/
4CONTENTSChapter7.InvariantdistributionsforMarkovprocessesingeneralspa 4CONTENTSChapter7.InvariantdistributionsforMarkovprocessesingeneralspa

4CONTENTSChapter7.InvariantdistributionsforMarkovprocessesingeneralspa - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
359 views
Uploaded On 2016-12-06

4CONTENTSChapter7.InvariantdistributionsforMarkovprocessesingeneralspa - PPT Presentation

61INTRODUCTIONthemoreobservationsweaveragetheclosertheresultingestimateistotheidealtruevalueInotherwordscollectingmoreandmorestatisticsisusefulonlyifaversionofthelawoflargenumbersholdsnamelythat ID: 498216

61.INTRODUCTIONthemoreobservationsweaverage theclosertheresultingestimateistotheidealtruevalue.Inotherwords collectingmoreandmorestatisticsisusefulonlyifaversionofthelawoflargenumbersholds namely that

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "4CONTENTSChapter7.Invariantdistributions..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

4CONTENTS3.CouplingandconvergenceintotalvariationundertheDoeblincondition87Chapter9.Takingthetopologyintoaccount911.FellerpropertyandexistenceofinvariantmeasurestheviaKrylov{Bogolyubovapproach912.ApplicationstoSDEs,Stochasticheatequation,stochasticNavier{Stokesequation933.StrongFellerpropertyanduniqueness.93Chapter10.Randomdynamics951.Stabilityinstochasticdynamics952.Markovprocessesandrandomtransformations983.Invariantmeasures1024.ErgodicityforMarkovprocessesandsystemsofi.i.d.transformations1075.Auxiliarystatements110Chapter11.InvariantdistributionsforMarkovchainsindiscretespaces1151.AnotherproofofergodictheoremforMarkovchain1152.Entropyapproach1163.Coupling118Chapter12.InvariantdistributionsforMarkovprocessesingeneralspaces1211.ExistenceviaKrylov{Bogolyubovapproach,movedup1212.Doeblincondition,movedup1213.Harrispositiverecurrencecondition,movedup121Bibliography123 61.INTRODUCTIONidealtruevalue.Inotherwords,collectingmoreandmorestatisticsisusefulonlyifaversionofthelawoflargenumbersholds,namely,thatthereisanumberfsuchthatf(X1)+:::+f(Xn) n!fasn!1.Moreover,thatin nitetimehorizonaverageshouldbeindependentofthespeci cinitialstateofthesystemoratleastbestablewithrespecttoaclassofperturbationsoftheinitialstate.Otherwiseitishardtoassignameaningtothislimitingvalue.So,somequestionsthatnaturallyariseare:Doesthesystempossessanystatisticalregularity,i.e.,doesitmakesensetocollectstatisticsaboutthesystem?Howdothestatisticalpropertiesofthesystemdependontheinitialcondition?Doesthesystemtendtoremembertheinitialconditionordoesitforgetitinthelongrun?Whatisrememberedandwhatisforgotteninthelongrun?Onewaytolookattheseissuesisthestabilitypointofview.Iwouldliketoillustratethatwithacoupleofstandardmathematicalexamples.The rstverysimpleexampleisadeterministiclineardynamicalsystemwithonestable xedpoint.AdiscretedynamicalsystemisgivenbyatransformationofaphasespaceX.Forourexample,wetakethephasespaceXtobethereallineRandde nethetransformationby(x)=ax;x2R,whereaisarealnumberbetween0and1.Toanypointx2Xonecanassociateitsforwardorbit(Xn)1n=0,asequenceofpointsobtainedfromX0=xbyiterationsofthemap,i.e.,Xn=(Xn�1)foralln2N:X0=x=0(x)X1=(X0)=(x)=1(x);X2=(X1)=(x)=2(x);X3=(X2)=(x)=3(x);::::Weareinterestedinthebehavioroftheforwardorbit(Xn)1n=0ofxasn!1,wherenplaystheroleoftime.Inthissimpleexample,theanalysisisstraightforward.Namely,zeroisaunique xedpointofthetransformation:(0)=0,andsinceXn=anx,n2Nanda2(0;1)weconcludethatasn!1,Xnconvergestothat xedpointexponentiallyfast.Therefore,0isastable xedpoint,oraone-pointglobalattractorforthedynamicalsystemde nedby,i.e.,itsdomainofattractioncoincideswithR.So,duetothecontractionandintrinsicstabilitythatispresentinthemap,thereisafastlossofmemoryinthesystem,andnomatterwhattheinitialconditionis,itgetsforgotteninthelongrunandthepointsXn=n(x)approachthestable xedpoint0asn!1.Acompletelydi erentexampleisthefollowing:letX=[0;1)andletbede nedby(x)=f2xg.Thissystemexhibitsnostabilityatall.Toseethat,itisconvenienttolookatthissystemusingbinaryrepresentationsofnumbersin[0;1):foreachx2[0;1)thereisasequence(xi)1i=1ofnumbers 81.INTRODUCTIONSimilarquestionsarenaturaltoaskifoneconsidersrandommapsin-steadofdeterministicones.Onenaturalwaytherandommapsemergeisviarandomperturbationsofdeterministicdynamics.Letusdescribeoneexampleofthiskind.Itisa`noisy'modi cationofour rstexampleabove.Recallthatinthatexampleweworkedwiththemap:x7!x,and0wasastableequilibriumpoint.Letusperturbthisdynamicalsystemwithnoise,i.e.,arandomperturbationthatkickthesystemoutofequilibrium.Sup-posewehaveasequence(n)n2ZofindependentGaussianrandomvariableswithmean0andvariance2de nedonsomeprobabilityspace( ;F;P).Foreveryn2Zwewillnowde nearandommapn;!:R!Rbyn;!(x)=ax+n(!):Thismodelisknownasanautoregressive-moving-average(ARMA)modeloforder1.Anaturalanalogueofaforwardorbitfromour rstexamplewouldbeastochasticprocess(Xn)n0emittedfromapointx02R,i.e.,satisfyingX0=xand,foralln2N,(1.2)Xn=aXn�1+n:However,thestabilityissueitisnotasstraightforwardhereasinthede-terministiccase.Itisclearthatthereisno xedequilibriumpointthatwouldserveallmapsn;!atthesametime.Thesolutionoftheequa-tionn;!(y)=yforsomenmaybeirrelevantforallothervaluesofn.Stillthissystemallowsforanergodicresultsimilarto(1.1).LetbetheGaussianmeasurewithmean0andvariance2=(1�a2).Then,foranyBorelfunctionfintegrablewithrespectto,wehavethatforalmostevery(x0;!)2R withrespecttoP,limn!1f(X0)+f(X1)+f(X2)+:::+f(Xn�1) n=ZRf(x)(dx):Theunderlyingreasonforthisresultisthatisauniqueinvariantdistri-butionfortheMarkovsemigroupassociatedwiththeprocess.Thisexampledemonstratesasituationwherethereisnostabilityinthestraightforwarddeterministicsense,butthereisstatisticalstability.Roughlyspeakingtheergodicapproachtostochasticstabilityistobasethestudyofthesystemonthedescriptionofthesetofinvariantdistributionsandtheirproperties,andsothisisthemainthemeofthesenotesinthecontextofrandomdynamics.Nevertheless,wewillbeginwiththebasicsofergodictheoryofdeterministictransformations.Thefulltentativeplanistostudy(1)Generalitiesonergodictheoryofdeterministictransformations.(2)GeneralitiesonergodictheoryofrandomtransformationsandMarkovprocesses.(3)Finiteandcountablestatespace.Markovchains.(4)RandomdynamicsinEuclideanspaces 122.MEASURE-PRESERVINGTRANSFORMATIONSTheorem2.1.Let beirrational.Thenforanypoint!2S1,andanyintervalI=(a;b)S1,(2.2)limn!1Pn�1j=01n!2I n=b�a:Thesumintheleft-handsidecomputesthetotalnumberofvisitsofthesequence(j!)1j=0toIbeforetimen,andtheratiocomputesthefrequencyofthosevisitsrelativetothetotaltimen.Noticethatthelimitingvalueontheright-handsideequalstoLeb(I),theLebesguemeasureofI.AlsonoticethattheLebesguemeasureplaysaspecialroleforthisdynamicalsystem,namelyitisinvariantunderrotation.Itshouldbeintuitivelyclearwhatthismeans.First,imaginemassuniformlyspreadoverthecircleandthenrotatethecircle.Thedistributionofmassinthecircleaftertherotationisstilluniform,soitcoincideswiththeinitialmassdistribution.Wewillseesoonthatthefactthatthestatisticsofvisitstointervalsisdescribedinthelongrunbyaninvariantdistributionisageneralphenom-enonexplainedbyergodictheorems.Herewenotethatitiseasytoextendthisresulttothefollowing:Theorem2.2.Let beirrational.Thenforanypoint!2S1andanycontinuousfunctionf:S1!R,(2.3)limn!1Pn�1j=0f(j!) n=ZS1f(x)dx:DerivationofTheorem2.2fromTheorem2.1:Identity(2.2)isaspeci ccaseofidentity(2.3)forf=1I.Given(2.2),wecanuselinearityofsumsandintegralstoderive(2.3)forfunctionsfrepresentableasf(!)=mXk=1ck1Ik(!);forsomesystemofintervalsIkS1;k=1;:::;m.Supposenowfiscontinuous.Therefore,itisuniformlycontinuousandforevery"�0,wecan ndastepfunctionf"suchthatjf(!)�f"(!)j"forall!2S1.Then Pn�1j=0f(j!) n�ZS1f(x)dx  Pn�1j=0f"(j!) n�ZS1f"(x)dx +2";n2N;solimsupn!1oftheleft-handsidedoesnotexceed2".Since"�0isarbitrary,weconcludethatthelimitoftheleft-handsideequalszero.Theorem2.2canbeinterpretedsothatforeveryobservableffromabroadclassoffunctions,thetimeaveragesapproximatethespaceaverages.Ofcourse,thispropertyfailsforrationalvaluesof =m=ndespitethefactthattheLebesguemeasureisstillinvariant.Thereasonisthatinthatcase,forany!2S1,theorbit(j!)j0exploresonlyaverysmallpartofS1|a niteset,infact,|whereastheintegralintheright-handsideof(2.3)dependsonthebehavioroffontheentireS1.Thisalsocanbe 142.MEASURE-PRESERVINGTRANSFORMATIONSDefinition2.2.Let( ;F)beameasurablespace.Amaportrans-formation: ! iscalledmeasurableif,foreveryA2F,wehave�1A=f!:!2Ag2F.Hereandofteninthesenoteswefollowthetraditiontodenotethevalueassignedbythetransformationtoargument!by!.Ameasurabletransformationde nesasemigroupofmeasurabletrans-formations(n)n2Z+.Herenisinductivelyde nedby0=Id(identicaltransformation,i.e.,Id(!)!)andforn1,n=n�1.Ifatrans-formationisinvertible,i.e.,isabijectionof ontoitself,then�1iswell-de nedandinasimilarwaygeneratesagroupoftransformations(n)n2Z.Identitymn=m+nisvalidforallm;n2Z+inthecaseofthesemigroupandforallm;n2Zinthecaseofthegroup.Ofteninthesenoteswewillomitthecompositionsign\"forbrevity.Forexample,thisconventionallowstorewritetheabovegroupidentitywrittenasmn=m+n.Definition2.3.Let( ;F;P)beaprobabilityspaceand(~ ;~F)beameasurablespace.LetamapX: !~ be(F;~F)-measurable.ThepushforwardofPunderXisameasureon( ;~F)denotedbyP�1andde nedbyPX�1(A)=P(X�1A)=Pf!:X(!)2Ag;A2F:Definition2.4.Let( ;F;P)beaprobabilityspaceandsupposetrans-formation: ! bemeasurable.IfthepushforwardP�1coincideswithP,i.e.,(2.5)P(�1A)=P(A);A2F;thenwesaythatPisinvariantunder,orthatpreservesP,orthatisP-preserving.Itisimportanttonoticethatthede nitionofinvarianceisbasedonpre-imagesunder,andnotforwardimages.Thereasonforthatisthatthepushforwardsofmeasuresarede nedintermsofpre-imagesandthereisnonaturalnotionofpullbacksofmeasures.Problem2.1.SupposetransformationpreservesameasureP.Provethatforanyn2Z+,nalsopreservesP.Supposeadditionallythatisinvertibleand�1ismeasurable.Provethatthenastrongerstatementholds:foranyn2Z,nalsopreservesP(inparticular,�1isP-preserving).Letusconsidersomebasicexamplesofprobabilityspaceswithmeasure-preservingtransformations.Let =f0;1;:::;n�1g,F=2 (-algebraofallsubsetsof ),andletPbetheuniformdistributionon .ThenatransformationisP-preservingifandonlyifitisapermutation,i.e.,aone-to-onemap.Forinstance,thecyclicmap!=!+1(modn)isP-preserving. 162.MEASURE-PRESERVINGTRANSFORMATIONSProof:Letusprove rstthatthesets�nT(A),n2Naremutuallydisjoint.Infact,if!2�nT(A)\�mT(A)andmn,thenwedenote!0=m!andnoticethat!02T(A),andatthesametimen�m!0=n�mm!