/
Chapter  Microscopic Reversibility The Principle of Microscopic Reversibility was formulated Chapter  Microscopic Reversibility The Principle of Microscopic Reversibility was formulated

Chapter Microscopic Reversibility The Principle of Microscopic Reversibility was formulated - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
500 views
Uploaded On 2014-12-20

Chapter Microscopic Reversibility The Principle of Microscopic Reversibility was formulated - PPT Presentation

Applying this concept to macroscopic systems at local equilibrium leads to the rule of detailed balances Sect 22 and then assuming linear relations between thermodynamic forces and 64258uxes to the formulation of the celebrated reciprocity relation ID: 27056

Applying this concept

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter Microscopic Reversibility The P..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter2 MicroscopicReversibility The PrincipleofMicroscopicReversibility wasformulatedbyRichardTolman[ 14 ] whostatedthat,atequilibrium,“anymolecularprocessandthereverseofthatpro- cesswillbetakingplaceontheaverageatthesamerate”.Applyingthisconcept tomacroscopicsystemsatlocalequilibriumleadstotheruleof detailedbalances (Sect. 2.2 uxes,totheformulationofthecelebratedreciprocityrelations(Sect. 2.3 )derived byLarsOnsagerin1931,andtheuctuation-dissipationtheorem,(Sect. 2.4 )proved byHerbertCallenandTheodoreWeltonin1951.Inthischapter,thisvastsubject matteristreatedwithacriticalattitude,stressingallthehypothesesandtheirlimi- tations. 2.1ProbabilityDistributions Dene: € ( x ,t) thattherandomvariable x (t) hasacertainvalue x attime t . 1 € Thejointprobability ( x 2 ,t 2 ; x 1 ,t 1 ) thattherandomvariable x (t) hasacertain value x 2 = x (t 2 ) attime t 2 and,also,thatithasanothervalue x 1 = x (t 1 attime t 1 . € Theconditionalprobability ( x 2 ,t 2 | x 1 ,t 1 ) thatarandomvariable x hasacertain value x 2 = x 2 ) attime t 2 ,providedthatatanother(i.e.previous)time t 1 ithasa value x 1 = x (t 1 ) . Bydenition,when t 2 �t 1 , x 2 ,t 2 ; x 1 ,t 1 ) = ( x 2 ,t 2 | x 1 ,t 1 )( x 1 ,t 1 (2.1) 1 Hereandinthefollowing,weusethesamenotation, x ,toindicateboththerandomvariableand thevaluethatitcanassume.Wheneverthismightbeconfusing,differentsymbolswillbeused. R.Mauri, Non-EquilibriumThermodynamicsinMultiphaseFlows , SoftandBiologicalMatter,DOI 10.1007/978-94-007-5461-4_2 , ©SpringerScience+BusinessMediaDordrecht2013 13 142MicroscopicReversibilityInastationaryprocessallprobabilitydistributionsareinvariantunderatime.Thereforeforstationaryprocessesthethreedistributionfunc-tionssimplifyasfollows.,t)independentof.Inthefollowing,whenthereisnoambiguity,thetime0willbeIftheprocessisalsohomogeneous,thenallprobabilitydistributionsareinvari-antunderaspacetranslation.Thereforeforstationaryhomogeneousprocessesthethreedistributionfunctionssimplifyasfollows.independentof,),).Notethatforstationaryandhomogeneousprocessesthejointprobabilityandtheconditionalprobabilityareequaltoeachother;infact,theratiobetweenthemisgivenbythesimpleprobability,whichinthiscaseisaconstant.Now,letusconsiderastationaryprocess.Itsprobabilitydistributionfunctionsarenormalizedasfollows:Consequently,showingthat,since0,wehaveBasedonthesedenitions,foranyfunctionswecandenetheaverages,)()g()g()(.Obviously,whiletherstaverageisaconstant,thesecondisafunctionof 2.2MicroscopicReversibility15Wecanalsodenetheconditionalaverageofanyfunctionsoftherandomvariable(t)asthemeanvalueofattime,assumingthat,i.e.,.e.,x,|x0,0]dx.