/
Quantum Computer Chris Monroe Quantum Computer Chris Monroe

Quantum Computer Chris Monroe - PowerPoint Presentation

iris
iris . @iris
Follow
65 views
Uploaded On 2023-09-25

Quantum Computer Chris Monroe - PPT Presentation

University of Maryland Department of Physics National Institute of Standards and Technology Hardware Theres Plenty of Room at the Bottom 1959 When we get to the very very small world say circuits of ID: 1020890

state quantum qubits qubit quantum state qubit qubits amp wolf alan fred leap 171yb science spins einstein atoms mhz

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Quantum Computer Chris Monroe" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1. Quantum ComputerChrisMonroeUniversity of MarylandDepartment of PhysicsNational Institute ofStandards and TechnologyHardware

2. “There's Plenty of Room at the Bottom” (1959) “When we get to the very, very small world – say circuits of seven atoms – we have a lot of new things that would happen that represent completely new opportunities for design. Atoms on a small scale behave like nothing on a large scale, for they satisfy the laws of quantum mechanics…”Richard FeynmanQuantum Mechanics and Computing2040 2025 atom-sized transistorsmolecular-sized transistors

3. A new science for the 21st Century20th Century Quantum Information Science21st Century 0 1 1 0 0 0 1 1…QuantumMechanicsInformationTheory

4. Computer Science and Information TheoryAlan Turing (1912-1954)universal computing machinesClaude Shannon (1916-2001)quantify information: the bitCharles Babbage (1791-1871)mechanical difference engine

5. ENIAC(1946)

6. The first solid-state transistor(Bardeen, Brattain & Shockley, 1947)

7. The classical NAND GateABoutV0ABout00101110111032-level NAND-based flash memory

8. The Golden Rules of Quantum MechanicsRule #1: Quantum objects are waves and can be in superposition qubit:    Rule #2: Rule #1 holds as long as you don’t look!  orprobability    

9. GOOD NEWS…quantum parallel processing on 2N inputsExample: N=3 qubits = a0 |000 + a1|001 + a2 |010 + a3 |011 a4 |100 + a5|101 + a6 |110 + a7 |111 f(x)…BAD NEWS…Measurement gives random resulte.g.,   |101f(x)N=300 qubits: more information than particles in the universe!

10. depends on all inputs…GOOD NEWS!quantum interference

11. |0  |0 + |1|1  |1 - |0quantumNOT gate: e.g., |0 + |1 |0  |0|0 + |1|1 superposition  entanglement( )|0 |0  |0 |0|0 |1  |0 |1|1 |0  |1 |1|1 |1  |1 |0quantumXOR gate:depends on all inputs…GOOD NEWS!quantum interferencequantumlogic gates

12. Quantum State: |0|0 + |1|1John Bell (1964)Any possible “completion” to quantum mechanics will violate local realism just the same

13. Citations to John Bell’s 1964 paperJ. Bell, "On the Einstein Podolsky Rosen Paradox," Physics 1, 195 (1964)

14. Quantum Computers and Computing Institute of Computer Science Russian Academy of Science ISSN 1607-9817 050010001500200025003000# articles mentioning “Quantum Information”or “Quantum Computing”NatureSciencePhys. Rev. Lett.Phys. Rev.20052000199519902010Shor’s QuantumFactoring AlgorithmMoore’s Law of Publishing

15. (Classical) Error-correctionShannon (1948)Redundant encoding to protect against (rare) errors better off whenever p < 1/2 unprotectedprotected0/1potential error: bit flipp(error) = p0/11/0 000/111000/111potential error: bit flip010/101 etc..take majority

16. DecoherenceQuantum error-correctionShor (1995)Steane (1996) 5-qubit codecorrects all 1-qubit errorsto first order  

17. N=1028N=1

18.

19. AarhusAmherstBaselBerkeleyBonnCitadelClemsonDenisonDukeErlangenETH-ZurichFreiburgGeorgia TechGriffith HannoverHoneywellIndianaInnsbruckLincoln LabsLockheedMaryland/JQIMainzMITMunichNIST-BoulderNorthwesternNPL-TeddingtonOsakaOxfordParisPretoriaPTB-BraunschweigSaarbruckenSandiaSiegenSimon FraserSingaporeSussexSydneyTokyoTsinghua-BeijingUCLAWashington-SeattleWeizmannWilliamsTrapped Atomic IonsYb+ crystal~5 mm

20.