=!2T(A)whichisacontradictionwiththede nitionofT(A).Dueto-invarianceofP,P(�nT(A))=P(T(A))foralln,soXn2NP(T(A))=Xn2NP(�nT(A))=P [n2N�nT(A)!P( );whichcanholdtrueonlyifP(T(A))=0.Itispossibletogiveaquantitativestrengtheningofthistheorem.Thefollowingisanadaptationfrom[Tao08].Theorem2.4.UndertheconditionsofTheorem2.3,limsupn!1P(�nA\A)P2(A);A2F:Proof:TheinvarianceofPimpliesthatforanyN2N,E"NXn=11�nA#=NP(A):UsingtheCauchy{SchwartzinequalityorLyapunovinequality,weobtain(2.8)E"NXn=11�nA#2 E"NXn=11�nA#!2=N2P(A)2:Theleft-handsideofthisinequalitycanberewrittenas(2.9)E"NXn=11�nA#2=NXn;m=1P(�nA\�mA)=NXn;m=1P(A\�jm�njA):IntroducingL=limsupn!1P(A\�nA),forany"&#x-382;0,wecan ndn0=n0(")suchthatP(A\�nA)L+";n&#x-278;n0:Letusnowsplitthesumontheright-handsideof(2.9)intotwo:overn;msatisfyingjn�mjn0andovern;msatisfyingjn�mjn0.Noticingthattherearelessthan2n0Ntermsinthesecondsumandtheyallareboundedby1,weobtain1 N2NXn;m=1P(A\�jm�njA)L+"+2n0(")N N2:Combiningthiswith(2.8)and(2.9),weobtainP(A)2L+"+2n0(") N:TakingN!1andthen"!0,weobtainthedesiredresult. 182.MEASURE-PRESERVINGTRANSFORMATIONSItisoftenusefultoconsideran(X;X)-valuedprocessXasoneXT-valuedrandomvariable,andsoweneedtointroduceanappropriate-algebraonXT.Definition2.7.SupposeTR.Form2N,n1:::nm,andA1;:::;Am2X,wedenote(2.10)Cn1;:::;nm(A1;:::;Am)=fx2XT:xn12A0;:::;xnm2Amg:Setsofthisformarecalledelementarycylinders.Letusstressthatallcylindershavenon-uniquerepresentationsoftheform(2.10).Forexample,Cn1;:::;nm;nm+1(A1;:::;Am;X)=Cn1;:::;nm(A1;:::;Am):Definition2.8.Thecylindric-algebraXTisgeneratedbyallelemen-tarycylinders.Foranytimen2T,theprojectionn:XT!Xisde nedbyn(x)=xn.Theorem2.5.Thecylindric-algebraXTisgeneratedbymapsn.Thefamilyofallelementarycylindersisa-system,i.e.,itisclosedunderintersection.Theorem2.6(see[Shi96,LemmaII.2.3]).Iftherestrictionsoftwoprobabilitymeasuresona-systemEcoincide,thenthemeasurescoincideon(E).Thefollowingcorollarysaysthataprobabilitymeasureon(XT;XT)isuniquelyde nedbyitsvaluesonelementarycylinders.Theorem2.7.LetPandQbetwomeasureson(XT;XT)suchthatforanyelementarycylinderC,P(C)=Q(C).ThenP=Q.Toformulateanexistenceresult,weneedtointroducegeneralcylinders.Definition2.9.Letm2Nandn1;:::;nmTsatisfyn1:::nm,wedenotebyXn1;:::;nm=(Cn1;:::;nm(A1;:::;Am);A1;:::;Am2X):ElementsofXn1;:::;nmarecalledcylinders.Theorem2.8(Kolmogorov{Daniellextensiontheorem).If(X;X)isaBorelspaceandPisanonnegativefunctiononallcylinderssuchthatforanym2Nandanyn1;:::;nmTsatisfyingn1:::nm,therestrictionofPtoXn1;:::;nmisaprobabilitymeasure,thenthereisauniquemeasureonXTsuchthatitsrestrictiononcylinderscoincideswithP.OfteninthesenoteswewillworkwithBorelspaces,asinthistheorem.Letusintroducethecorrespondingde nitions. 202.MEASURE-PRESERVINGTRANSFORMATIONSProof:Letuscheckthede nitionofstationarityforshiftr=1:Pf!:Xi1+1(!)2A1;:::;Xim+1(!)2Amg=Pf!:X(i1+1!)2A1;:::;X(im+1!)2Amg=Pf!:X(i1!)2A1;:::;X(im!)2Amg=Pf!:X(i1!)2A1;:::;X(im!)2Amg=Pf!:Xi1(!)2A1;:::;Xim(!)2Amg;wherethethirdidentityfollowsfromthe-invarianceofP.Onecanalsomakesenseofaconversestatement:everystationarypro-cesscanberepresentedintheformdescribedinLemma2.2.Suppose(Xn)n2Z+isan(X;X)-valuedstationaryprocessonaprobabilityspace( ;F;P).OnewaytolookattheprocessXistoviewitasamapfrom tothespaceoftrajectories~ =XZ+,i.e.,thespaceofallfunctionsx:Z+!X,i.e.,sequencesx=(x0;x1;:::),equippedwithcylindric-algebra~F=XZ+.Infact,theprocessXis(F;~F)-measurable(toseethis,itissucienttocheckthatX-pre-imagesofallcylindersareinF).Therefore,wecanconsiderthepushforward~P=PX�1ofPto(~ ;~F)underthismap.Theresultisaprobabilityspace(~ ;~F;~P).Theprocess(~Xn)n2Z+de nedby~Xn(x)=nx=xn,n2Z+,isastationaryprocessunder~P,becauseitsdistributionisthesameasthatoftheoriginalprocessX.Letusprovethat~Pisinvariantundertheshiftmap:~ !~ de nedby(x0;x1;:::)=(x1;x2;:::).Tocheckthis,letusrecallthat,duetotheKolmogorov{Daniellextensiontheorem,measureson(~ ;~F)=(XZ+;XZ+)areuniquelydeterminedbytheirvaluesoncylindersCn(A0;:::;An�1)=fx2XZ+:x02A0;:::;xn�12An�1g;wheren2N,A0;:::;An�12X.Soourclaimfollowsfrom~P(�1Cn(A0;:::;An�1))=~P(Cn+1(X;A0;:::;An�1))=PfX12A0;:::;Xn2An�1g=PfX02A0;:::;Xn�12An�1g=~P(Cn(A0;:::;An�1)):Nowwecantaketherandomvariable0:~ !Xde nedby0(x)=x0andnoticethattheprocess~Xnon(~ ;~F;~P)canberepresentedas~Xn(x)=0(nx).Thisiswhatwewanted,becausethisrepresentationisofform(2.12).However,toobtainthisrepresentationwehadtoswitchfromtheoriginalprobabilityspacetothecanonicalspaceoftrajectories.ThesameprocedureappliestoprocessesindexedbyNandZ.Itisoftenconvenienttoworkwithstationaryprocessesdirectlyontheirtrajectoryspaces.Forexample,whenworkingwithi.i.d.(X;X)-valuedran-domvariables,itisconvenienttoworkwithproductmeasureon(XZ+;XZ+). 222.MEASURE-PRESERVINGTRANSFORMATIONS(2.15)BnA=1[n=11\k=n�kAnA1[n=1(�nAnA):Nowourclaimfollowsfrom(2.13),(2.14),and(2.15).ItiseasytocheckthatthefamiliesIandIofinvariantandalmostinvariantsetsare-algebras.However,theforwardinvariantsetsdonotforma-algebraingeneralandforthisreasontheyarenotconvenienttoworkwithinthecontextofmeasuretheory.Thisistightlyrelatedtothefactthattakingpre-imageisamorewell-behavedoperationthantakingimages,andthusitiseasytode nepushforwardsof-algebrasandmeasuresbytakingpre-images,andthereisnonaturalwaytode nepullbacksoftheseobjectsviaforwardimages.Problem2.3.Giveanexampleofametricdynamicalsystemsuchthatthecollectionofforward-invariantsetsdoesnotforma-algebra.Hint:complements.Definition2.14.Atransformationiscalledergodicifeveryinvariantsethasmeasure0or1.Thisde nitionmeansthatonecannotsplitourmetricdynamicalsystemintotwo.Lemma2.4.Atransformationisergodicifandonlyifeveryalmostinvariantsethasmeasure0or1.Proof:The\if"partisobvioussinceII.Theconverseisadirectconsequenceofpart(c)ofLemma2.3.Definition2.15.ArandomvariableXiscalledinvariantifX(!)=X(!)forall!2 .Definition2.16.ArandomvariableXiscalledalmostinvariantorinvariantmod0ifX(!)=X(!)forP-almostall!2 .Thefollowingobviousstatementgivesonemorereasontode neinvari-antandalmostinvariantsetsasinDe nition2.13.Lemma2.5.AsetAisinvariantifandonlyif1Aisinvariant.AsetAisalmostinvariantifandonlyif1Aisalmostinvariant.Definition2.17.Wesaythata(real-valued)randomvariableXisa.s.-constantifthereisanumberc2RsuchthatPfX=cg=1.Theorem2.9.ThefollowingthreeconditionsareequivalentifisaP-preservingtransformation:(a)isergodic;(b)everyalmostinvariantrandomvariableisa.s.-constant;(c)everyinvariantrandomvariableisa.s.-constant; 242.MEASURE-PRESERVINGTRANSFORMATIONSTheorem2.10.LetbeashiftonthetorusTdde nedby(2.6).Itisergodicifandonlyiftheidentityr1 1+:::+rd d=misimpossibleforanyr1;:::;rd;m2Zsuchthatnotallofthemareequalto0.Problem2.4.ProveTheorem2.10.Theorem2.11(AvariationonKolmogorov's0-1Law,REFERENCE????).Let(X;X;P)beaprobabilityspaceand( ;F;P)=(XN;XN(X);PN),whereXNisthecylindric-algebraandPNistheproductmeasureonitwithmar-ginaldistributionP.Thentheshifttransformationde nedby(!1;!2;:::)=(!2;!3;:::)ismeasurepreservingandergodic.Proof:TheinvarianceofPunderfollowsfromthediscussionrightafterLemma2.2.Toproveergodicity,consideranalmostinvariantsetA.ItissucienttoprovethatP(A)=P2(A)whichcanberewrittenasP(A\A)=P(A)P(A)or,usingthealmostinvarianceofA,asP(A\�nA)=P(A)P(�nA)foralln2N.ThismeansthatAisindependentofitselforitspre-imagesundern.Toprovethis,wewillapproximateAand�nA(forlargen)bycylindersthatdependondisjointcoordinatesetsandthusareindependent.SinceA2XN,itcanbeapproximatedbycylinders,i.e.,forany"�0thereisasetA"2XN,anumberk(")2NandasetB"2Xk(")suchthatA"=f!:(!1;:::;!k("))2B"g,andP(A"4A)".Letustakeanyn2Nsatisfyingnk(").SetsA"and�nA"=f!:(!n+1;:::;!n+k("))2B"gareindependentbythede nitionoftheproductmeasure,so(2.17)P(A"\�nA")=P(A")P(�nA")=P2(A"):Todealwiththeleft-handside,wenoticethatA"isveryclosetoanalmostinvariantset:jP(A"\�nA")�P(A)j=jP(A"\�nA")�P(A\�nA)jjP(A"\�nA")�P(A"\�nA)j+jP(A"\�nA)�P(A\�nA)jjP(�n(A"4A)j+jP(A"4A)j2":Fortheright-handsideof(2.17),wehavejP2(A")�P2(A)j=(P(A")+P(A))jP(A")�P(A)j2jP(A"4A)j2";sojP2(A)�P(A)j4".Since"&#x-278;0isarbitrary,wehaveP2(A)=P(A),soP(A)=0or1. 263.ERGODICTHEOREMSFORMEASURE-PRESERVINGTRANSFORMATIONSmeasurablesets,andcj2Cforj=1;:::;m:kUfk2=mXi;j=1cicjhU1Ai;U1Aji=mXi;j=1cicjh1�1Ai;1�1Aji=Xi=1jcij2P(Ai)=kfk2:Forageneralf,wecan ndasequenceofsimplefunctionsfnsuchthatf2n(!)isincreasingtof2(!)asn!1forall!2X.Then(Ufn)2alsoincreasesto(Uf)2pointwise,andwecanusetheaboveidentityalongwiththemonotoneconvergencetheoremtowrite:kUfk2=limn!1kUfnk2=limn!1kfnk2=kfk2:Problem3.1.ThisproblemisageneralizationofLemma3.1.Let( ;F;P;)beametricdynamicalsystem.Letp2[1;1].ProvethatifXisarandomvariablebelongingtoLp( ;F;P),thenUX2Lp( ;F;P),andkUXkLp( ;F;P)=kXkLp( ;F;P).Lemma3.1showsthatstudyingtheconvergenceofergodicaveragesinL2ispossibleviatheasymptoticanalysisofoperators1 nPn�1k=0Uk,whereUisanisometryofacomplexHilbertspace.The rstversionofthefollowingL2ergodictheoremappearedin[vN32].Theorem3.1.LetUbeanisometryofacomplexHilbertspaceH.LetIbetheorthogonalprojectionontothespaceI=ff2H:Uf=fg.Then,foreveryf2H,(3.2)Anf=1 nn�1Xk=0UkfconvergestoIfasn!1.Proof:LetusdenoteG=fg�Ug:g2HgandprovethatIandtheclosureofGareorthogonalcomplementsofeachother.Ifhf;g�Ugi=0forsomefandallg,thenhf;gi=hf;Ugiforallg.Inparticular,hf;fi=hf;Ufi.Usingthispropertyandtheisometryproperty,weobtainhUf�f;Uf�fi=hUf;Ufi�hUf;fi�hf;Ufi�hf;fi=kfk2�kfk2�kfk2+kfk2=0;soUf=f.ThusG?I.SincetheisometrypropertycanberewrittenashUf;Ugi=hf;giforallf;g2H,wecantakeanyf2I,g2Handwritehf;g�Ugi=hf;gi�hf;Ugi=hf;gi�hUf;Ugi=hf;gi�hf;gi=0:Therefore,IG?,andthusI=G?.So,nowwecandecomposeanyf2Hasf=fI+fG,wherefI2IandfG2Gareorthogonalprojectionsoff 283.ERGODICTHEOREMSFORMEASURE-PRESERVINGTRANSFORMATIONSnumberaandanorthogonalrandommeasureZon[�;)suchthatXn=a+Z[�;)ein'Z(d');n2Z:Therefore,wecanwrite1 n(X0+:::+Xn�1)=Z(f0g)+Z[�;)nf0gein'�1 n(ei'�1)Z(d');n2N;andconcludethat1 n(X0+:::+Xn�1)L2!Z(f0g);n!1:Therefore,thelimitisnonrandomandequalszeroifthespectralmeasurehasnoatomatzero,i.e.,EjZ(f0g)j2=0.2.Birkho 'spointwiseergodictheoremThefollowingtheoremwas rstprovedbyG.Birkho in[Bir31].Theorem3.2.Let( ;F;P;)beametricdynamicalsystem,Ithe-algebraof-invariantsets,andf2L1( ;F;P).Then,withprobability1,Anf!E[fjI];n!1;wheretheergodicaveragesAnarede nedby(3.1)or,equivalently,by(3.2)andUf(!)=f(!).Ifinadditionisergodicthenwithprobability1,(3.3)Anf!Ef;n!1:Thereexistvariousproofsofthepointwiseergodictheorem.TheyalldonotseemastransparentastheproofoftheL2version.Here,wegiveoneofthesimplestandmostconceptualproofsconstructedbyY.KatznelsonandB.Weiss[KW82]andbasedontheideaofthenonstandardanalysisproofofT.Kamae[Kam82].Proof:Duetolinearityoftimeaveragesandconditionalexpectations,itissucienttoprovetheconvergencefornonnegativefunctionf.Letusintroducef(!)=limsupn!1Anf(!);f (!)=liminfn!1Anf(!);!2 :Aprioriwedonotknowiffandf are nite,buttheyarealmostinvariant.Toseethat,wewritejAnf(!)�An(!)j1 nf(!)+1 nf(n!):The rsttermontheright-handsideclearlyconvergesto0asn!1forall!.Thesecondtermconvergesto0almostsurely.Thelatterfollowsfrom 303.ERGODICTHEOREMSFORMEASURE-PRESERVINGTRANSFORMATIONSThepurposeofthisistosplitthesumfrom0toL�1intointervalssuchthatoneachofthemwecanapply(3.6):wede nek(!)