nakazonoandhiscolleagues(Rajhietal.2011;Shiono,Yamazaki,andNakazono,unpublished)havebeeninvestigatingtheexpressionsofgenesassociatedwiththeformationofinduciblelysigenousaerenchymaandthebarriertoROLbyusinglasermicrodissection-mediatedmicroarrayana-lysisofthecortexinmaizerootsandtheoutercelllayersinriceroots,respectively,underanaerobiccondi-tions.Thisapproachshouldhelptoidentifyimportantgenesinvolvedintheformationofthesetwostructures.FurtherinsightsintothenatureofthebarriertoROLandthemolecularmechanismofinduciblebarrierfor-mationcouldbeachievedfromthecharacterizationofsuberinorligninformation-affectedricemutantsincomparisonwiththerespectivewildtypes(Ranathungeetal.2011).ConclusionsThisreviewsummarizeswhatisknownaboutthephy-siologicalandmolecularmechanismsusedbyricetocopewithsubmergenceandwaterlogging.Forsubmer-gence,themechanismsincludeinternalaerationandgrowthcontrols(.,aquiescencestrategyoranescapestrategy).Forwaterlogging,themechanismsincludeformationofaerenchymaandabarriertoROL.Theseadaptivetraitsenablericeplantstohavehightolerancetosubmergenceorwaterloggingcom-paredwithotherdrylandcrops.Anadvantageofriceisthatitsgenomehasbeenfullysequencedandmanytoolsforstudyingitsmolecularbiologyandgeneticse.g.oligomicroarrays,mutantcollections,anddata-bases)havebeendeveloped.TheseresourcesshouldaccelerateourunderstandingofthemechanismsinvolvedinadaptationofricetoexcesswaterstressandshouldleadtotheirintroductionintodrylandAcknowledgementsTheauthorsthankDrs.T.D.ColmerandK.Shionoforstimulatingdiscussions.ThisworkwassupportedpartlybyagrantfromtheBio-orientedTechnologyResearchAdvancementInstitution(PromotionofBasicResearchActivitiesforInnovativeBiosciences),agrantfromtheMinistryofAgriculture,Forestry,andFisheriesofJapan(GenomicsforAgriculturalInnovation,IPG-0012),andgrants-in-aidfromtheMinistryofEducation,Culture,Sports,Science,andTechnologyofJapan.LKisgratefultotheJapaneseSocietyforthePromotionofScienceforthepostdoctoralfellowship.Alloftheauthorscontributedequallytothedraftingandrevisingofthispaperandhavereadandapprovedthefinalmanuscript.CompetinginterestsTheauthorsdeclarethattheyhavenocompetinginterests.Received:21November2011Published:27February2012ArikadoH,AdachiY(1955)Anatomicalandecologicalresponsesofbarleyandsomeforagecropstothefloodingtreatment.BulletinFacultyAgriculture,MieUniversityTsuMie11:1ArmstrongJ,ArmstrongW(1994)Chlorophylldevelopmentinmaturelysigenousandschizogenousrootaerenchymaprovidesevidenceofcontinuingcorticalcellviability.NewPhytologist126:493ArmstrongJ,ArmstrongW(2001)Riceand:effectsoforganicacidsongrowth,rootpermeability,andradialoxygenlosstotherhizosphere.AmericanJournalofBotany88:1359ArmstrongJ,ArmstrongW(2005)Rice:sulfide-inducedbarrierstorootradialoxygenloss,Feandwateruptake,andlateralrootemergence.AnnalsofBotany96:625ArmstrongJ,ArmstrongW,BeckettPM,HalderJE,LytheS,HoltR,SinclairA(1996)Pathwaysofaerationandthemechanismsandbeneficialeffectsofhumidity-andVenturi-inducedconvectionsinPhragmitesaustralis(Cav.)TrinexSteud.AquaticBotany54:177ArmstrongW(1971a)Radialoxygenlossesfromintactricerootsasaffectedbydistancefromtheapex,respirationandwaterlogging.PhysiologiaPlantarumArmstrongW(1971b)Oxygendiffusionfromtherootsofricegrownundernon-waterloggedconditions.PhysiologiaPlantarum24:242ArmstrongW(1979)Aerationinhigherplants.AdvancesinBotanicalResearchArmstrongW,CousinsD,ArmstrongJ,TurnerDW,BeckettPM(2000)Oxygendistributioninwetlandplantrootsandpermeabilitybarrierstogas-exchangewiththerhizosphere:amicroelectrodeandmodellingstudywith.AnnalsofBotany86:687ArmstrongW,DrewMC(2002)Rootgrowthandmetabolismunderoxygendeficiency.In:WaiselYetal(ed)PlantRoots:TheHiddenHalf,3rdedn.NewYork&Baselpp729Bailey-SerresJ,FukaoT,RonaldP,IsmailA,HeuerS,MackillD(2010)Submergencetolerantrice:sjourneyfromlandracetomoderncultivar.Rice3:138Bailey-SerresJ,VoesenekLACJ(2008)Floodingstress:acclimationsandgeneticdiversity.AnnualReviewofPlantBiology59:313BlossfeldS,GansertD,ThieleB,KuhnAJ,LöschR(2011)Thedynamicsofoxygenconcentration,pHvalue,andorganicacidsintherhizosphereofSoilBiologyandBiochemistry43:1186CatlingD(1992)Riceindeepwater.London:MacMillanPressChoHT,KendeH(1997a)Expansinsindeepwaterriceinternodes.PlantPhysiology113:1137ChoHT,KendeH(1997b)Expansinsandinternodalgrowthofdeepwaterrice.PlantPhysiology113:1145etalhttp://www.thericejournal.com/content/5/1/2Page11of14 ChoHT,KendeH(1997c)Expressionofexpansingenesiscorrelatedwithgrowthindeepwaterrice.PlantCell9:1661ColmerTD(2003a)Long-distancetransportofgasesinplants:aperspectiveoninternalaerationandradialoxygenlossfromroots.Plant,CellandEnvironment26:17ColmerTD(2003b)Aerenchymaandaninduciblebarriertoradialoxygenlossfacilitaterootaerationinupland,paddyanddeep-waterrice(OryzasativaAnnalsofBotany91:301ColmerTD,BloomAJ(1998)AcomparisonofNHandNOnetfluxesalongrootsofriceandmaize.Plant,CellandEnvironment21:240ColmerTD,CoxMCH,VoesenekLACJ(2006)Rootaerationinrice(Oryzasativaevaluationofoxygen,carbondioxide,andethyleneaspossibleregulatorsofrootacclimatizations.NewPhytologist170:767ColmerTD,FlowersTJ(2008)Floodingtoleranceinhalophytes.NewPhytologistColmerTD,GibberdMR,WiengweeraA,TinhTK(1998)Thebarriertoradialoxygenlossfromrootsofrice(OryzasativaL.)isinducedbygrowthinstagnantsolution.JournalofExperimentalBotany49:1431ColmerTD,PedersenO(2008a)Oxygendynamicsinsubmergedrice().NewPhytologist178:326ColmerTD,PedersenO(2008b)Underwaterphotosynthesisandrespirationinleavesofsubmergedwetlandplants:gasfilmsimproveCOandOexchange.NewPhytologist177:918ColmerTD,VoesenekLACJ(2009)Floodingtolerance:suitesofplanttraitsinvariableenvironments.FunctionalPlantBiology36:665ConstableJVH,LongstrethDJ(1994)AerenchymacarbondioxidecanbeassimilatedinTyphalatifoliaL.leaves.PlantPhysiology106:1065DeSimoneO,HaaseK,MüllerE,JunkWJ,HartmannK,SchreiberL,SchmidtW(2003)ApoplasmicbarriersandoxygentransportpropertiesofhypodermalcellwallsinrootsfromfourAmazoniantreespecies.PlantPhysiologyDrewMC,FourcyA(1986)RadialmovementofcationsacrossaerenchymatousrootsofZeamaysmeasuredbyelectronprobeX-raymicroanalysis.JournalofExperimentalBotany37:823DrewMC,JacksonMB,GiffardSC,CampbellR(1981)Inhibitionbysilverionsofgasspace(aerenchyma)formationinadventitiousrootsofZeamayssubjectedtoexogenousethyleneortooxygendeficiency.PlantaDrewMC,HeCJ,MorganPW(2000)Programmedcelldeathandaerenchymaformationinroots.TrendsinPlantScience5:123DrewMC,LynchJM(1980)Soilanaerobiosis,microorganisms,androotfunction.AnnualReviewofPhytopathology18:37EvansDE(2003)Aerenchymaformation.NewPhytologist161:35FleckAT,NyeT,RepenningC,StahlF,ZahnM,SchenkMK(2011)Siliconenhancessuberizationandlignificationinrootsofrice(Oryzasativa).JournalofExperimentalBotany62:2001FukaoT,Bailey-SerresJ(2008)SubmergencetoleranceconferredbymediatedbySLR1andSLRL1restrictionofgibberellinresponsesinrice.ProceedingsoftheNationalAcademyofSciencesUSA105:16814FukaoT,XuK,RonaldPC,Bailey-SerresJ(2006)Avariableclusterofethyleneresponsefactor-likegenesregulatesmetabolicanddevelopmentalacclimationresponsestosubmergenceinrice.PlantCell18:2021FukaoT,YeungE,Bailey-SerresJ(2011)ThesubmergencetoleranceregulatorSUB1Amediatescrosstalkbetweensubmergenceanddroughttoleranceinrice.PlantCell23:412GarthwaiteAJ,ArmstrongW,ColmerTD(2008)AssessmentofOacrossthebarriertoradialOlossinadventitiousrootsof.NewPhytologist179:405GarthwaiteAJ,SteudleE,ColmerTD(2006)Wateruptakebyrootsof:formationofabarriertoradialOlossdoesnotaffectroothydraulicconductivity.JournalofExperimentalBotany57:655GarthwaiteAJ,vonBothmerR,ColmerTD(2003)Diversityinrootaerationtraitsassociatedwithwaterloggingtoleranceingenus.FunctionalPlantBiology30:875GreenbergJT(1996)Programmedcelldeath:awayoflifeforplants.ProceedingsoftheNationalAcademyofSciencesUSA93:12094GreenwayH,ArmstrongW,ColmerTD(2006)ConditionsleadingtohighCO5kPa)inwaterlogged-floodedsoilsandpossibleeffectsonrootgrowthandmetabolism.AnnalsofBotany98:9GreenwayH,SetterTL(1996)Isthereanaerobicmetabolisminsubmergedriceplants?aviewpoint.In:SinghVPetal(ed)Physiologyofstresstoleranceinrice:Proceedingsoftheinternationalconferenceonstressphysiologyofrice,30.IRRIGunawardenaAHLAN,PearceDM,JacksonMB,HawesCR,EvansDE(2001a)Characterisationofprogrammedcelldeathduringaerenchymaformationinducedbyethyleneorhypoxiainrootsofmaize(ZeamaysL.).PlantaGunawardenaAHLAN,PearceDME,JacksonMB,HawesCR,EvansDE(2001b)Rapidchangesincellwallpecticpolysaccharidesarecloselyassociatedwithearlystagesofaerenchymaformation,aspatiallylocalizedformofprogrammedcelldeathinrootsofmaize(ZeamaysL.)promotedbyethylene.Plant,CellandEnvironment24:1369HaqueME,AbeF,KawaguchiK(2010)Formationandextensionoflysigenousaerenchymainseminalrootcortexofspringwheat(TriticumaestivumBobwhitelineSH9826)seedlingsunderdifferentstrengthsofwaterlogging.PlantRoot4:31HattoriY,NagaiK,AshikariM(2011)Ricegrowthadaptingtodeepwater.CurrentOpinioninPlantBiology14:100HattoriY,NagaiK,FurukawaS,SongXJ,KawanoR,SakakibaraH,WuJ,MatsuokaT,YoshimuraA,KitanoH,MatsuokaM,MoriH,AshikariM(2009)Theethyleneresponsefactorsallowricetoadapttodeepwater.Nature460:1026HeCJ,FinlaysonSA,DrewMC,JordanWR,MorganPW(1996a)Ethylenebiosynthesisduringaerenchymaformationinrootsofmaizesubjectedtomechanicalimpedanceandhypoxia.PlantPhysiology112:1679HeCJ,MorganPW,DrewMC(1996b)Transductionofanethylenesignalisrequiredforcelldeathandlysisintherootcortexofmaizeduringaerenchymaformationinducedbyhypoxia.PlantPhysiology112:463HoseE,ClarksonDT,SteudleE,SchreiberL,HartungW(2001)Theexodermis:avariableapoplasticbarrier.JournalofExperimentalBotany52:2245JacksonMB,ArmstrongW(1999)Formationofaerenchymaandtheprocessesofplantventilationinrelationtosoilfloodingandsubmergence.PlantBiologyJacksonMB,FenningTM,JenkinsW(1985a)Aerenchyma(gas-space)formationinadventitiousrootsofrice(OryzasativaL.)isnotcontrolledbyethyleneorsmallpartialpressuresofoxygen.JournalofExperimentalBotanyJacksonMB,FenningTM,DrewMC,SakerLR(1985b)Stimulationofethyleneproductionandgas-space(aerenchyma)formationinadventitiousrootsofZeamaysL.bysmallpartialpressuresofoxygen.Planta165:486JacksonMB,RamPC(2003)Physiologicalandmolecularbasisofsusceptibilityandtoleranceofriceplantstocompletesubmergence.AnnalsofBotanyJustinSHFW,ArmstrongW(1991)Evidencefortheinvolvementofethaneinaerenchymaformationinadventitiousrootsofrice(OryzasativaL.).NewPhytologist118:49KawaiM,SamarajeewaPK,BarreroRA,NishiguchiM,UchimiyaH(1998)Cellulardissectionofthedegradationpatternofcorticalcelldeathduringaerenchymaformationofriceroots.Planta204:277KendeH,vanderKnaapE,ChoHT(1998)Deepwaterrice:amodelplanttostudystemelongation.PlantPhysiology118:1105KoncalováH(1990)Anatomicaladaptationstowaterlogginginrootsofwetlandgraminoids:limitationsanddrawbacks.AquaticBotany38:127KoningsH(1982)Ethylene-promotedformationofaerenchymainseedlingrootsZeamaysL.underaeratedandnon-aeratedconditions.PhysiologiaPlantarum54:119L,RanathungeK,SchreiberL,SteudleE(2009a)Functionalandchemicalcomparisonofapoplasticbarrierstoradialoxygenlossinrootsofrice(L.)growninaeratedordeoxygenatedsolution.JournalofExperimentalBotany60:2155KotulaL,RanathungeK,SteudleE(2009b)Apoplasticbarrierseffectivelyblockoxygenpermeabilityacrossoutercelllayersofricerootsunderdeoxygenatedconditions:rolesofapoplasticporesandofrespiration.NewPhytologist184:909KotulaL,SteudleE(2009)Measurementsofoxygenpermeabilitycoefficientsofrice(OryzasativaL.)rootsusinganewperfusiontechnique.JournalofExperimentalBotany60:567KozelaC,ReganS(2003)Howplantsmaketubes.TrendsinPlantScienceKrishnamurthyP,RanathungeK,FrankeR,PrakashHS,SchreiberL,MathewMK(2009)TheroleofrootapoplastictransportbarriersinsalttoleranceofriceOryzasativaL.).Planta230:119etalhttp://www.thericejournal.com/content/5/1/2Page12of14 LeeY,KendeH(2001)Expressionof-expansinsiscorrelatedwithinternodalelongationindeepwaterrice.PlantPhysiology127:645MalikAI,ColmerTD,LambersH,SchortemeyerLM(2003)AerenchymaformationandradialOlossalongadventitiousrootsofwheatwithonlytheapicalrootportionexposedtoOdeficiency.Plant,CellandEnvironmentMatsukuraC,KawaiM,ToyohukuK,BarreroRA,UchimiyaH,YamaguchiJ(2000)Transverseveindifferentiationassociatedwithgasspaceformationfateofthemiddlecelllayerinleafsheathdevelopmentofrice.AnnalsofBotanyMcDonaldMP,GalweyNW,ColmerTD(2001)Waterloggingtoleranceinthetribetriticeae:theadventitiousrootsofCritesionmarinumhavearelativelyhighporosityandabarriertoradialoxygenloss.Plant,CellandEnvironmentMcDonaldMP,GalweyNW,ColmerTD(2002)Similarityanddiversityinadventitiousrootanatomyasrelatedtorootaerationamongarangeofwetlandanddrylandgrassspecies.Plant,CellandEnvironment25:441McPhersonDC(1939)CorticalairspacesintherootsofZeamaysL.NewPhytologist38:190MergemannH,SauterM(2000)Ethyleneinducesepidermalcelldeathatthesiteofadventitiousrootemergenceinrice.PlantPhysiology124:609MétrauxJP,KendeH(1984)Thecellularbasisoftheelongationresponseinsubmergeddeep-waterrice.Planta160:73MiyamotoN,SteudleE,HirasawaT,LafitteR(2001)Hydraulicconductivityofriceroots.JournalofExperimentalBotany52:1835NagaiK,HattoriY,AshikariM(2010)Stuntorelongate?twooppositestrategiesbywhichriceadaptstofloods.JournalofPlantResearch123:303NeubauerSC,Toledo-DuránGE,EmersonD,MegonigalJP(2007)Returningtotheirroots:iron-oxidizingbacteriaenhanceshort-termplaqueformationinthewetland-plantrhizosphere.GeomicrobiologyJournal24:65PedersenO,RichSM,ColmerTD(2009)Survivingfloods:leafgasfilmsimproveandCOexchangerootaeration,andgrowthofcompletelysubmergedrice.PlantJournal58:147RajhiI,YamauchiT,TakahashiH,NishiuchiS,ShionoK,WatanabeR,MlikiA,NagamuraY,TsutsumiN,NishizawaNK,NakazonoM(2011)Identificationofgenesexpressedinmaizerootcorticalcellsduringlysigenousaerenchymaformationusinglasermicrodissectionandmicroarrayanalyses.NewPhytologist190:351RamPC,SinghAK,SinghBB,SinghVK,SinghHP,SetterTL,SinghVP,SinghRK(1999)EnvironmentalcharacterizationoffloodwaterineasternIndia:relevancetosubmergencetoleranceoflowlandrice.ExperimentalAgriculture35:141RanathungeK,SteudleE,LafitteR(2003)Controlofwateruptakebyrice(L.):roleoftheouterpartoftheroot.Planta217:193RanathungeK,KotulaL,SteudleE,LafitteR(2004)Waterpermeabilityandreflectioncoefficientoftheouterpartofyoungricerootsaredifferentlyaffectedbyclosureofwaterchannels(aquaporins)orblockageofapoplasticpores.JournalofExperimentalBotany55:433RanathungeK,LinJ,SteudleE,SchreiberL(2011)Stagnantdeoxygenatedgrowthenhancesrootsuberizationandlignifications,butdifferentiallyaffectswaterandNaClpermeabilitiesinrice(OryzasativaL.)roots.Plant,CellandEnvironment34:1223RaskinI,KendeH(1983)Howdoesdeepwaterricesolveitsaerationproblem.PlantPhysiology72:447SaabIN,SachsMM(1996)Aflooding-inducedxyloglucanendo-transglycosylasehomologinmaizeisresponsivetoethyleneandassociatedwithaerenchyma.PlantPhysiology112:385SauterM(2000)Riceindeepwater:howtotakeheedagainstaseaof.Naturwissensehaften87:289SauterM,SeagullRW,KendeH(1993)Internodalelongationandorientationofcellulosemicrofibrilsandmicrotubulesindeepwaterrice.Planta190:354SauterM,MekhedovSL,KendeH(1995)GibberellinpromoteshistoneH1kinaseactivityandtheexpressionofandcyclingenesduringtheinductionofrapidgrowthindeepwaterriceinternodes.PlantJournal7:623SetterTL,LaurelesEV(1996)Thebeneficialeffectofreducedelongationgrowthonsubmergencetoleranceofrice.JournalofExperimentalBotanySetterTL,WatersI(2003)Reviewofprospectsforgermplasmimprovementforwaterloggingtoleranceinwheat,barleyandoats.PlantandSoil253:1SetterTL,WatersI,SharmaSK,SinghKN,KulshreshthaN,YaduvanshiNPS,RamPC,SinghBN,RaneJ,McDonaldG,Khabaz-SaveriH,BiddulphTB,WilsonR,BarclayI,McLeanR,CakirM(2009)ReviewofwheatimprovementforwaterloggingtoleranceinAustraliaandIndia:theimportanceofanaerobiosisandelementtoxicitiesassociatedwithdifferentsoils.AnnalsofBotany103:221ShionoK,OgawaS,YamazakiS,IsodaH,FujimuraT,NakazonoM,ColmerTD(2011)ContrastingdynamicsofradialO-lossbarrierinductionandaerenchymaformationinricerootsoftwolengths.AnnalsofBotanyShionoK,TakahashiH,ColmerTD,NakazonoM(2008)Roleofethyleneinacclimationstopromoteoxygentransportinrootsofplantsinwaterloggedsoils.PlantScience175:52SinghHP,SinghBB,RamPC(2001)Submergencetoleranceofrainfedlowlandrice:searchforphysiologicalmarkertraits.JournalofPlantPhysiologySoukupA,ArmstrongW,SchreiberL,FrankeR,VotrubováO(2007)Apoplasticbarrierstoradialoxygenlossandsolutepenetration:achemicalandfunctionalcomparisonoftheexodermisoftwowetlandspecies,Glyceriamaxima.NewPhytologist173:264SteffensB,SauterM(2005)Epidermalcelldeathinrice(OryzasativaL.)isregulatedbyethylene,gibberellinandabscisicacid.PlantPhysiologySteffensB,SauterM(2009)EpidermalcelldeathinriceisconfinedtocellswithadistinctmolecularidentityandismediatedbyethyleneandHanautoamplifiedsignalpathway.PlantCell21:184SteffensB,GeskeT,SauterM(2011)AerenchymaformationinthericestemanditspromotionbyH.NewPhytologist190:369SteffensB,WangJ,SauterM(2006)Interactionsbetweenethylene,gibberellinandabscisicacidregulateemergenceandgrowthrateofadventitiousrootsindeepwaterrice.Planta223:604SteudleE,PetersonCA(1998)Howdoeswatergetthroughroots?JournalofExperimentalBotany49:775SubbaiahCC,BushDS,SachsMM(1994)Elevationofcytosoliccalciumprecedesanoxicgeneexpressioninmaizesuspension-culturedcells.PlantCellSubbaiahCC,SachsMM(2003)Molecularandcellularadaptationsofmaizetofloodingstress.AnnalsofBotany90:119TorresMA,DanglJL(2005)Functionsoftherespiratoryburstoxidaseinbioticinteractions,abioticstressanddevelopment.CurrentOpinioninPlantBiology8:397TroughtMCT,DrewMC(1980)Thedevelopmentofwaterloggingdamageinyoungwheatplantsinanaerobicsolutioncultures.JournalofExperimentalBotany31:1573vanderKnaapE,JagoueixS,KendeH(1997)ExpressionofanorthologofreplicationproteinA1(RPA1)isinducedbygibberellinindeepwaterrice.ProceedingsoftheNationalAcademyofSciencesUSA94:9979VergaraBS,JacksonB,DeDattaSK(1976)Deepwaterriceanditsresponsetodeepwaterstress.ClimateandRice.InternationalRiceResearchInstituteppVisserEJW,BögemannGM(2006)AerenchymaformationinthewetlandplantJuncuseffusesisindependentofethylene.NewPhytologist171:305VisserEJW,ColmerTD,BlomCWPM,VoesenekLACJ(2000)Changesingrowth,porosity,andradialoxygenlossfromadventitiousrootsofselectedmono-anddicotyledonouswetlandspecieswithcontrastingtypesofaerenchyma.Plant,CellandEnvironment23:1237WiengweeraA,GreenwayH,ThomsonC(1997)Theuseofagarnutrientsolutiontosimulatelackofconvectioninwaterloggedsoils.AnnalsofBotanyWinkelA,ColmerTD,PedersenO(2011)LeafgasfilmsofSpartinaanglicaenhancerhizomeandrootoxygenduringtidalsubmergence.Plant,CellandEnvironment34:2083WongHL,SakamotoT,KawasakiT,UmemuraK,ShimamotoK(2004)Down-regulationofmetallothionein,areactiveoxygenscavenger,bythesmallGTPaseOsRac1inrice.PlantPhysiology135:1447XuK,MackillDJ(1996)Amajorlocusforsubmergencetolerancemappedonricechromosome9.MolecularBreeding2:219XuK,XuX,FukaoT,CanlasP,Maghirang-RodriguezR,HeuerS,IsmailAM,Bailey-SerresJ,RonaldPC,MackillDJ(2006)isanethyleneresponsive-factor-likegenethatconferssubmergencetolerancetorice.Nature442:705XueT,LiX,ZhuW,WuC,YangG,ZhengC(2009)CottonmetallothioneinGhMT3a,areactiveoxygenspeciesscavenger,increasedtoleranceagainstetalhttp://www.thericejournal.com/content/5/1/2Page13of14 abioticstressintransgenictobaccoandyeast.JournalofExperimentalBotany60:339YamauchiT,RajhiI,NakazonoM(2011)Lysigenousaerenchymaformationinmaizerootisconfinedtocorticalcellsbyregulationofgenesrelatedtogenerationandscavengingofreactiveoxygenspecies.PlantSignalingandBehavior6:759doi:10.1186/1939-8433-5-2Citethisarticleas:NishiuchietalMechanismsforcopingwithsubmergenceandwaterlogginginrice. Submit your manuscript to a t from:Convenient online submissionRigorous peer reviewImmediate publication on acceptanceOpen access: articles freely available onlineHigh visibility within the Þ eldRetaining the copyright to your articleSubmit your next manuscript at springeropen.com etalhttp://www.thericejournal.com/content/5/1/2Page14of14

Related Contents


Next Show more