21. 2S1/2(600 Hz/G @ 1 G)wHF/2p = 12 642 812 118 + 311B2 Hz| = |0,0| = |1,0 171Yb+ hyperfine qubit

22. 2S1/22P1/2369 nm2.1 GHzg/2p = 20 MHz|| 171Yb+ qubit detection(600 Hz/G @ 1 G)wHF/2p = 12 642 812 118 + 311B2 Hz# photons collected in 800 ms051015202501Probability|z

23. 2S1/22P1/2369 nmg/2p = 20 MHz||2.1 GHz 171Yb+ qubit detection >99% detectionefficiency# photons collected in 500 ms051015202501Probability|z|z(600 Hz/G @ 1 G)wHF/2p = 12 642 812 118 + 311B2 Hz

24. (600 Hz/G @ 1 G)wHF/2p = 12 642 812 118 + 311B2 Hz2S1/22P1/2|| 171Yb+ qubit manipulationD = 33 THz355 nm (10 psec @ 100 MHz)2P3/2g/2p = 20 MHz

25. t (ms)00.20.40.60.81050100150200250300350400prepare↓tlaserbeamsmeasureP(↑)(bright or dark)::incrementtCombination of coherence and perfect measurementProb(↑|↓)averageddata.

26. ~5 mmdrEntangling Trapped Ion Qubits Cirac and Zoller (1995)Mølmer & Sørensen (1999) d ~ 10 nmed ~ 500 Debye“dipole-dipole coupling”    for full entanglement

27. 355nm Raman beamsHigh NA objectiveIndividual BeamsDkGlobal Beam5-segment linear Paul trapHigh NA objective (0.37)Tightly focused Raman beams32ch AOM and PMT for indiv. addressing/detectionDiffractive optic (х10)Harris Corp32channel AOM2μm pixels355nm pulsed laserProgrammable Quantum Computer… in the lab

28. QFT circuit (n=5 qubits)controlled phase gateQuantum Fourier Transform (QFT) inputamplitudesoutputamplitudes 

29. Controlled phase gateControlled-Phase Gate ± phase of Ising coupling

30. state preparationresultse.g. state with period 8 =7152331Quantum Fourier Transform (QFT)

31. F = F0|↑↑| - F0|↓↓|Physics: global spin-dependent force

32. ↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↓↑↓↑↓↑↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↑↓↓↑↓↑↓↑||ADD: Independent spin flips BF = F0|↑↑| - F0|↓↓|Physics: global spin-dependent forceF = F0|↑↑| - F0|↓↓|

33. Adiabatic Quantum Simulationfrom S. Lloyd, Science 319, 1209 (2008) Initialization:spins along xDetection:measure spins along zTime (<10 msec)  TransverseIsing model

34. AFM ground state order222 eventsAntiferromagnetic Néel order of N=10 spins 441 events out of 2600 = 17% Prob of any state at random =2 x (1/210) = 0.2%219 eventsAll in state All in state 2600 runs, a=1.12

35. First Excited States(Pop. ~2% each)

36. Second Excited States(Pop. ~1% each)

37. AFM order of N=14 spins (16,384 configurations)

38. N=22 spinsinitial state at t=0state measured at J0t = 36 a = 0.6B. Neyenhuis et al., in preparation (2015)

39. a (C.O.M.)b (stretch)c (Egyptian)d (stretch-2)Mode competition – example: axial modes, N = 4 ionsFluorescence countsRaman Detuning dR (MHz)-15-10-5051015204060abcdabcd2ac-ab-a2b,a+cb+ca+b2ac-ab-a2b,a+cb+ca+bcarrieraxial modes onlymodeamplitudescooling beamKielpinski, Monroe, Wineland, Nature 417, 709 (2002)Medium scale vision (>100 atomic spins)

40. Univ. ofMarylandBoulder

41. 2S1/22P1/2RB||171Yb+Mapping qubits from atoms to photonsGiven photon is collected+ “post-selected” success probability  