=maxfk:nk(!)L�1gandwriteL�1Xj=0fM(j!)=k(!)Xk=1nk(!)�1Xj=nk�1(!)fM(j!)+L�1Xj=nk(!)(!)fM(j!):Applying(3.6)toeachofthek(!)termsandestimatingthelastspecialtermbyNM(hereweusethefactthat~n(!)isuniformlyboundedbyN,andsoisL�nk(!)(!)),weobtainL�1Xj=0fM(j!)L�1Xj=0fM;"(j!)+L"+NM:IntegratingbothsidesoverBanddividingbyLgives(3.7)EfM1B1 LL�1Xj=0EfM;"(j!)1B+"+NM LEfM;"1B+2";whereweusedinvarianceofBandmeasure-preservingpropertyof:EfM;"(j!)1f!2Bg=EfM;"(!)1f!2�jBg=EfM;"(!)1f!2Bg:SincefM;"f+M1Cc,wecanestimatetheright-handsideof(3.7)withEfM;"1BEf1B+MP(Cc)Ef1B+";weobtain(3.8)EfM1BEf1B+3":Letting"!0andthenM!1,weobtainthe rstinequalityin(3.4).Toprovethesecondinequalityin(3.4),wedonotevenneedtointroduceaatruncationanalogoustofM.Wesimply x"�0,de nen(!)=infn:f (!)Anf(!)�" ;!2 ;introduceC=fn(!)�NgwhereNischosensothatEf1Cc",de nef"=f1Cand~n=n1C+1Cc,andproceedinasimilarwaytotheproofofthe rstinequalityin(3.4).Toprove(3.3),itissucienttonoticethatintheergodiccase,Icontainsonlysetsofprobability0and1,soE[fjI]a:s:=Ef.Problem3.3.Checkthedetailsoftheproofofthesecondinequalityin(3.4).Problem3.4.Let( ;F;P)beaprobabilityspaceandsupposethat-algebrasG0;G1Fsatisfythefollowingcondition:foreveryi2f0;1g,everysetA2GithereisasetB2G1�isuchthatP(A4B)=0.ThenforeveryrandomvariableX2L1( ;F;P),E[XjG1]a:s:=E[XjG2].Inparticular, 323.ERGODICTHEOREMSFORMEASURE-PRESERVINGTRANSFORMATIONSthestatementsofthoseresults,infact,holdforall!2S1withoutexception.Thisgapcanbeclosedeasily.Problem3.5.FollowtheselinestoconstructacompleteproofofThe-orems2.1and2.2.Onecanusetheergodictheoremtogiveequivalentde nitionofergod-icity:Theorem3.5.Letbeameasurepreservingtranformationon( ;F;P).Thefollowingstatementsareequivalent:(a)isergodic;(b)Foranyf2L1( ;F;P),(3.3)holds;(c)ForanyA2F,(3.9)holds.Proof:Condition(a)impliescondition(b)bytheergodictheorem,(c)isaspeci ccaseof(b).Toderive(a)from(c),wetakeanyinvariantsetA,usetheinvarianceofAandofActowriteAn1A=1A,andsinceAn1AconvergestoP(A)a.s.,weconcludethat1Aa:s:=P(A),andthiscanhappenonlyifP(A)=0or1. 343.ERGODICTHEOREMSFORMEASURE-PRESERVINGTRANSFORMATIONSSo,bis-invariantand,duetoergodicity,hastobea.s.-constantwithrespecttoP.Constantsaandbarebothnonpositive.Letusprovethatifa��1,thenba.Supposethatba�"forsome"&#x-277;0.IfBm=!:min1nmXn(!)=na�";m2N;then,forany&#x-277;0,wecan ndm2NsuchthatP(Bm)&#x-277;1�.Letus x!andtakeanarbitraryn2N.LetR=fj2f1;:::;nmg:j!2Bmg.Byde nitionofR,foreveryj2Rthereisk=k(j)2f1;:::;mgsuchthatXk(j!)k(a�").AssumingR6=;,letusnowde netwo nitesequencesj1;:::;jrandk1;:::;krdependingon!.First,weletj1bethesmallestnumberinRandk1=k(j1).ThenweinductivelysetjitobethesmallestnumberinRexceedingji�1+ki�1�1andki=k(ji)untilwegettoanumberjrnmsuchthatkr=k(jr)satis esjr+kr&#x-277;maxR.Wehave(3.15)Rr[i=1fji;:::;ji+ki�1g;wheretheintervalsintheunionontheright-handsidearemutuallydisjoint.Applying(3.12)tothesequencej1;k1;j2�(j1+k1);k2;j3�(j2+k2);:::;kr;nm+m�(jr+kr);andthrowingoutnonpositivetermscorrespondingtoj1;j2�(j1+k1);:::;nm+m�(jr+kr),weobtainXnm+m(!)Xk1(j1!)+Xk2(j2!)+:::+Xkr(jr!):WehaveXki(ji!)ki(a�")byde nitionofji;ki,i=1;:::;r,soXnm+m(!)(k1+:::+kr)(a�")(a�")nmXi=11Bm(i!);wherethelastinequalityfollowsfrom(3.15)anda�"0.Notethat(3.16)Xnm+m(!)(a�")nmXi=11Bm(i!);alsotriviallyholdstrueifR=;.Letusnowdividebothsidesof(3.16)bynm+mandtakeexpectations:EXnm+m nm+m(a�")nm nm+mP(Bm):RecallingthatP(Bm)�1�,lettingn!1andusingthede nitionofa,weseethata(a�")(1�);andweobtainacontradictionifwechoosesucientlysmall. 384.INVARIANTMEASURESTheorem4.1.Let beametricspaceequippedwithBorel-algebraB( )andameasurabletransformationon( ;B( )).SupposethereisacompactsetKthatisforwardinvariantunder,andiscontinuousonK.ThenthereisaninvariantprobabilitymeasuresupportedonK.Proof:FirstletusnoticethatitissucienttoconsiderthecasewhereK= .LetnowPbeanyprobabilitymeasureon .LetPk=P�k,k2Z+andPn=1 nPn�1k=0Pk.Wewouldliketoextractaweaklyconvergentsubsequencefrom(Pn)n2Z+.Letusrecallthatweakconvergencen)ofprobabilitymeasures(n)n2Z+toaprobabilitymeasuremeansthatforeveryboundedcontinuousfunctionf: !RZ f(!)n(!)!Z f(!)(!);n!1:TheProkhorovtheorem(see[Bil68]foraclassicalintroductiontothetheoryofweakconvergenceofmeasures)statesthatifforany"�0thereisacompactsetCsuchthatn(C)�1�"foralln,thenonecanextractaweaklyconvergentsubsequencen0fromn.Inourcase,forany"�0wecanchooseC= ,soanysequenceofmeasureson containsaconvergentsubsequence.Soletuschooseasequenceni!1suchthatPni)PforsomeprobabilityP,i!1.LetusprovethatPis-invariant.ItissucienttocheckZ f(!)P(d!)=Z f(!)P(d!);forallcontinuousboundedfunctionsfsincethatintegralsoffunctionsfromthatsetdeterminesameasureuniquely.Forsuchafunctionf,Z f(!)P(d!)=limi!1Z f(!)Pni(d!)=limi!11 nini�1Xk=0Z f(!)Pk(d!)=limi!1"1 niniXk=1Z f(!)Pk(d!)+1 niZ f(!)P(d!)�1 niZ f(!)Pni(d!)#=limi!11 nini�1Xk=0Z f(!)Pk(d!)=Z f(!)P(d!);whichcompletestheproof.2.Structureofthesetofinvariantmeasures.Theorem4.2.Letbeameasurabletransformationon( ;F).SupposeP1andP2aretwodistinct-invariantandergodicmeasureson( ;F).Thentheyaresingulartoeachother. 404.INVARIANTMEASURESIntegratingthisidentitywithrespecttoQ1weobtainZ f(!)P(d!)=Z f(!)Q1(d!);andsincefwasanarbitraryboundedmeasurablefunction,weconcludethatP=Q1.Similarly,weobtainP=Q2,soPisanextremepoint.Ingeneral,every-invariantprobabilitymeasurecanberepresentedasamixtureofergodic-invariantmeasures:(4.3)P=ZEP(dP);whereisameasureonE,thesetofallergodicmeasures.Intheremainderofthissectionwewillmakesenseofthisstatement,butletus rstconsiderthefollowingexample.LetbearotationofthecylinderS1R1byanirrationalangle :(x;y)=(fx+ g;y):Sinceforeveryy2R,thecircleS1fygisinvariant,everyergodicmeasurehastobeconcentratedononeofthecircles.Restrictedtoanycircle,actasacirclerotation,soforeveryy2R,themeasureLebyisauniqueinvariantmeasureonS1fyganditisergodicunder.Weseethatallergodicmeasuresareindexedbyy2R,andrepresentation(4.3)may2beinterpretedasP(A)=Zy2R(dy)Leb(Ay);whereAy=fx2S1:(x;y)2Agforeveryy2R.Inotherwords,aninvariantmeasuredistributesthemassovermultiple bers(ergodiccompo-nents),butwithinindividual bers,themassisdistributedaccordingtoanergodicmeasure.OnecoulduseanabstractChoquettheoremthatsaysthateverypointofacompactconvexsubsetofalocallyconvextopologicalvectorspacecanberepresentedasamixture(integralconvexcombination)ofitsextremepoints.Wewilltakeanother,moregeneralandconstructiveapproach.Wefollow[Sar09]and[EW11].Definition4.1.A-algebraGiscountablygeneratedifG=(Ek;k2N)forsomecountablefamilyofsetsEk2F;k2N.Definition4.2.Fortwo-algebrasG;H,wewriteGP=HifforeverysetA2GthereisasetB2HsuchthatP(A4B)=0,andforeverysetA2HthereisasetB2GsuchthatP(A4B)=0.Theorem4.4.(1)LetPbeaprobabilitymeasureonaBorelspace( ;F)andletGFbea-algebraon .Thenthereisaset 02GsatisfyingP( 0)=1andaprobabilitykernelPG(;)from 424.INVARIANTMEASURESandalimitofG-measurablefunctionsisaG-measurablefunction.LetAbethecollectionofsetssuchthattheirindicatorscanberepre-sentedaspointwiselimitsofcontinuousuniformlyboundedfunctions.ThenAisasetalgebraandamonotoneclass(see[Shi96,SectionII.2]forthesenotions).Thereforeitisa-algebra.SinceAcontainsopensets,itcoincideswithBorel-algebra.Therefore,ourclaimthatforeveryB2F,PG(;B)isaG-measurablefunctionhodstrue.Problem4.1.LetX2L1( ;F;P).ProvethatthereisasequenceXn2C( );n2NsuchthatXa:s:=P1n=1XnandP1n=1kXnkL1( ;F;P)1.Usingthisproblem,wecanwriteE(XjG)(!)a:s:=1Xn=1E(XnjG)(!)a:s:=1Xn=1Z Xn()PG(!;d)a:s:=Z 1Xn=1Xn()PG(!;d)a:s:=ZX()PG(!;d):The rstidentityholdssinceconditionalexpectationisacontinuouslinearoperatorinL1.Thesecondidentityfollowsfrom(4.5)andcontinuityofXn.Thelastidentityfollowsfromthede nitionofXn,soitremainstoexplainthechangeoforderofintegrationandsummationinthethirdidentity.Thiswillbejusti edifwecanprovethatR P1n=1jXn()jPG(!;d)isa.s.- nite.Thiswillfollowfrom(4.6)EZ 1Xn=1jXn()jPG(!;d)1:IdentityEZ Y()PG(!;d)=EYholdsforallY2Rbyde nitionandthusforallY2C( ),soweuseitalongwiththemonotoneconvergencetheoremtoseethattheleft-handsideof(4.6)equalslimm!1EZ mXn=1jXn()jP(!;d)limm!1mXn=1EjXn()j1Xn=1kXnkL11;whichcompletestheproofofpart1with 0=A.Wewillneedtoadjust 0intheproofofpart2thatfollows.First,P(EijG)(!)a:s:=1Ei(!)a:s:=PG(!;Ei);i2N;whereP(EijG)(!)a:s:=1Ei(!)followsbyde nitionofconditionalexpectation,andP(EijG)(!)a:s:=PG(!;Ei)isaspeci ccaseof(4.4). 444.INVARIANTMEASURESmeasurePI(!;)is-invariantandergodic,andPisamixtureorconvexcombinationofthoseergodicmeasures:P=Z P(d!)PI(!;);i.e.,(4.10)P(A)=Z P(d!)PI(!;A);A2F;and,moregenerally,(4.11)EX=Z P(d!)Z PI(!;d)X();X2L1( ;F;P):Proof:Checking(4.10)or(4.11)isstraightforward:accordingtoTheo-rem4.4,(4.12)EX=EE(XjI)=EZ X()PI(!;d);X2L1( ;F;P):FromnowonweusetheBorelisomorphismtoassumethat( ;F)isacompactsegmentonRwithBorel-algebra.WechooseadensesetD=fXngn2NinC( ).LetusproveinvarianceofPI(!;).ByBirkho 'sergodictheorem,thereisaset 12FsuchthatP( 1)=1, 1 0(where 0isintroducedinTheorem4.6),andforalln2Nand!2 1,Z PI(!;d)Xn()=E(XnjI)(!)=limN!11 NN�1Xk=0Xn(k!)andZ PI(!;d)Xn()=E(XnjI)(!)=limN!11 NN�1Xk=0Xn(k+1!):SinceXnisbounded,theright-handsidesofthelasttwoidentitiescoincidefor!2 1.SinceeveryX2C( )canbeuniformlyapproximatedbyfunctionsfromD,weobtainthat(4.13)Z PI(!;d)X()=Z PI(!;d)X()holdsforX2C( )and!2 1.ForeverysetB2Fthereisasequenceofuniformlyboundedcontinuousfunctionsconvergentpointwiseto1B.Boundedconvergenceimpliesthat(4.13)holdsforX=1BwhichprovesthatpreservesPI(!;)for!2 1.Toprovetheergodicitypartofthetheorem,wewillneedthefollowingstatements: 464.INVARIANTMEASURESSo,if!2 4,thenforevery2[!]H\B\ 3(whichisaPH(!;)-fullmeasureset),wehave1 NN�1Xi=0Xn(i)!Z PH(!;d)Xn();N!1:WeseethatthecriterionofLemma4.1issatis ed,someasuresPH(!;)areergodicfor!2 4.3.AbsolutelycontinuousinvariantmeasuresSupposenowthat =(Rd;B(Rd))andisadi erentiabletransforma-tion.InsomecasesitisreasonabletoexpectthatthereisanabsolutelycontinuousinvariantmeasurePfor.AbsolutecontinuityofPwithrespecttoLebesguemeasuremeansthatthereisanL1(Rd;B(Rd);Leb)functioncalleddensitysuchthatforanysetB2B(Rd),P(B)=ZBf(!)d!:Densitiesarenotuniquelyde nedsincetheycanbemodi edonazeromeasureset.Inwhatfollows,foradi erentiablefunctionf:Rm!RnwedenotebyDf(x)theJacobimatrixoffatpointx:(@ifj(x))i=1;:::;mj=1;:::;n.Theorem4.7.LetP(dx)=(x)dxbeameasureon(Rd;B(Rd)).Sup-pose:Rd!Rdisdi erentiableandnondegenerateforalmostallx(thelattermeansLebfx:detD(x)=0g=0).ThenP�1isalsoabsolutelycontinuouswithrespecttoLebesguemeasureandthesocalledtransferop-eratororPerron{FrobeniusoperatorLappliedto:(4.14)L(x)=Xy2�1x(y) jdetD(y)j;x2Rd;givesadensityofP�1.Hereweadopttheusualconventionthatsummationoveranemptysetiszero.Sincedensitiesthatdi eronlyonasetofzeromeasurede nethesamemeasure,itmakessensetoconsidertheirequivalenceclassesandlookatthetransferoperatorasatransformationinL1understoodasaspaceofequivalenceclasses.Inparticular,wehavethefollowingstatement.Theorem4.8.UndertheconditionsofTheorem4.7,anabsolutelycon-tinuousmeasurePisinvariantundertransformationifandonlyifidentity(4.15)L(x)=(x)holdsforLeb-almostallx2Rd.Inotherwords,isa xedpointofthetransferoperatorLor,equivalently,itseigenfunctionwitheigenvalue1. 