42. Simon & Irvine, PRL 91, 110405 (2003)L.-M. Duan, et. al., QIC 4, 165 (2004)Y. L. Lim, et al., PRL 95, 030505 (2005)D. Moehring et al., Nature 449, 68 (2007)Doubling down: remote link through photonsD. Hucul, et al., Nature Phys. 11, 37 (2015)   state of the art:Upon coincidence detection! 171Yb+ ionopticalfiber50/50BSl/4l/4171Yb+ ion

43. Single atom hereSingle atom here

44. unknown qubit uploaded to atom #1| + |qubit transfered to atom #2 | & |Quantum teleportationof a single atomS. Olmschenk et al., Science 323, 486 (2009).

45. we need more time..and more qubits..

46. CM et al., Phys. Rev. A 89, 022317 (2014)Large scale modular Architecture (103 - 106 atomic spins?)0.001 Hz before~10 Hz now~1 kHz soonD. Hucul, et al., Nature Phys. 11, 37 (2015)

47.

48. 1947: first transistor2000: integrated circuit 2015: qubit collectionLarge scale quantum network?single moduleN ion trap modules

49. # particlescontrol &configurabilitymoleculestrapped ionsImplementation of Quantum HardwareCannot modelVerification?quantum materials by designcomplex optimization “big quantum data”quantum computingNVQ-dotssuperconductorsneutral atoms

50. Superconducting CircuitsLeading Quantum Computer Hardware CandidatesCHALLENGESshort (10-6 sec) memory0.05K cryogenicsall qubits different not reconfigurableSuperconducting qubit: right or left currentFEATURES & STATE-OF-ARTconnected with wiresfast gates5-10 qubits demonstratedprintable circuits and VLSIAtomic qubits connected through laser forces on motion or photonsindividual atomslasersphotonTrapped Atomic IonsOthers: still exploratoryFEATURES & STATE-OF-ARTvery long (>>1 sec) memory5-20 qubits demonstratedatomic qubits all identicalconnections reconfigurableCHALLENGESlasers & opticshigh vacuum 4K cryogenicsengineering neededNV-DiamondSemiconductor quantum dotsAtoms in optical latticesInvestments:IARPA LockheedGTRI UK Gov’tSandia LARGEInvestments:Google/UCSB IBMLincoln Labs Intel/Delft

51. D-Wave: superconducting circuits venture capital funding great advertising but is it quantum?

52.

53. N=1028N=1

54.

55. Grad StudentsDavid CamposClay CrockerShantanu DebnathCaroline FiggattDavid Hucul (UCLA)Volkan InlekKevn LandsmanAaron LeeKale JohnsonHarvey KaplanAntonis KyprianidisLexi ParsagianChris RickerdCrystal Senko ( Harvard)Ksenia SosnovaJake SmithKen WrightUndergradsEric BirckelbawKate CollinsMicah HernandezAROLPS/NSAPostdocs Paul HessMarty LichtmanNorbert LinkeBrian Neyenhuis ( Lockheed)Guido PaganoPhil Richerme ( Indiana)Grahame Vittorini ( Honeywell)Jiehang ZhangRes. ScientistsJonathan MizrahiKai HudekMarko CetinaTrapped Ion Quantum Informationwww.iontrap.umd.eduCollaborators Luming Duan (Michigan)Philip Hauke (Innsbruck)David Huse (Princeton)Alexey Gorshkov (JQI/NIST)Alex Retzker (Hebrew U)

56. Quantum SuperpositionFrom Taking the Quantum Leap, by Fred Alan Wolf

57. Quantum SuperpositionFrom Taking the Quantum Leap, by Fred Alan Wolf

58. Quantum SuperpositionFrom Taking the Quantum Leap, by Fred Alan Wolf

59. Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)From Taking the Quantum Leap, by Fred Alan Wolf

60. Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)From Taking the Quantum Leap, by Fred Alan Wolf

61. Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)From Taking the Quantum Leap, by Fred Alan Wolf

62. Quantum Entanglement“Spooky action-at-a-distance” (A. Einstein)From Taking the Quantum Leap, by Fred Alan Wolf