484.INVARIANTMEASURESTheright-handsideequalsXm2N1 1+1 x+m1 (x+m)2=Xm2N1 (x+m+1)(x+m)=Xm2N1 x+m�1 x+m+1=1 1+x=(x):Problem4.6.SupposeanopensetURd,apointx02U,andamap:Rd!Rdsatisfylimn!1nx=x0forallx2U.Theneveryabsolutelycontinuousinvarantmeasuremustsatisfy(U)=0.Problem4.7.Supposeadi erentiablemap:Rd!Rdsatis esjD(x)j1forallxinaboundedopenforwardinvariantsetU.Theneveryabsolutelycontinuousinvarantmeasuremustsatisfy(U)=0.Onecaninterprettheseresultsasnonexistenceofabsolutelycontinuousinvariantmeasuresdueto\deregularizing"propertiesofthetransferopera-torL.Namely,duetocontractioninthephasespace,undertheiterationsofLthedensitiesbecomelargeandtendstoabnormallyconcentrate.Infact,insituationswhereLissucientlyregularizingorsmoothening,onecanproveexistence.Theorem4.10(A.Renyi,1953).Suppose( ;F)=([0;1);B).Letm2N,m&#x]TJ/;༕ ; .96;& T; -3;P.9; -;.9;U T; [0;1andf:[0;1]![0;m]satis esf(0)=0;f(1)=mandf0(x)&#x]TJ/;༕ ; .96;& T; -3;P.9; -;.9;U T; [0;1forallx2[0;1].Thenthetransformationde nedbyx=ff(x)ghasanabsolutelycontinuousinvariantmeasure.Iff2Crforsomer2,thentheinvariantdensityhasaCr�1version.Theorem4.11(A.LasotaandJ.A.Yorke,1973).Let:[0;1]![0;1]beapiecewiseC2functionsuchthatinfj0j&#x]TJ/;༕ ; .96;& T; -3;P.9; -;.9;U T; [0;1.Thenthereisa-invariantmeasureabsolutelycontinuouswithrespecttoLebesguemeasureandsuchthatitsdensityhasaversionwithboundedvariation.Ideaoftheproof:Itturnsoutthatthefollowing\Lasota{Yorke"inequalityholds.TherearenumbersN2N, &#x]TJ/;༕ ; .96;& T; -3;P.9; -;.9;U T; [0;0and 2(0;1)suchthatforeveryfwithboundedvariationV(f),V(LNf) kfkL1+ V(f):So,takinganyf0anddenotingfk=Lkf,weobtainV(fNk) kfN(k�1)kL1+ V(fN(k�1)) kfkL1+ V(fN(k�1));whereweusedthefactthatiff0andf2L1,thenLf0andkLfkL1=kfkL1.Iteratingthisinequality,weobtainV(fNk) (1+ + 2+:::+ k�1)kfkL1+ kV(f):Therefore,limsupk!1V(fNk) (1� )�1kfkL1; CHAPTER5MarkovProcessesThegoalofthischapteristodevelopgeneralergodictheoryofstochasticprocesseswithinstantaneouslossofmemory.1.BasicnotionsHerewebeginstudyingsituationswherethestateofthesystemattimen+1isnotuniquelydeterminedbythestateattimen.Wewillmostlybeinterestedinprocesseswithinstantaneouslossofmemory.TheyareusuallycalledMarkovprocessesandarede nedbythefollowingproperty:giventhehistoryoftheprocessXuptotimen,thestateattimen+1israndomandhasconditionaldistributionthatdependsonlyonthevalueXn.Definition5.1.Let(X;X)beameasurablespace.AfunctionP:XX!Riscalledatransitionprobabiliy,ortransitionkernel,orprobabilitykernelifforeachx2X,P(x;)isaprobabilitymeasure,andforeachB2X,P(;B)isanX-measurablefunction.Throughoutthissectionweassumethat(X;X)isaBorelspace.Wealso xatransitionkernelP(;)on(X;X).Foranymeasureon(X;X)(thatwillserveastheinitialdistribution)andtimen2Z,wearegoingtode neameasureonpathstartingatn,i.e.,onthespace(Xfn;n+1;:::g;Xfn;n+1;:::g).Definition5.2.Let(X;X)beaBorelspace.Letbeaprobabilitymeasureona(X;X)andletP(;)beatransitionkernelon(X;X).An(X;X)-valuedprocessXde nedonaprobabilityspace( ;F;P)withtimeindexedbyfn;n+1;n+2;:::gforsomen2ZiscalledahomogeneousMarkovprocesswithinitialdistributionandone-steptransitionprobabilityP(;)ifforanyk0andanysetsA0;A1;:::;Ak2X,(5.1)PfXn2A0;:::;Xn+k2Akg=ZA0(dx0)ZA1P(x0;dx1):::ZAk�2P(xk�2;dxk�1)ZAk�1P(xk�1;Ak):TheexistenceanduniquenessofameasureP=Pn;1onthecanoni-calspace(Xfn;n+1;:::g;Xfn;n+1;:::g)with nite-dimensionaldistributionsde-scribedby(5.1)followsfromtheKolmogorov{Daniellconsistencytheorem.Problem5.1.Showthatformula(5.1)de nesaconsistentfamilyof nite-dimensionaldistributions.51 1.BASICNOTIONS53Theorem5.3.Foranymeasure,anym;k0,anyA0;A1;:::;Ak2X,P(Xm2A0;:::;Xm+k2AkjFm)a:s:=P(Xm2A0;:::;Xm+k2AkjXm)a:s:=1Xm2A0ZA1P(Xm;dx1)ZA2P(x1;dx2):::ZAk�2P(xk�2;dxk�1)ZAk�1P(xk�1;Ak)a:s:=Pm1Xm(Xm2A0;:::;Xm+k2Ak):Proof:Thisfollowsdirectlyfromtheprevioustheoremandthefactthat1Xm2A0is(Xm)-measurableTheorem5.4.Foranymeasure,anym;k0,andanyboundedmeasurablef:Xk+1!R,EP(f(Xm;:::;Xm+k)jFm)a:s:=EP(f(Xm;:::;Xm+kjXm))a:s:=ZXP(Xm;dx1)ZXP(x1;dx2):::ZXP(xk�2;dxk�1)ZXP(xk�1;dxk)f(Xm;x1;:::;xk):a:s:=EPm1Xmf(Xm;x1;:::;xk):Proof:TobeinsertedlaterInthefollowingtheoremweusethestandardshiftoperatoron(XZ+;XZ+).Theorem5.5.Letm0,andletA2XZ+.ThenP(�mAjFm)a:s:=P(�mAjXm)a:s:=PXm(A):Proof:IfA2XZ+,then�mA=f(x0;x1;:::):(xm;xm+1;:::)2Ag2Xm1:Thetheoremfollowsfromapproximating�mAbycylindersetsbasedoncoordinatesstartingwiththem-thone,andusingTheorem5.4.Onecaneasilyprioveanextensionofthistheoremwhereindicatorsarereplacedbyarbitraryboundedfunctions:Theorem5.6.Letm0,andletH:XZ+!Rbeaboundedrandomvariable.ThenEP(HmjFm)a:s:=EP(HmjXm)a:s:=EPXmH:Forexample,foreverysetB2XZ+,(5.3)P(B)=ZX(dx0)Px0(B):ThisidentityfollowsfromP(B)=EP1B=EPEP(1BjF0)=EPPX0(B)=ZX(dx0)Px0(B): 2.STATIONARYMARKOVPROCESSESANDINVARIANTDISTRIBUTIONS55Proof:IfPde nesastationaryprocess,thenthedistributionsofX0andX1mustcoincide,so(5.5)holds.Nowsupposethat(5.5)holds.Thenforallm,wehavePm=,i.e.,thedistributionofXmisalso.Weneedtocheckthatforallm2Z+,allk2N,(5.6)PfXm2A0;:::;Xm+k2Akg=PfX02A0;:::;Xk2Akg:WecanwritePfXm2A0;:::;Xm+k2Akg==EPP(Xm2A0;:::;Xm+k2AkjXm)=EP1Xm2A0P(Xm+12A1;:::;Xm+k2AkjXm)=EP1Xm2A0ZA1P(Xm;dx1)ZA2P(x1;dx2):::ZAk�2P(xk�2;dxk�1)ZAk�1P(xk�1;Ak):Denotingfory2Xf(y)=1x2A0ZA1P(y;dx1)ZA2P(x1;dx2):::ZAk�2P(xk�2;dxk�1)ZAk�1P(xk�1;Ak);wecanwritePfXm2A0;:::;Xm+k2Akg=EPf(Xm)=ZX(dy)f(y);sincethedistributionofXmis.Thisexpressionontheright-handsidedoesnotdependonm,sotheproofof(5.6)iscomplete.Definition5.3.Anydistributionthatsatis es(5.5)iscalledP-invariant.IfXis nite,sayX=f1;:::;NgforsomeN2N,thenanymeasureandanytransitionkernelPareuniquelyde nedbytheirvaluesonsingle-pointsets.Denotingi=figandPij=P(i;fjg)foralli;j2X,weobtainthatisP-invarianti (5.7)Xi2XiPij=j:Inotherwords,theidentityP=canbeunderstoodinthelinearalgebrasense.HereisarowvectorandPisasquarematrix.Forexample,letX=f1;2;3gwithX=2X,andP(x;A)=jAnfxgj=2foranyAXwhichmeansthat,giventhatatanytimestepthesystemchangesitscurrentstatetoanewonechosenuniformlyfromtheremainingtwostates.DenotingPij=P(i;fjg)=(1 2;j6=i;0;j=i;weseethatthesystem(5.7)hasalineofsolutions1=2=3.Sinceweareinterestedinprobabilitymeasures,wehavetoset1=2=3=1=3,andsothistransitionkernelhasauniqueinvariantdistribution. 2.STATIONARYMARKOVPROCESSESANDINVARIANTDISTRIBUTIONS57Wealreadyknowthatdeterministictransformationscanfailtohaveanyinvariantdistributionsatall.ThesameappliestoMarkovtransitionker-nels.Infact,anydeterministictransformationonaspace(X;X)naturallygeneratesaMarkovtransitionkernelgivenbyP(x;)=(x),i.e.,foranymeasureon(X;X),P=�1.Sobasicexamplesofdeterministictrans-formationswithoutinvariantdistributionsnaturallygenerateexamplesofMarkovkernelswithoutinvariantdistributions.IfthesetofinvariantdistributionsforPisnonempty,thenithasastructuresimilartothatofthesetofinvariantmeasuresfordeterministictransformations.Tomakemoreconcretestatementsweneedtointroduceseveralnewnotions.Definition5.4.LetP(;)beaprobabilitykernelon(X;X)andletbeaP-invariantprobabilitymeasureon(X;X).AsetAiscalled(P;)-invariantiffx2A:P(x;Ac)�0g=0:Thesetofall(;P)-invariantsetsisdenotedbyI(;P).Lemma5.1.LetP(;)beaprobabilitykernelon(X;X)andletbeaP-invariantprobabilitymeasureon(X;X).ThesetI(;P)isa-algebra.Proof:Itisobviousthat 2I(;P)sinceP(x; )=1forallx.IfA1;A2;:::2I(;P),thenforA=Si2NAi,wehavefx2A:P(x;Ac)�0gXifx2Ai:P(x;Ac)�0gXifx2Ai:P(x;Aci)�0g=0:SupposenowA2I(;P).LetusprovethatAc2I(;P).Wehave(A)=ZX(dx)P(x;A)=ZA(dx)P(x;A)+ZAc(dx)P(x;A):The rsttermontherightequals(A)becausefor-almostallx2A,P(x;A)=1.Therefore,thesecondtermiszero,whichimpliesthatP(x;A)=0for-almostallx2Ac.Definition5.5.LetP(;)beaprobabilitykernelon(X;X)andletbeaP-invariantprobabilitymeasureon(X;X).Wesaythatthepair(;P)isergodicifforevery(;P)-invariantsetA,(A)2f0;1g.Ergodicitymeansthatonecannotdecomposethesystemintotwosys-temsthatcanbestudiedindependently.WewillalsooftensaythatisP-ergodicif(;P)isanergodicpair.Theorem5.8.SupposeisaninvariantmeasureforaMarkovkernelP(;)on(X;X).AsetB2XZ+belongstothe-algebraI(XZ+;XZ+;P;) 2.STATIONARYMARKOVPROCESSESANDINVARIANTDISTRIBUTIONS59and(5.15)f(nx)1Bc(x)L1�!1B(x)1cB(x)=0:UsingtheinvarianceofB,wecanrewrite(5.14)and(5.15)as(5.16)f(nx)1B(x)L1�!1B(x);and(5.17)f(nx)1Bc(x)L1�!0;SinceEPf(nx)1B(x)=EPf(x)1B(x);theconvergence(5.16)impliesEPf(x)1B(x)=EP1B(x),and(5.12)fol-lows.SinceEPf(nx)1Bc(x)=EPf(x)1Bc(x);theconvergence(5.17)impliesEPf(x)1B(x)=0,and(5.13)follows.Theproofof(5.11)iscompleted,and(5.10)isestablished.Wecannowuse(5.10)towrite1Ba:s:=(Xn)foralln2Z+.Weseethattakesvalues0and1withprobability1.Therefore,(Xn)=1Xn2AforasetA2X.So,BP=fXn2Agforalln2Z+and,moreover,BP=TfXn2Ag=AZ+.LetusprovethatAis(;P)-invariant.WehaveZA(dx0)P(x0;A)=PfX02A;X12Ag=P(B)=PfX02Ag=(A):Therefore,P(x0;A)=1for-a.e.x02A.Definition5.6.LetusdenotebyI0the-subalgebraofXZ+generatedbysetsfX02Ag;A2I(;P).Remark5.1.Theorem5.8maybeinterpretedas(5.18)I(XZ+;XZ+;P;)P=I(XZ+;XZ+;P;)P=I0:Lemma5.2.Letg:X!RbeX-measurableandbounded.ForP-almosteveryx2X,(5.19)ZXZ+P;I0(x;dy)g(y0)=ZXI(x0;dy0)g(y0);whereI(;)=I(;P)isaregularconditionalprobabilitywithrespecttoI(;P).Proof:Sincebothsidesof(5.19)areI0-measurable,itsucestocheckthatforeveryB2I0,(5.20)ZBP(dx)ZXZ+P;I0(x;dy)g(y0)=ZBP(dx)ZXI(x0;dy0)g(y0): 2.STATIONARYMARKOVPROCESSESANDINVARIANTDISTRIBUTIONS61ProofofTheorem5.10:Supposethat1and2arenotmutuallysingular.Let;1;2bede nedaccordingtoLemma5.3.ThenP1=P+P1;(5.23)P2=P+P2:(5.24)DuetoLemma5.9,measuresP1andP2areergodicandhencemutuallysingular.However,thiscontradictsLemma5.3anddecompositions(5.23){(5.24).Theorem5.11.LetbeaprobabilitymeasureonaBorelspace(X;X),invariantunderP(;).LetI(;)bearegularconditionalprobabilitywithrespecttoI(;P).Thenfor-almosteveryx0,themeasureI(x0;)isP-invariant,formsanergodicpairwithP,andisamixtureorconvexcombinationofthoseergodicmeasures:=ZX(dx0)I(x0;);i.e.,(5.25)(A)=ZX(dx0)I(x0;A);A2X;and,moregenerally,(5.26)ZX(dx0)f(x0)=ZX(dx0)Z I(x0;dy0)f(y0);f2L1(X;X;):Proof:WestartwiththeergodicdecompositionforthemeasurePde-scribedinTheorem4.6.WeknowthatforP-almosteveryx2XZ+,themea-sureP;I=P;I(XZ+;XZ+;P;)(x;)is-invariantandergodic.Dueto(5.18)andpart3ofTheorem4.4,wealsohavethatforP-almosteveryx2XZ+,P;I(XZ+;XZ+;P;)(x;)=P;I0(x;):Letusprovethatforalmosteveryx,P;I0(x;)isaMarkovmeasureon(XZ+;XZ+).Wecanassumethat(X;X)istheunitsegmentwithBorel-algebra.LetustakeacountablesetDdenseinC[0;1].ThevaluesofEP[f0(X0)f1(X1):::fn(Xn)];n2Z+;f0;f1;:::;fn2D;uniquelyde nethemeasurePon(XZ+;XZ+).SoletuscomputeEP;I0(x;)[f0(X0)f1(X1):::fn(Xn)]=EP[f0(X0)f1(X1):::fn(Xn)jI0](x)=EP[EP[f0(X0)f1(X1):::fn(Xn)jF0]jI0](x): 3.FILTRATIONS.STOPPINGTIMES.STRONGMARKOVPROPERTY63Thestandardinterpretationof ltrationsisthatforeveryn2Z+,Fnisthecollectionofeventsobservedonthetimeintervalf0;1;:::;ng.OnecanfullydecidewhetheraneventA2Fnistruebyobservingallavailableinformationuptotimen.Definition5.8.Let(Xn)n0beastochasticprocess.Thenthe l-tration(Fn)n0de nedbyFn=(X0;:::;Xn)isthenatural ltrationof(Xn)n0or ltrationgeneratedby(Xn)n0.InthiscaseFncosnsistsofallsetsthatcanbedescribedintermsofrandomvariablesX0;:::;Xn,n0.OnecandecidewhetheraneventA2FnistruebyobservingthetrajectoryoftheprocessXuptotimen.Definition5.9.Let(Xn)n0beastochasticprocess.Wesaythat(Xn)n0isadaptedtoa ltration(Fn)n0ifforeveryn,therandomvariableXnismeasurablewithrespecttoFn.Inparticular,anyprocessisadaptedtoitsownnatural ltration.Definition5.10.Arandomvariable: !Z+[f+1giscalledastoppingtimewithrespectto(Fn)n2Z+iffng2Fnforeveryn0.Problem5.5.Checkthatinthede nitionaboveonecanreplacefng2Fnbyf=ng2Fnforeveryn0.Thefollowingisoneofthemostusefulexamplesofhittingtimes.Let(Xn)n0bean(X;X)-valuedstochasticprocessadaptedtoa ltration(Fn)n0.Thismeansthatforeveryn,therandomvariableXnismeasurablewithrespecttoFn.LetAbeanysetinX,andlet(5.27)A=inffn2N:Xn2Ag2Z+[f+1g:ThenAisastoppingtimesincefA=ng=n�1\k=1fXk=2Ag\fXn2Ag:Definition5.11.The-algebraassociatedtoa ltration(Fn)n0andastoppingtimewithrespectto(Fn)n0isde nedbyF=fA2F:A\f=ng2Fng.Problem5.6.ProvethatFisa-algebra.Giveanexampleofa ltrationandarandomvariable(thatisnotastoppingtime)suchthatFde nedaboveisnota-algebraThe-algebraFisinterpretedasthe-algebraofeventsobservedonarandomtimeintervalf0;1;:::;g.Inotherwords,everyeventfromFcanbedescribedintermsoftheinformationavailableuptotime.If(Fn)n0isthenatural ltrationof(Xn)n0,theneventsfromFcanbedescribedintermsoftherealizationofXuptotime,i.e.,oncandecidewhetheraneventA2FistrueornotbasedonthetrajectoryX0;X1;:::;X(ofrandomlength). CHAPTER6MarkovProcessesonFiniteStateSpacesThisisnotquiteproofread.Proceedwithcaution.1.ApproachbasedontheabstracttheoryInthissectionweapplythepowerfulresultswehaveobtainedtoarelativelysimplecasewhereXis nite.We xN2NandassumethatX=f1;:::;Ng,andX=2X.Everyprobabilitymeasureon(X;X)inthissectionwillbeidenti edwithaprob-abilityvector(i)i2Xwithi=fig.EveryMarkovkernelPon(X;X)willbeidenti edwithatransitionmatrix(Pij)Ni;j=1de nedbyPij=P(i;fjg).LetusstudythesetofallinvariantdistributionswithrespecttoP.Ofcourse,theproblemisequivalentto ndingallsolutionsof(6.1)P=satisfying2N,whereN=p2RN:p1+:::+pn=1;andpi0foralli2f1;:::;Ng TheanalysiscanbeperformedwiththehelpofthePerron{Frobeniustheo-rem,butletususethetheoryofergodicdecompositioninstead.ThesimplexNiscompactandconvex.Thevectorsubspacede nedby(6.1)isalsoconvex.Therefore,theintersectionisalsocompactandcon-vex(wewillshortlyseethatitisnon-empty)andcanbeseenastheconvexhullofitsextremepoints.Weknowfromtheabstractergodicdecomposi-tionthattheseextremepointsareergodicdistributions.Soletusestablishseveralusefulfacts.WesaythatasetAXisabsorbingwithrepecttoPifP(i;A)=1foralli2A.Lemma6.1.IfAXisabsorbingwithrespecttoP,thenthereisaP-invariantdistributionsatisfying(A)=1.Proof:LetususetheKrylov{Bogolyubovapproach.Letustakeanyinitialstatei2Aandconsidertheinitialdistributioniconcentratedati.Considerasequenceofmeasures(orprobabilityvectors)n=1 nn�1Xk=0iPk;n2N:65 1.APPROACHBASEDONTHEABSTRACTTHEORY67Lemma6.7.Leti2XandPi(B)�0,whereB=fXn6=iforalln2Ng:Theni=0foreveryinvariantmeasure.Proof:Duetotheergodicdecomposition,itissucienttoprovethatforeveryergodic,i=0.Supposei�0.Duetotheergodictheorem,P(A)=1,whereA=(1 nn�1Xk=01fXk=ig!i):Since1=P(A)=ZX(dj)Pj(A)=Xj2XjPj(A);weconcludethatPi(A)=1.Clearly,A\B=;,soPi(A)=1andPi(B)�0contradicteachother.Summarizingtheresultsaboveweobtainthefollowingtheorem.Theorem6.1.Leti2X.Ifthereisjsuchthati!jandj6!i,thenthereisnoinvariantdistributionsatisfyingi�0.Ifthereisnosuchstatej,thenthereisauniqueergodicdistributionsatisfyingi�0.ThesetA=fj2X:j�0gcoincideswithB=fj2X:i!jg.Proof:The rstpartfollowsfromLemma6.7.Toprovethesecondpart,wenotethatthesetBisanabsorbingclassofcommunicatingstates.Lemma6.5impliesthatthereisauniqueergodicmeasuresupportedbyB.Lemma6.3impliesj�0foreveryj2B.Ifallstatesformoneclass,thekernelPiscalledirreducubleorergodic.Thenthereisexactlyoneinvariantdistribution.Thissituationisoftencalleduniqueergodicity.Often,toanalyzetheinvariantdistributionthereisnobetterwaythetosolveequation(6.1).However,thereareusefulrepresentationsfortheinvariantdistributions.Onesuchrepresentationisthefollowing,takenfrom[FW12].WethinkofXasthecompletedirectedgraphwhereeachedge(ij)isassignedaweightPij.ToeachstateiweassociateacollectionGiofdirectedsubgraphsgwiththefollowingproperties:thereisnoarrowcomingoutofi,foreachj6=i,thereisexactlyonearrowcomingoutofj,andtherearenocycles.Foreverycollectiongofarrowswede ne(g)=Y(jk)2gPjk:Foreveryi2X,wede neQi=Pg2Gi(g).Wealsoset(6.2)qi=Qi Pj2XQj: 1.APPROACHBASEDONTHEABSTRACTTHEORY69Theorem6.3.Suppose(Pij)isanirreduciblekernel.Thenitisre-versiblewithrespecttosomemeasurei foreverynandeverysequenceofverticesi1;i2;:::;in,(6.4)Pi1i2Pi2i3:::Pin�1inPini1=Pi1inPinin�1:::Pi2i1Proof:Toderive(6.4)fromreversibility,itissucienttowrite(6.3)fori1;i2,fori2;i3,etc,taketheproductoftheseidentitiesandcancelQkikonbothsides.Ifweassumethat(6.4)holdstrueforallsequencesofstates,thenwecantakeanarbitraryi02Xandforeveryide nei=1 ZPi0i1Pi1i2:::Pin�1inPini PiinPinin�1:::Pi2i1Pi1i0;wherethesequence(i0;i1;:::;in)ischosensothatPiinPinin�1:::Pi2i1Pi1i0�0,andthenormalizationconstantZindependentofiistobechosenlater.Condition(6.4)impliesthatthisde nitiondoesnotdependonthechoiceofaspeci csequence(i0;i1;:::;in):If(i0;i01;:::;i0n)isanothersuchse-quence,weobtainPi0i1Pi1i2:::Pin�1inPini PiinPinin�1:::Pi2i1Pi1i0=Pi0i01Pi01i02:::Pi0n�1i0nPi0ni Pii0nPi0ni0n�1:::Pi02i01Pi01i00:Also,itisclearfrom(6.4)thatexistenceofacyclerealizingi0!i!i0impliesthati�0foralli.Similarly,weseethatifPij�0,thenPji�0,sotocheck(6.3),wewriteiPij=1 ZPi0i1Pi1i2:::Pin�1inPiniPij PiinPinin�1:::Pi2i1Pi1i0Pji Pji=1 ZjPji:Inapplications,onecanusetheideaofreversibilitytoconstructMarkovchainswithagiveninvariantdistribution.Ofteninsystemswithstatisticalmechanics avor,thereisnoeasyaccesstothevaluesithemselves,buttheratiosi=jareeasytocompute.Thishappens,forexample,forBoltzmann{Gibbsdistributionswherei=e� H(i) Z;i2X:HereH:X!Ristheenergyfunctionand 0istheinversetemperature.SuchdistributionsforvariouschoicesofHareubiquitousinstatisticalme-chanics.Letus xsomeH.Somecharacteristicfeaturesofsuchafamilyofdistributionscanbeseenforlimitingcases !0and !1.When =0andthetemperatureisin nite,thenallstatesareequallyprobable,andthiscanbeinterpretedasacompletedisorder.Ontheotherhand,if islarge(thetemperatureissmall),thestateswithminimalenergy(\ground"states)aremuchmoreprobablethanotherstates,andas !1,thesystem\freezes"tothegroundstates. 2.PERRON{FROBENIUSTHEOREM71andclosed,andsoistheirintersection0.SinceTk+1Tkforallk2N,weobtain06=;.Theconditionsofthetheoremimplythat(6.5)TmInt;mn;whereIntdenotestherelativeinteriorof.Therefore,0Int.Letusshowthat0hasatmostdextremepoints.Namely,letuschooseanincreasingsequence(nk)k2Nsuchthatlimk!1Tnkei=xiforsomexi20,i=1;:::;d,andprovethatallext0fx1;:::;xdg.Ifx20thenx2Tnkforallk2NandthereforexisaconvexcombinationofextremepointsofTnk.AlltheseareimagesofextremepointsofunderTnk,soweobtainarepresentationx=Pdi=1 (k)iTnkeiforsome (k)i0satisfyingPdi=1 (k)i=1,k2N.Choosinganincreasingsequence(k(m))m2Nsuchthatlimm!1 (nk(m))i= iforsome i,weobtainx=Pdi=1 ixi,soifxisanextremepointithastocoincidewithoneofxi,i=1;:::;d.Since0=T0andext0is nite,weobtainext0=Text0,inotherwordsTactsapermutationonext0.Thereforethereisanumberm2NsuchthatTmx=xforeveryx2ext0.So,everyx2ext0isaneigenvectorofAmwithapositiveeigenvalue.Letusprovethat,infact,therecannotbetwodistincteigenvectorswiththoseproperties.Therearetwocasestoexclude:(i)therearex;y20and�0suchthatx6=yAmx=xandAmy=y;(ii)therearex;y20and��0suchthatandAmx=xandAmy=y.Incase(i),thereisanumber suchthatz=x+ (y�x)2@.ThereforeAmnz=nz2@C,soTmnz2@whichcontradictsTmnInt.Incase(ii),wecanusey2Inttochoose"�0smallenoughtoensurethatz=y�"x2IntC.ThenAkmz=ky�"kx,soforsucientlylargek,Akmz=2Cwhichisacontradiction.Weconcludethat0containsauniquepointx0.Recallingthat0isT-invariant,weobtainthatTx0=x0,i.e.,Ax0=x0forsome�0.LetusshowthatifAx=xforanyx2Cthatisnotamultipleofx0andsatis esx6=0,thenjj.If=,thenwecan nd 2Rsuchthatz=x0+ x2@Cnf0g.ThenA2kz=2kzforallk2Nwhichcontradicts(6.5).If2Randjj&#x-278;,thenwehavealreadyprovedthatx62C.Alsowecan nd"&#x-278;0smallenoughtoguaranteethatz=x0+"x2IntC.Thenforlargevaluesofm,thedirectionofA2m+1zwillbeclosetothedirectionofx,sowewillhaveA2m+1z=2CwhichcontradictsA-invarianceofC.Ingeneral,if=ei2forsome&#x-278;0and2R,thenthereisaplaneLsuchthattheactionofAonLismultiplicationbyandrotationbyangle. 3.HILBERTPROJECTIVEMETRICAPPROACH.73yr�1x.Thelatterisequivalenttoryx,sothesetwoinequalitiescanholdtogetheronlyifx=ry.Wecannowde netheHilbertprojectivemetricby(x;y)=�ln�(x;y)=�ln (x;y)�ln (y;x)2[0;1]:Noticethat(x;y)isin niteifx;y2@Candx6y.Thefollowingtriangleinequalityfollowsfrom(6.7):(x;z)(x;y)+(y;z);x;y;z2C:Fromthepropertiesof�,wederivethat(x;y)=(x;ry)foranyx;y2Candr�0,and(x;y)=0i xy,soisapseudo-metriconCandametricon=C=.Otherwaystorepresentare(x;y)=�lnminixi yiminjyj xj=lnmaxiyi ximaxjxj yj=lnmaxi;jxjyi yjxi:LetusprovethatthemapT:!isnonexpanding.First,wenoticethatx�ry2CimpliesA(x�ry)=Ax�rAy2C.Therefore (Ax;Ay) (x;y),so(Ax;Ay)(x;y).AssumingnowthatalltheentriesofAarepositive,letusprovethatthecontractioncoecientisactuallystrictlylessthan1.FirstwerecallthatinthiscaseTisacompactsubsetofInt.Therefore,expressionsln(xjyi=(yjxi))areuniformlyboundedwithrespecttox;y2,andD=diam(T)=supf(x;y):x;y2g1;or,equivalently=inff�(x;y):x;y2Cg&#x]TJ/;༷ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0:Thesenumbersarerelatedby=e�D.Thefollowingtheoremestablishesthestrictcontractionpropertyof.Theorem6.5.IfAhasallpositiveentries,thenforallx;y2,(6.8)(Tx;Ty)1�p  1+p (x;y):Proof:Letustaketwodistinctpointsx;y2.Wecanassumethat(x;y)1,i.e.,bothnumbers 1= (x;y)and 2= (y;x)arenonzero.Theny� 1x2Candx= 2�y2C.Applyingthede nitionoftothosevectors,weobtainthattherearetwonumbers1;20suchthat12andA(x= 2�y)1A(y� 1x);A(y� 1x)2A(x= 2�y);i.e.,Ax1+1 1 2+1 1Ay;Ay 1+2 2 1+2Ax: CHAPTER7CountablestatespaceMarkovchains1.StrongMarkovpropertywithrespecttostatehittingtimesAveryusefulwaytolookatMarkovchainsistostudyreturntimestoastate.InthissectionweassumethatX=f1;:::;NgorX=N(inthelattercasewesetN=1).Letusrecallthede nition(5.27).Foranarbitraryi2X,wede nei=figandnotethatPXi=Pionfi1g.Theorem7.1.LetPfi1g=1.ThenforanyboundedrandomvariableH:XZ+!R,andeverysetB2Fi,i.e.,(7.1)EP[Hi1B]=EP[Hi]P(B):Proof:Forbrevitywedenote=iThestrongMarkovpropertyimpliesthatEP[H1B]=EP[EP[H1BjF]]=EP[1BEP[HjF]]=EP[1BEPXH]=EP[1BEPiH]=P(B)EPiHThisidentitywithB=XZ+givesEP[H]=EPiH:Thelasttwoidentitiestogetherimply(7.1).Theorem7.1meansthatthefutureandthepastofaMarkovprocesswithrespecttoavisittoastateiareindependentofeachother.Iteratingthisargument,weobtainthattherealizationoftheMarkovprocesscanbesplitinexcursions,eachexcursionbeingapathbetweentwoconsecutivevisitstoi.Ofcourse,thisislooselyformulated.Ihopetoaddmoretothislater.2.Invariantmeasuresandclassi cationofstatesSomenotionsandresultsforcountablestateMarkovchainscanbeadaptedfromthe nitestatespacesituation.Inparticular,Lemmas6.2{6.7stillholdtrueforcountableX.However,Theorem6.1doesnotholdtrueforcountablestatespace.Themaindi erenceisthefollowing.Theonly75 2.INVARIANTMEASURESANDCLASSIFICATIONOFSTATES77Ifi=h,thetheright-handsideof(7.3)equals1Xk=0PhfXk+1=h;k+1=hg=Pfh1g:Theinvarianceoffollows,andsodoesergodicityanduniquenessoftheinvariantmeasure.whichcompletestheproof.Corollary7.1.Ifh2Xispositiverecurrentandistheergodicinvariantdistributionsatisfyingi&#x]TJ/;༷ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0,thenh=1=Eii,or,equivalently(7.4)Ehh=1=h:Letusprovetheconversestatement.Theorem7.4.Supposeanergodicinvariantdistributionsatis esh&#x]TJ/;༷ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0forsomeh2X.Then(7.4)holds.Proof:Letusdenote0h=inffk2N:Xk=hgandthenrecursively,n+1h=inffk2N:Xn+k=hg;n2N:Inotherwords,nhisthelengthofthen-thexcursionbetweentwocinsecutivevisitstoh.WealsosetS0=0andSn=1h+:::+nh;n2N:DuetothestrongMarkovproperty,randomvariables(nh)n2formani.i.d.sequence.Therefore,thestronglawoflargenumbersapplies,andweobtainSn na:s:�!Ehh2(0;1]:Thenumberofexcursionsorvisitstohuptotimem2NisgivenbyN(m)=maxfn0:Snmg;m0:WehaveSN(m)mSN(m)+1;m0:Therefore,SN(m) N(m)m N(m)SN(m)+1 N(m);m0:Bythestronglawoflargenumbers,bothl.h.s.andr.h.s.convergetoEhha.s.,andsodoesm N(m)a:s:�!Ehh:Ontheotherhand,ergodicityofimpiestheergodicityofP,andtheergodictheoremimpliesN(m) m=1 mm�1Xk=01fXk=hga:s:�!E1fX0=hg=PfX0=hg=h:Comparingtwolastdisplays,weobtainthestatementofthetheorem. 2.INVARIANTMEASURESANDCLASSIFICATIONOFSTATES79Therefore,V(x)1Xn=0PxfA�ng=1Xn=01Xk=n+1PxfA=kg=1Xk=1k�1Xn=0PxfA=kg=1Xk=1kPxfA=kg=ExA:Inparticular,PxfA=1g=0,andwealsoobtainA6=;.Sowehaveprovedthatforallx2Ac,(7.6)ExA1Infact,itimmediatelyfollowsthat(7.6)holdsforallx2X.LetusnowprovethattherearepositiverecurrenctstatesinA.WewilldosobyconstructingaP-invariant nitemeasureonXsuchthat(A)&#x]TJ/;༷ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;0.LetusconsideratransitionmatrixQijonAde nedbyQij=PifXA=jg;i;j;2A:Thistransitionmatrixde nesaMarkovkernelona nitesetA.ByLemma6.1,thereisaQ-invariantprobability.Foralli2X,wede neitobetheaveragetimespentatibytheprocessXduringanexcursionbetweentwoconsecutivevisitstoA,initiatedaccordingtotheinitialdistribution.i=E1Xk=01fXk=i;kg=Xh2Ah1Xk=0PhfXk=i;kg:WeclaimthatthisisaninvariantmeasureforP.Forj=2A,(P)j=Xi2XXh2Ah1Xk=0PhfXk=i;kgPij=Xh2Ah1Xk=0PhfXk+1=j;k+1g=j:Forj2A,(P)j=Xi2XXh2Ah1Xk=0PhfXk=i;kAgPij=Xh2Ah1Xk=0PhfXk+1=j;A=k+1g=Xh2AhPhfXA=jg=Xh2AhQhj=j:This nishestheproofoftheclaimsincej=jforj2A.Since(A)&#x-278;0andallstatescommunicate,i&#x-278;0foralli.Therefore,allstatesarepositiverecurrentbyTheorem7.4. CHAPTER8Moregeneralstatespace.Minorizationconditions.Inthissectionweconsideranarbitrarystatespace(X;X)withoutmak-inganyassumptionsonthecardinalityofX.1.TheDoeblinconditionWesaythatatransitionprobabilityP(;)on(X;X)satis estheDoeblinconditionifthereisaprobabilitymeasureandanumberp2(0;1)on(X;X)suchthatP(x;A)p(A)forallx2XandallA2X.ThemeasureiscalledaminorizingmeasureforkernelP(;).UndertheDoeblincondition,wecanintroduceakernelQ(x;)=()thatisidenticallyequaltoandde neP(x;)=P(x;)�()=P(x;)�pQ(x;):ThenPisasubprobabilitykernel.Definition8.1.AfunctionR:XX![0;1]iscalledasubprobabilitykernelorsub-Markovkernelifi.e.,(i)foreveryx2X,R(x;)isameasureon(X;X)satisfyingR(x;X)1and(ii)foreveryA2X,R(;A)isX-measurable.Theorem8.1.IfDoeblin'sconditionholdstrue,thenthereisaninvari-antmeasure.Proof:WeuseQandPintroducedabovetode ne(8.1)=p1Xn=0Pn=p1Xn=0(P�pQ)n:Thisseriesconvergesandde nesaprobabilitymeasuresince(X)=p1Xn=0(1�p)n=1:Letusprovethatisinvariant.WerepresentP=pQ+(P�pQ),notethatQ=foranymeasureon(X;X),andwriteP=pQ+(P�pQ)=p+p1Xn=0(P�pQ)n+1=p+p1Xn=1(P�pQ)n=p1Xn=0(P�pQ)n=:81 1.THEDOEBLINCONDITION83Theorem7.5,wecantrytoexecutethefollowingprogram:(i) ndasubsetAofaMarkovprocessispositiverecurrent,(ii)provetheDoeblinconditionfortheMarkovprocessobservedonlyattimesitvisitsA,(iii)constructaninvariantdistributionforthis\embedded"Markovprocess,and(iv)usethismeasuretoconstructaninvariantditributionfortheoriginalprocess.HowcanoneensurethatasetAispositiverecurrent?Theorem8.3.LetP(;)beatransitionkernelonaspace(X;X).Sup-posethereareafuctionV:X!R+andasetAXsuchthatforeveryx2A,LV(x)�1.ThenExAV(x)1forallx2Ac.Theproofofthistheoremliterallyrepeatsthe rstpartoftheproofofTheorem7.5.ThesetAcanoftenbechosentobemuchsmallerthanX.LetusconsideranARMA(1)examplewhereP(x;)isgivenbyN(ax;1)witha2(0;1).LetustakeV(x)=x2andcomputePV.LetxN(ax;1).ThenPV(x)=E2x=a2x2+1=a2V(x)+1;OnecaneasilycheckthatPV(x)�V(x)�1ifx&#x]TJ/;༷ ;.9;‘ ;&#xTf 1;.51; 0 ;&#xTd [;p 2=(1�a2),sowecanconcludethatthesetA=fx2R:jxjp 2=(1�a2)gispositiverecurrent.Letusintroducethefollowing(subprobability)kerneloftheembeddedMarkovprocess(observedonlywheninA):Q(x;B)=PxfA1;XA2Bg;x2A;B2XjA:ThisisaprobabilitykernelifPxfA1g=1forallx2A.Thiskerneloftensatis estheDoeblinconditions.Forexample,inourARMAexample,Q(x;B)PxfX12BgcjBj;x2A;B2XjAwherec=minjxj;jyj2A1 p 2e�(x�y)2=2�0:LetusnowunderstandhowtoconstructinvariantdistributionsusingembeddedMarkovprocesses.Theorem8.4.LetP(;)beaprobabilitykernelon(X;X).LetA2Xandameasureon(A;XjA)satisfy(1)EA1.(2)isQ-invariant,whereQisaprobabilitykernelon(A;XjA)de nedbyQ(x;B)=PxfA1;XA2Bg:Thenthemeasurede nedby(B)=E1Xk=01fXk2B;kAg=ZX(dx)1Xk=0PxfXk2B;kAgB2X;is niteandP-invariant. 2.AHARRISPOSITIVERECURRENCECONDITION85SowearegoingtousetheDoeblinconditiontoprovethattheMarkovkernelQ(;)on(A;XjA)de nedbyQ(x;B)=PxfmA1;XmA2Bg:hasaninvariantdistributionandthenapplytheapproachofTheorem8.4.Firstofall,Q(x;B)isindeedaprobabilitykerneldueto(8.3).Letusde ne(B)=ZX(dy)PyfA1;XA2Bg;B2XjA:Thenisaprobabilitymeasureon(A;XjA)dueto(8.3)andCondi-tion(B).SinceQ(x;B)=ZXPm(x;dy)PyfA1;XA2BgZXp(dy)PyfA1;XA2Bg=p(B):thekernelQsatis estheDoeblinconditionandthereisa(unique)Q-invariantmeasure.Nowtoprovetheexistencepart,itremainstoprovethatthefollowingmeasureis niteandP-invariant:(B)=E1Xk=01fXk2B;kmAg=ZX(dx)1Xk=0PxfXk2B;kmAgB2X;andtheproofofthisfollowstheproofofTheorem8.4,althoughsomechangesareneeded.Problem8.1.Prove nitenessandP-invarianceof.Letusproveuniqueness.IftherearetwodistinctP-invariantdistri-butionsgivingpositiveweighttoA,thentherearetwodi erentergodicdistributionsgivingpositiveweighttoA.IfisP-invariant,thenforanyB2X,(B)=Pm(B)ZA(dx)P(x;A)=(A)p(B);sothesemeasurescannotbemutuallysingular,acontradiction.Definition8.2.ThesetAthatappearsintheHarrisconditionisoftencalledasmallsetDefinition8.3.WesaythatA2Xisaccessiblefromx2XifPm(x;A)&#x-278;0forsomem.Letusdenoteallpointsx2XsuchthatAisaccessiblefromxby(A).IfadistributionisP-invariant,then((A))&#x-278;0implies(A)&#x-278;0.So,onecanstrengthenTheorem8.5inthefollowingway: 3.COUPLINGANDCONVERGENCEINTOTALVARIATIONUNDERTHEDOEBLINCONDITION87Letusprovethatisinvariant.Letus rstnoticethatP(B)=ZX(dx)P(x;B)=ZAc(dx)P(x;B)+(1�p)ZA(dx)R(x;B)+pZA(dx)(B)=1Xr=0~PfXr2Ac;Xr+12B;r+1g+1Xr=0~PfXr2A;Xr+12B;r+1g+1Xr=0~PfXr2A;Xr+12B;=r+1g:Nowwe(i)combinethe rsttwosumsintooneand(ii)usetheinvarianceofundertheembeddedMarkovchaintoderive1Xr=0~PfXr2A;Xr+12B;=r+1g=(B):TheresultisP(B)=1Xr=0~PfXr+12B;r+1g+(B)=1Xr=1~PfXr2B;rg+~PfX02B;0g=1Xr=0~PfXr2B;rg=(B);whereweused1inthesecondindentity.3.CouplingandconvergenceintotalvariationundertheDoeblinconditionInthissectionweintroduceaveryimportanttoolcalledcoupling.Theideaistobene tfromrealizingseveralMarkovprocesseswiththesametransitionmechanismononeprobabilityspace.Wewillgiveadi erentproofofuniquenessofproofofuniquenessofaninvariantdistributionundertheDoe-blincondition:Let1and2betwodi erentinvariantdistributions.Letusprovethattheyareequaltoeachotherusingthecouplingmethod.LetusorganizeaMarkovprocesson(XX;XX)withinitialdistribution12andspecialtransitionprobabilitiesP((x1;x2);)thatweproceedtodescribe.So,wearegoingtodescribethedistributionof(X1n+1;X2n+1)conditionedon(X1n;X2n)=(x1;x2). 3.COUPLINGANDCONVERGENCEINTOTALVARIATIONUNDERTHEDOEBLINCONDITION89Theorem8.7.LetDoeblin'sconditionbesatis ed.Ifistheinvariantdistribution(theuniquenessofwhichisguaranteedbyTheorem8.2),thenforanyotherinitialdistribution,kPn�kTV(1�p)n: CHAPTER9Takingthetopologyintoaccount1.FellerpropertyandexistenceofinvariantmeasurestheviaKrylov{BogolyubovapproachSomeregularitypropertiesoftransitionkernelsareconvenienttoformu-lateintermsoftheoperatorPonboundedfunctionsorthesemigroup(Pn)n2Z+generatedbyP.Let(X;d)beametricspacewithBorel-algebraX.Definition9.1.AtransitionprobabilityP(;)on(X;d)isFellerifforeveryboundedcontinuousf:X!R,Pfisalsocontinuous.FellerpropertymeansthatP(x;)iscontinuousinxinthetopologyofweakconvergence.LetusnowstateananalogueoftheKrylov{BogolyubovtheoremforMarkovprocesses.Theorem9.1.Letbeaprobabilitymeasureon(X;X)suchthatthesequence(n)n2Nde nedby(9.1)n=1 nn�1Xj=0Pj=1 nn�1Xj=0Pj;n2Nistight.ThenthereisaP-invariantmeasure.Also,condition(9.1)isguaranteedbytightnessofthesequence(Pn)n2N.Proof:ByProkhorov'stheorem,tightnessimpliesrelativecompactness,sothereisasequencenk"1andaprobabilitymeasuresuchthatnkconvergestoweakly.ToprovethatP=,itissucienttoprove(9.2)Pf=fforallboundedcontinuousfunctionsf.Forsuchafunctionf,theFellerpropertyguaranteesthatPfiscontinuous,soduetotheweakconvergence,91 3.STRONGFELLERPROPERTYANDUNIQUENESS.932.ApplicationstoSDEs,Stochasticheatequation,stochasticNavier{StokesequationWill llinlater.3.StrongFellerpropertyanduniqueness.Definition9.2.Theresolventkernelisde nedbyQ(y;A)=Xn2N2�nPn(y;U);y2X;A2X:Definition9.3.Thesupportofaprobabilitymeasureon(X;X)de-notedbysuppconsistsofallpointsx2XsuchthatforeveryopensetUcontainingx,(U)�0Definition9.4.Apointx2XiscalledP-acccessibleifforally2X,x2suppQ(y;).ThesetofallP-accessiblepointswillbedenotedbyAcc(P).Lemma9.1.ForeveryP-invariantmeasure,Acc(P)supp().Proof:Since=P,wecomputeQ=Xn2N2�nPn=Xn2N2�n=;i.e.,isalsoinvariantunderQ.Therefore,foreveryx2Acc(P)andeveryopensetUcontainingx,weobtain(U)=ZX(dy)Q(y;U)�0:Definition9.5.ThekernelPiscalledstrongFellerifforeveryboundedmeasurablefunctionf:X!R,Pfisacontinuousfunction.Animmediatecorollaryofthisde nitionisthatforastrongFellerkernelPandanysetA2X,P(x;A)=P1A(x)isacontinuousfunction.WhiletheusualFellerpropertymeansthatP(x;)convergestoP(y;)weaklyasx!y,thestrongFellerpropertymeansconvergencealmostasstrongastotalvariationconvergence.Anycontinuousdeterministicmap:X!XgeneratesaMarkovkernelP(x;)=(x)thatisFellerbutnotstrongFeller.OnecanalsosaythatstrongFellertransitionprobabilitiesimprovetheregularitybysmootheningwhereastheusualFellerkernelsonlypreservetheregularity.OneobviousconsequenceofthestrongFellerpropertyisthatifP(x;A)�0forsomexandA,thenP(y;A)�0forallythataresucientlyclosetox.InparticularP(x;)andP(y;)cannotbemutuallysingularifxandyarecloseenough. CHAPTER10Randomdynamics1.StabilityinstochasticdynamicsLetusbeginwithaverysimpleexample,adeterministiclineardynam-icalsystemwithonestable xedpoint.WetakethephasespaceXtobethereallineRandde nethetransfor-mationf:R!Rbyf(x)=ax;x2R,whereaisarealnumberbetween0and1.Toanypointx2Xonecanassociateitsforwardorbit(xn)1n=0,wherexn=fn(x),n0.Inthissimpleexample,theanalysisoftheasymptoticbehavioroftheforwardorbit(xn)1n=0asn!1,isstraightforwardanddoesnotrequireergodictheory.Namely,zeroisaunique xedpointofthetransformation:f(0)=0,andsincexn=anx,n2Nanda2(0;1)weconcludethatasn!1,xnconvergestothat xedpointexponentiallyfast.Therefore,0isastable xedpoint,oraone-pointglobalattractorforthedynamicalsystem(R;f).Inotherwords,thedomainofattractioncoincideswithR.So,duetothecontractionthatispresentinthemapf,thereisafastlossofmemoryinthesystem,andnomatterwhattheinitialconditionis,itgetsforgotteninthelongrunandthepointsxn=fn(x)approachthestableequilibrium0asn!1.Sofarwehavebeenassumingthattheevolutionbeginsattime0,butthepicturewouldnotchangeifweassumethattheevolutionbeginsatanyotherstartingtimen02Z.Infact,sincethemapfisinvertibleinourexample,thefull(two-sided)orbit(xn)n2Z=(fnx)n2ZindexedbyZiswell-de nedforanyx2R.Letusnowmodifythedynamicalsystemofour rstexamplealittlebyaddingnoise,i.e.,arandomperturbationthatwillkickthesystemoutofequilibrium.TheresultingmodelisoftencalledARMA(1)(Autoregressivemovingaveragemodeloforder1).Letusconsidersomeprobabilityspace( ;F;P)richenoughtosupportasequence(n)n2ZofindependentGaussianrandomvariableswithmean0andvariance2.Foreveryn2Zwewillnowde nearandommapfn;!:R!Rbyfn;!(x)=ax+n(!):Anaturalanalogueofaforwardorbitfromour rstexamplewouldbeastochasticprocess(Xn)nn0emittedattimen0frompointx,i.e.,satisfying95 1.STABILITYINSTOCHASTICDYNAMICS972=D,i.e.,D=2=(1�a2).Therefore,thecenteredGaussiandistributionwithvariance2=(1�a2)isinvariantandgivesrisetoastationaryprocess.Thereareseveralwaystoestablishuniquenessofthisinvariantdistribution,e.g.,thecelebratedcouplingmethodintroducedbyDoeblinin1930'swhichalsoallowstoprovethatforanydeterministicinitialdata,thedistributionofXnconvergesexponentiallyfasttotheuniqueinvariantdistributionintotalvariationasn!1.Anotherwaytoapproachstabilityisstudyingrandomattractors.Letusconvinceourselvesthatinourexample,therandomattractorcontainsonlyonepointandthatpointisaglobalsolution(Xn)n2Zde nedbyXn=X(n;n�1;n�2;:::)=n+an�1+a2n�2+::::Clearly,thisseriesconvergeswithprobability1.Moreover,foranyn2Z,aXn�1+n=n+a(n�1+an�2+a2n�3+:::)=n+an�1+a2n�2+a3n�3+:::=Xn;and(Xn)n2Zisindeedatwo-sidedorbit,i.e.,aglobal(intime)solutionofequation(10.1)de nedontheentireZ.NoticethatXnisafunctionalofthehistoryoftheprocessuptotimen.Sincetheprocessisstationary,thusconstructed(Xn)n2Zisalsoastationaryprocess.Infact,XniscenteredGaussianwithvariance2+a22+a42+:::=2=(1�a2);whichcon rmsourpreviouscomputationoftheinvariantdistribution.Letusnowinterprettheglobalsolution(Xn)n2Zasaglobalattractor.Weknowfromthecontractionestimate(10.2)thatforanyx2R,(10.3)jm;n(x)�Xnj=jm;n(x)�m;n(Xm)j=an�mjx�Xmj:UsingthestationarityofXmandapplyingintegrationbyparts,weseethatXm0PfjXmj&#x]TJ/;༴ ;.97; T; 14;&#x.077;&#x 0 T; [0;jmjgXm0PfjX0j&#x]TJ/;༴ ;.97; T; 14;&#x.077;&#x 0 T; [0;jmjgEjX0j1:TheBorel{CantellilemmaimpliesnowthatXmgrowsatmostlinearlyinm(infact,onecanprovemuchbetterestimatesonthegrowthrateofXmsinceitisaGaussianstationaryprocess),and(10.3)impliesthatforanyx2R,limm!�1jm;n(x)�Xnj=0:Inwords,ifwe xaninititalconditionxandruntherandomdynamicsfromtimemtotimen,thentheresultofthisevolutionconvergestothespecialglobalsolutionXnaswepullthestartingtimembackto�1.Thisallowsustocall(Xn)n2Zaone-pointpullbackattractorforourrandomdynamicalsystem.Pullbackattractorswereintroducedin[CF94],[CDF97],[Sch94]. 2.MARKOVPROCESSESANDRANDOMTRANSFORMATIONS99Xk=fk(Xk�1)=F(Xk�1;fk).Foranyk,thusconstructedfunctionsXkarerandomvariableson(X ;XF)whichfollowsfromaninductiveargument.Infact,Xn(x;!)=xisarandomvariable,andifXk�1(x;!)isarandomvariable,thenXk(x;!)=fk;!(Xk�1(x;!))=F(fk;!;Xk�1(x;!));andXkismeasurableasacompositionofmeasurablemaps.Itisalsoconvenienttowrite(10.4)Xk(x;!)=n;k!(x);!2 ;x2X;kn;where(10.5)n;k!(x)=fk;!:::fn+2;!fn+1;!(x);x2X;kn:Letustakeanyk2Zanddenote(10.6)P(x;A)=Pf!:fk;!(x)=Ag:Duetoi.i.d.property,thisde nitiondoesnotdependonthechoiceofk.Lemma10.1.Thusde nedP(;)isaprobabilitykernel.Proof:Inthisproofwechoosek=1andworkwithf1.ThefactthatP(x;)isaprobabilitymeasurefollowssincePisaprobabilitymeasure.IfA2X,thenF�1A=f(x;f):f(x)2Ag2XF.DenotingbyPf�11thepushforwardofPontoFbyf1,weseethat,forx2X,P(x;A)isthemeasureassignedbyPf�11tothex-sectionofF�1A,i.e.,ff:f(x)2Ag.(RelatedtoFubini'stheorem,butisthattherightreference?Proofin[Kif86],startingwithrectangles)Suchfunctionsaremeasurable.Lemma10.2.Foranyboundedmeasurablefunctiong:X!R,ZXP(x;dy)g(y)=Eg(f1;!(x));x2X:Proof:Thelemmaholdsforindicatorfunctionsg=1A,A2X,dueto(10.6).Itholdsbylinearityforsimplefunctions,andthenforgeneralfunctionsbyuniformapproximationwithsimplefunctions.Theorem10.1.Theprocess(Xk)knde nedin(10.4)isahomogeneousMarkovprocesswithinitialdistributionandtransitionkernelP.Proof:Letusproveformula(5.1)byinductionassumingn=0withoutlossofgenerality.Form=0,theformulaistriviallytrue.Letusnowassumethatthelemmaholdsformreplacedbym�10.ThenPfX02A0;:::;Xm2Amg=E1X02A0:::1Xm�12Am�11fm;!(Xm�1)2Am:DenotingG=(X0;:::;Xm�1),weobtainPfX02A0;:::;Xm2Amg=E1X02A0:::1Xm�12Am�1E[1fm;!(Xm�1)2AmjG]: 10210.RANDOMDYNAMICSLetusnowsummarizetheconstructionintroducedinthissection.Atdi erenttimes,theevolutioninXisgovernedbydi erenttransformationschosenfroma\commonpool",atransformationspaceF.Thesetransforma-tionsformanF-valuedstationaryprocessand,whenstudyingtheevolutioninX,itisconvenientalsotokeeptrackofthatstationaryprocess.WehaveastatespaceXequippedwitha-algebraXandasetFofX-measurabletransformationsequippedwitha-algebraFandamea-sureQonF.Themaincanonicalprobabilityspace( ;F;P)willbethen(FZ;FZ;QZ)or(FN;FN;QN).Theshiftoperator: ! givenby(!)i=!i+1,i2Z,or,respectively,i2N,preservesP.Itisconvenienttoidentifyrandomtransformationswithcoordinatesof!,sowecanwritef!=!1.Wealsointroduce(F;F)-valuedrandomvariables(fn)n2Zde nedbyfn;!=!n=fn�1!.Theyarei.i.d.withcommondistributionQ.ThejointevolutioninXand isgivenbythefollowingskewproducttransformation:X !X de nedby(10.7)(x;!)=(f!x;!)=(!1x;!):Thusthespace(X ;XF)equippedwithtransformationisausualdynamicalsystem.Iterationsofaregivenbyn(x;!)=(0;n!x;n!)=(!0;nx;n!);wheretransformationsn;m!havebeende nedin(10.5)and!m;n=!n:::!m+1:Skewproductssatisfythefollowingcocycleproperty:(10.8)0;m1+m2!(x)=0;m2m1!0;m1!;or(10.9)!0;m1+m2(x)=(m1!)0;m2!0;m1:Ingeneral,onecanstudyrandomdynamicalsystemsasskew-productssatisfyingthecocyclepropertywithoutintroducingproductmeasuresasaboveoranykindofmeasures.Forexample,linearizationofdi erentiablemaps.Supposef:Rd!Rdisadi erentiablemap.LetusdenotebyAx=Df(x)theJacobimatrixofpartialderivativesoffatapointx2Rd.Then,foranyn2N,onecanusethechainruletowritethedi erentialoffnatapointxappliedtoavectorv2RdasDfn(x)v=Afn�1xAfn�2x:::AfxAxv:3.InvariantmeasuresSupposewehavean(X;X)-valuedMarkovprocess(Xk)k0withone-steptransitionprobabilityfunctionP(;).IfthedistributionofX0isgivenbyameasure,thenPfX12Ag=P(A);A2X; 10410.RANDOMDYNAMICSand(ii)projectsontoPunderthecanonicalprojectionX ! ,i.e.(10.13)(XA)=P(A);A2F:Theorem10.4([Ohn83]).AprobabilitymeasureisinvariantforP(;)ifandonlyifPisinvariantfor.(Also,theprojectionofPonto isP.)Proof:SupposePis-invariant.Letustakeanyboundedmeasurablefunctiong:X!Randcheck(10.11).InthefollowingcalculationweintroduceafunctionG(x;!)=g(x):ZX(dx)ZXP(x;dy)g(y)=ZX(dx)Eg(!1x)=ZX (P)(dx;d!)g(!1x)=ZX (P)(dx;d!)G(!1x;!)=ZX (P)(dx;d!)G((x;!))=ZX (P)(dx;d!)G(x;!)=ZX (P)(dx;d!)g(x)=ZX(dx)g(x):SupposenowthatisP(;)-invariant.Itissucienttocheck(10.12)forindicatorsofrectangles,i.e.,g(x;!)=1x2A1!2B.Theleft-handsideof(10.12)equals(A)P(B).Letuscomputetheright-handside:ZX (P)(dx;d!)g((x;!))=ZX (P)(dx;d!)g(!1x;!)=ZX(dx)Z P(d!)1!1x2A1!2BSince!1and!areindependentunderP=QN,ther.h.s.equals=ZX(dx)ZXQ(d!1)1!1(x)2AZXf2;3;:::gQf2;3;:::g(d!2;d!3:::)1(!2;!3:::)2B=ZX(dx)P(x;A)Pf!2Bg=(A)P(B);andthelemmaisproved.Inthecaseof( ;F;P)=(FZ;FZ;QZ),relation(10.12)canbederivedinthesamewayfor=Pfrominvarianceof,butonlyforfunctionsgthatdonotdependonthepast,i.e.,g(x;(:::!�1;!0;!1;!2:::))=g(x;(!1;!2;:::)):However,Pdoesnothavetobeinvariantinthiscase,anditisactuallynaturaltoexpectinvariantdistributionsnottohavetheproductstructuresincethestateofthesysteminxislargelydeterminedbythedynamicsinthepastde nedby(:::;!�2;!�1;!0)whereasproductstructurewouldmeanindependenceofthestateandthenoiseinput. 10610.RANDOMDYNAMICSthereisaninvariantmeasureoftherandomdynamicalsystemwithnon-anticipatingsamplemeasuressuchthat(B)=(B )=Z !(B)P(d!):Proof:Letustakeanyboundedmeasurablefunctiong:X!Randde nePn;!(g)=ZX(dx)g(!�n;0x):Inparticular,(10.17)Pn;!(B)=Pn;!(1B)de nesaprobabilitymeasurePn;!on(X;X).Thesequenceofthesemea-suresistight,soitalwayshaslimitpoints.Letusidentifythem.LetusprovethatPn;!(g)isamartingalewithrespectto(Gn)n2N,whereGn=(!�n+1;:::;!0).WeneedtocheckthatforeveryFn-measurablefunctionh,EPn;!(g)h(!�n+1;:::;!0)=EPn+1;!(g)h(!�n+1;:::;!0):Theright-handsideequals(10.18)ZX(dx)Eg(!�n�1;0x)h(!�n+1;:::;!0)=ZX(dx)EF((!�n+1;:::;!0);!�nx);whereF((!�n+1;:::;!0);y)=g(!0:::!�n+1y)h(!�n+1;:::;!0):Since!�nxisindependentof(!�n+1;:::;!0),EF((!�n+1;:::;!0);!�nx)=Ea(!�nx);wherea(y)=EF((!�n+1;:::;!0);y):So,theright-handsideof(10.18)equalsEZX(dx)a(!�nx)=ZX(dx)a(x)=ZX(dx)EF((!�n+1;:::;!0);x)=ZX(dx)Eg(!0:::!�n+1x)h(!�n+1;:::;!0)=EPn;!(g)h(!�n+1;:::;!0);andourclaimisestablished.NoticethatPn;!(g)isaboundedmartingale.Therefore,ita.s.convergestoarandomvariableG[g],measurablew.r.t.F�.Letusnowtakeadensesetfgngn2NinC(X).ThealgebraRgeneratedbythissetoverQisalsoacountableset.ForeveryY2R,G[Y]isana.s.-limitofPn;!(Y).Letusnowconsiderthefollowingcountablesetofconditions: 10810.RANDOMDYNAMICSDefinition10.4.LetP(;)beaprobabilitykernelon(X;X)andletbeaprobabilitymeasureon(X;X).AboundedX-measurablefunctiongoniscalled(P;)-invariantifPg=ga.s.w.r.t..Definition10.5.LetP(;)beaprobabilitykernelon(X;X).AP-invariantprobabilitymeasureon(X;X)iscalledergodicifany(P;)-invariantfunctionis-a.s.constant.Ergodicityofmeasureson(X ;XF)underdeterministictransfor-mationhasbeende nedinthe rstpartofthesenotes.Infactitwasde nedintermsofnonexistenceofnontrivialinvariantsets.Definition10.6.LetP(;)beaprobabilitykernelon(X;X)andletbeaprobabilitymeasureon(X;X).AsetAiscalled(P;)-invariantif1Aisa(P;)-invariantfunction.Lemma10.5.AsetA2Xis(;P)-invariantifandonlyifAcis(;P)-invariant.Theorem10.8.LetP(;)beaprobabilitykernelon(X;X).AP-invariantprobabilitymeasureon(X;X)isergodici any(P;)-invariantsetAsatis es(A)2f0;1g.Proof:Oneoftheimplicationsisobvious.Letusprovetheotherone.Supposethatgisa(P;)-invariantfunction.Letusprovethatforanyathesetfx:g(x)�agis(P;)-invariant.Tothatend rstweprovethatifgis(P;)-invariantthenjgjis(P;)-invariant.Toseethat,wecanwritejgj=jPgjPjgj.Since,inadditionP-invarianceofimpliesR(Pjgj�jgj)d=0,weconcludethatPjgj=jgj-a.s.Theng+=(g+jgj)=2isalso(P;)-invariant.Also,ifg1andg2are(P;)-invariant,theng1�g2is(P;)-invariantandsoareg1_g2=(g1�g2)_0+g2andg1^g2=�((�g1)_(�g2)).Since1is(P;)-invariant,weconcludefromalloftheabovepropertiesthat(n(g�a)+)^1,n2Nisasequenceof(P;)-invariantfunctions.Therefore,theindicatoroffx:g(x)�agbeingthepointwiselimitofthissequenceisalso(P;)-invariant.Sinceindicatorsofsetsfx:g(x)�agforalla2Qareinvariant,allthesesetshave-measure0or1.Therefore,gis-a.s.constantTheorem10.9.AP-invariantmeasureisergodici Pisergodicon(X ;XF),where( ;F;P)=(FN;FN;QN).Proof:Letus rstassumethatPisergodic.SupposethenthatPg=g-a.s.andisnotaconstant-a.s.Thenthereisanumbercsuchthat(B)=2f0;1gwhereB=fx:g(x)cg.Thissetis(P;)-invariantasfollowsfromtheproofofTheorem10.8.So,1B(x)=P1B(x)=ZF1B(f(x))Q(df): 11010.RANDOMDYNAMICS(A)=ZX(dx)x(A);A2X;forsomekernel()on(X;X).For-almostallx,themeasurex()isergodic.Similarstatementsholdtrueforrandomdynamicalsystems5.AuxiliarystatementsLetP(;)beakernelon(X;X).Foraprobabilitymeasureon(X;X)wedenotebyPthemeasureconstructedin(5.1).Forapointx2XwedenotePx=Px.WeknowthatifthemeasureisinvariantunderP,thenPde nesastationaryprocesson(XZ+;XZ+).Inotherwords,Pisinvariantunderthestandardshifton(XZ+;XZ+).Inthefollowinglemmawedescribeaone-to-onecorrespondencebetweeninvariantsetsfortwosystems.Lemma10.6.SupposeisaP-invariantmeasure.If(A)2(0;1),thenAis(;P)-invariant.Proof:If(A)=0,thenthestatementisobvious.If(A)=1,then0=(Ac)=ZX(dx)P(x;Ac);andweobtainthatP(x;Ac)=0for-almostallx.Theorem10.11.SupposeisaninvariantmeasureforakernelP(;)on(X;X).(1)SupposeA2Xis(;P)-invariant.ThenthesetAZ+=AA:::is-almostinvariantw.r.t.P.(2)IfasetB2(XZ+;XZ+)is-almostinvariantw.r.t.P,thenthereisasetA2Xsuchthat(10.19)BP=AZ+:5.1.Structureofinvariantsetsonthecanonicalspace.SupposeP(;)isaprobabilitykernelon(X;X)andsupposeisaP-invariantmea-sureon.(X;X).Thenonecanconstructameasureon(XZ;XZ)accordingto(5.1).Namely,one rstconstructs nite-dimensionaldistributionsindexedbyfn;:::;mgwheren;m2Zandnm,andthenonehastonotethatthese nite-dimensionaldistributionsareconsistentduetotheinvarianceof.Kolmogorov'sconsistencytheoremguaranteestheexistenceofameasureQon(XZ;XZ)withtheprescribedfamilyof nite-deimensionaldistribu-tions.Thecoordinateprocess(Xk)k2Zisastationaryprocessthen,soQisinvariantundertheshift:XZ!XZde nedby(x)k=xk+1;x=(:::;x�1;x0;x1;:::);k2Z:Infactisinvertibleanditgeneratesagroupoftransformationsde nedby(nx)k=xk+1;x=(:::;x�1;x0;x1;:::);k2Z;n2Z: 11210.RANDOMDYNAMICSWewilldenotebyFm;nthe-algebrageneratedbyr.v.'sXm;:::;Xnforanyn;m2Zsatisfyingnm.WedenoteI=I(XZ;XZ;Q;)andwedenotebyI(;P)the-algebraof(;P)-invariantsets.Theorem10.12.IconsistsofallsetsBsuchthatthereisa(;P)-invariantsetA2Xsuchthat(10.20)BP=fx2XZ:x02Ag:Thelatterconditionona(;P)-invariantsetA2Xisequivalentto(10.21)BP=AZ:Proof:Weadaptthefollowingprooffrom[Ros71,SectionIV.2].First,supposeA2I(;P).Thenforanyn2N,QfX�n2A;:::;Xn2Ag=ZA(dx�n)ZAP(x�n;dx�n+1):::ZAP(xn�1;dxn)=(A):LetusdenoteB=AZ.Thissetisclearly-invariant.SinceBisthecountableintersectionofcylindersofthesamemeasure(A),weobtainQ(AZ)=(A).Also,Qfx2XZ:x02Ag=(A)byconstructionofQ,so(10.20)holds.SupposeBisinvariantunder.Thenitisautomaticallyinvariantun-dernforalln2Z.Letus xk2NandapproximateBbyacylinderwithanerroratmost1=k.Namely,letus ndnumbersm;n2Zsatisfyingm0n,andasetBk2Fm;nsuchthatQ(Bk4B)1=k.FromtheinvarianceofBandinvarianceofQunder,weobtainalsoQ(mBk4B)1=kandQ(nBk4B)1=kThiscanberewrittenas(10.22)EQ(1mBk�1B)21 k:(10.23)EQ(1nBk�1B)21 k:Fromthesetwoinequalitiesweobtain(10.24)EQ(1nBk�1mB)24 k:TheminimumoftheexpressionEP(1mBk�)2amongF�1;0-measurablerandomvariablesisgivenbyk=EQ(1mBkjF�1;0)=EQ(1mBkjX0):Since1nBkisF�1;0measurable,weobtainfrom(10.22):(10.25)EQ(1mBk�k)24 k: 11410.RANDOMDYNAMICSProof:Letbethenaturalprojection(resatrictionoperator)fromXZtoXZ+.ThenP=Q�1.SupposethereisanalmostinvariantsetB2XZ.LetususeTheo-rem(10.12)to ndA2Xsuchthattherepresentations(10.20)and(10.21)hold.ThenBBQ=fx2XZ:xk2Aforallk2Z+g:Therefore,B=AZ+andB=�1AZ+.Clearly,A 11611.INVARIANTDISTRIBUTIONSINDISCRETESPACESwherePk+(respectively,Pk�)denotesthesumovernonnegative(respec-tively,negative)valuesofPn0(a;k)�Pn0(b;k).SincePkPn0ak=PkPn0bk=1,wehaveXk+(Pn0ak�Pn0bk)+Xk�(Pn0ak�Pn0bk)=0;so,Xk�(Pn0ak�Pn0bk)=�Xk+(Pn0ak�Pn0bk);and(11.3)Mn(j)�mn(j)(Mn�n0(j)�mn�n0(j))supa;bXk+(Pn0ak�Pn0bk):WeclaimthatPk+(Pn0ak�Pn0bk)1�foralla;b.Infact,ifj0isnotincludedinthesummationPk+,thenXk+(Pn0ak�Pn0bk)XkPn0ak�Pn0aj01�:Ifj0isincludedinthesummationPk+,thenXk+(Pn0ak�Pn0bk)XkPn0ak�Pn0bj01�;soourclaimisestablishedandfrom(11.3)andmonotonicityofMandm,weconcludebyinductionthatMn(j)�mn(j)(1�)[n=n0].This,alongwithmonotonicityandboundednessofMn(j)andmn(j),impliesnowthatthereisacommonlimit(j)forMn(j)andmn(j),and,moreover,jMn(j)�(j)j(1�)[n=n0]andjmn(j)�(j)j(1�)[n=n0].InvarianceofundertheactionofPfollowsbytakingn!1onbothsidesofPn+1ij=PnikPkj.2.EntropyapproachThisproofisbasedonthefactthatrelativeentropyofaMarkovchainismonotoneintime.Wefollow[Lig05]closely.LetandbetwoprobabilitydistributionsonX=f1;:::;Ng.Wede netherelativeentropy(alsoknownasKullback{Leiblerdivergence)ofwithrespecttobyH(j)=NXi=1(i)ln(i) (i):Introducing'(x)=(xlnx;x�0;0;x=0; 11811.INVARIANTDISTRIBUTIONSINDISCRETESPACESisaninvariantdistribution.Letbeoneoftheselimitpoints.Thenforeveryi2X,(i)�0since(i)P(j)Pm(j;i)�0.Sowecanap-plyLemma11.1andconcludethatforanydistributiononX,H(Pnj)isanonincreasingfunction.ContinuityofHimpliesthatifthereisase-quencen0!1suchthatPn0convergestoadistribution,H(j)=limn!1H(Pnj).Ontheotherhand,foranyk2N,Pk=limPn0+k,soH(Pkj)=limn!1H(Pnj)=H(j).ApplyingLemma11.1andtheconditionofthetheoremweconcludethat=.SowejustprovedthateverypartiallimitofPnequals,andthetheoremfollows.3.CouplingLetusproveaslightlyweakerversionofTheorem11.1usingamethodcalledcouplingthatwasintroducedbyW.Doeblin[Doe38].LetusintroduceaMarkovprocess(Xn;Yn)onXXwiththefollowingproperties:(i)XnandYnevolveindependentlyandaccordingtotransitionprobabilitiesPijuntilthemomentwhenXn=Yn;(ii)fromthatpointon,theprocessesXnandYnevolvetogether,stayingequaltoeachotherforallfuturetimes,andtheevolutionstillhappensaccordingtotransitionprobabilitiesPij.Todescribethismoreformally,weneedtointroduceatransitionprob-abilityQ(i1;i2);(j1;j2)onXXbyQ(i1;i2);(j1;j2)=8�&#x]TJ ;� -1; .63; Td;&#x [00;:Pi1j1Pi2j2;i16=i2;Pi1j1;i1=i2;j1=j2;0;i1=i2;j16=j2:NoticethatthecomponentsXnandYnoftheresultingMarkovprocessareMarkovprocesseswithtransitionprobabilitiesP:foranyi1;j12X,PfXn+1=j1;Xn=i1g=Xi2;j2PfXn+1=j1;Yn+1=j2;Xn=i1;Yn=i2g=Xi2;j2PfXn=i1;Yn=i2gQ(i1;i2);(j1;j2)=Xi26=i1Xj2PfXn=i1;Yn=i2gPi1j1Pi2j2+PfXn=i1;Yn=i1gPi1j1=Xi26=i1PfXn=i1;Yn=i2gPi1j1+PfXn=i1;Yn=i1gPi1j1=PfXn=i1gPi1j1;andasimilarcomputationisvalidforP(Yn+1=j2;jYn=i2)=Pi2;j2foralli2;j22X. 124BIBLIOGRAPHY[Hal60]PaulR.Halmos.Lecturesonergodictheory.ChelseaPublishingCo.,NewYork,1960.[Har56]T.E.Harris.TheexistenceofstationarymeasuresforcertainMarkovprocesses.InProceedingsoftheThirdBerkeleySymposiumonMathematicalStatisticsandProbability,1954{1955,vol.II,pages113{124.UniversityofCaliforniaPress,BerkeleyandLosAngeles,1956.[Kam82]TeturoKamae.Asimpleproofoftheergodictheoremusingnonstandardanal-ysis.IsraelJ.Math.,42(4):284{290,1982.[KH95]AnatoleKatokandBorisHasselblatt.Introductiontothemoderntheoryofdy-namicalsystems,volume54ofEncyclopediaofMathematicsanditsApplications.CambridgeUniversityPress,Cambridge,1995.WithasupplementarychapterbyKatokandLeonardoMendoza.[Kif86]YuriKifer.Ergodictheoryofrandomtransformations,volume10ofProgressinProbabilityandStatistics.BirkhauserBostonInc.,Boston,MA,1986.[Kin73]J.F.C.Kingman.Subadditiveergodictheory.Ann.Probability,1:883{909,1973.WithdiscussionbyD.L.Burkholder,DarylDaley,H.Kesten,P.Ney,FrankSpitzerandJ.M.Hammersley,andareplybytheauthor.[Kol50]A.N.Kolmogorov.FoundationsoftheTheoryofProbability(TranslationofGrundbegri ederWahrscheinlichkeitsrechnung,Springer,Berlin,1933.).ChelseaPublishingCompany,NewYork,N.Y.,1950.[Koo31]B.O.Koopman.HamiltonianSystemsandTransformationsinHilbertSpace.ProceedingsoftheNationalAcademyofScience,17:315{318,May1931.[KS07]LeonidB.KoralovandYakovG.Sinai.Theoryofprobabilityandrandompro-cesses.Universitext.Springer,Berlin,secondedition,2007.[KT09]K.KhaninandA.Teplinsky.Herman'stheoryrevisited.Invent.Math.,178(2):333{344,2009.[Kur66]K.Kuratowski.Topology.Vol.I.Newedition,revisedandaugmented.TranslatedfromtheFrenchbyJ.Jaworowski.AcademicPress,NewYork,1966.[KW82]YitzhakKatznelsonandBenjaminWeiss.Asimpleproofofsomeergodictheo-rems.IsraelJ.Math.,42(4):291{296,1982.[Lal10]StevenP.Lalley.Kingman'ssubadditiveergodictheorem.http://galton.uchicago.edu/~lalley/Courses/Graz/Kingman.pdf,2010.[Lig05]ThomasM.Liggett.Interactingparticlesystems.ClassicsinMathematics.Springer-Verlag,Berlin,2005.Reprintofthe1985original.[Mol68]S.A.Molcanov.ThestrongFellerpropertyofdi usionprocessesonsmoothmanifolds.Teor.Verojatnost.iPrimenen.,13:493{498,1968.[MT09]SeanMeynandRichardL.Tweedie.Markovchainsandstochasticstability.Cam-bridgeUniversityPress,Cambridge,secondedition,2009.WithaprologuebyPeterW.Glynn.[Num78]E.Nummelin.AsplittingtechniqueforHarrisrecurrentMarkovchains.Z.Wahrsch.Verw.Gebiete,43(4):309{318,1978.[Num84]EsaNummelin.GeneralirreducibleMarkovchainsandnonnegativeoperators,volume83ofCambridgeTractsinMathematics.CambridgeUniversityPress,Cambridge,1984.[Ohn83]TaijiroOhno.Asymptoticbehaviorsofdynamicalsystemswithrandomparam-eters.Publ.Res.Inst.Math.Sci.,19(1):83{98,1983.[Poi90]HenriPoincare.Surleproblemedestroiscorpsetlesequationsdeladynamique.ActaMathematica,13:1{270,1890.[Poi99]HenriPoincare.Lesmethodesnouvellesdelamecaniqueceleste,Volume3.Gauthier-Villars,Paris,1899.[Ros71]MurrayRosenblatt.Markovprocesses.Structureandasymptoticbehavior.Springer-Verlag,NewYork-Heidelberg,1971.DieGrundlehrendermathematis-chenWissenschaften,Band184.

Related Contents


Next Show more