(2.7)ThisconditionalaveragedependsonandonNow,substituting()into(),weobtainthefollowingequality,)g()g()()(thatis:)g(2.2MicroscopicReversibilityForaclassical-bodysystemwithconservativeforces,microscopicreversibilityisaconsequenceoftheinvarianceoftheequationsofmotionundertimereversalandsimplymeansthatforeverymicroscopicmotionreversingallparticlevelocitiesalsoyieldasolution.Moreprecisely,theequationsofmotionofanparticlesystemareinvariantunderthetransformationarethepositionsandthevelocitiesoftheThisleadstotheso-calledprincipleofdetailedbalance,statingthatinastationarysituationeachpossibletransitionbalanceswiththetimereversed,sothat,(),()(),()AswesawinSect.,thissameconditioncanbeappliedwhenwedealwiththermodynamic,coarsegrainedvariablesatlocalequilibrium,i.e.whenfluctfluctisthetypicaluctuationtime.Infact,forsuchveryshorttimes,forwardmotionisindistinguishablefrombackwardmotion,astheybothareindistinguish-ablefromuctuations.First,letusconsidervariables(t)thatareinvariantundertimereversal,e.g.theyareevenfunctionsoftheparticlevelocities.Inthiscase,another,perhapsmoreintuitive,waytowritetheprincipleofdetailedbalanceistoassumethatthecondi-tionalmeanvaluesofavariableattimesareequaltoeachother,which 162MicroscopicReversibilityor,equivalently,Multiplyingthislastequationby,itcanberewrittenas(x(x(x,),wherewehaveappliedthestationaritycondition.Asexpected,thisequationisiden-ticalto(),withNow,denethecorrelationfunctionforastationaryprocessas:()()x0.Applying(),weseethatfrommicroscopicreversibilityweobtain:()),thatis,()x()Fromthisexpression,applyingEq.(),weseethatanotherformulationofmicro-scopicreversibilityis:Now,considerthegeneralcasewhereisanarbitraryvariablewhich,undertimereversal,transformsintothereversedvariableaccordingtotherule,1,whenthevariableisevenundertimereversaland1,whenitisodd.Atthispoint,Eq.()canbegeneralizedas:Inthefollowing,wewilldenotebythosevariableshaving1,i.e.thoseremaininginvariantundertimereversal,andbythosevariableshavingi.e.thosechangingsignundertimereversal,(e.g.velocityorangularmomentum). Notethat,since(x(,then,implyingthatalloddvariableshavezerostationarymean.Inmostoftheliterature,-and-variablesaregenerallyreferredtoas-and-variables. 2.3Onsager’sReciprocityRelations2.3Onsager’sReciprocityRelationsAssumethefollowinglinearphenomenologicalrelations:(i.e.neglectinguctua-wherethedotdenotestimederivative,arereferredtoasthermodynamicuxes,arethegeneralizedforcesdenedin().Thatmeansthatthisequationholdswhenweapplyittoitsconditionalaverages,ThecoefcientsaregenerallyreferredtoasOnsager’s,orphenomenological,coefcients.NowtakethetimederivativeofEq.(),consideringthatiscon-Consideringthat,weobtain:Thesearethecelebratedreciprocityrelations,derivedbyLarsOnsager[]inInthepresenceofamagneticeldorwhenthesystemrotateswithangularve-,theoperationoftimereversalimplies,besidesthetransformation(thereversalofaswell.Therefore,theOnsagerreciprocityrelationsbe-Inthefollowing,wewillassumethat;however,weshouldkeepinmindthatinthepresenceofmagneticeldsoroverallrotations,theOnsagerrelationscanbeappliedonlywhenarereversed.AcleverwaytoexpresstheOnsagercoefcientscanbeobtainedbymulti-plyingEq.()byandaveraging:Nowtake0andapplyEq.()toobtain:=Šsym 182MicroscopicReversibilitywherethesuperscript“sym”indicatesthesymmetricpartofatensor,i.e.sym .Thisisoneofthemanyformsoftheuctuation-dissipationtheorem,whichstatesthatthelinearresponseofagivensystemtoanexternalperturbationisexpressedintermsofuctuationpropertiesofthesysteminthermalequilibrium.AlthoughitwasformulatedbyNyquistin1928todeterminethevoltageuctuationsinelectricalimpedances[],theuctuation-dissipationtheoremwasrstproveninitsgeneralformbyCallenandWelton[]in1951.In(isthevelocityoftherandomvariableasitrelaxestoequilib-rium.Therefore,consideringthattendstoforlongtimes,weseethat(t)dtandthereforetheuctuation-dissipationtheoremcanalsobeformu-latedthroughthefollowingGreen-Kuborelation:(t)symshowingthattheOnsagercoefcientscanbeexpressedasthetimeintegralofthecorrelationfunctionbetweenthevelocitiesoftherandomvariablesattwodifferentNow,considertheoppositeprocess,wheretherandomvariableevolvesoutofitsequilibriumposition.Therefore,applyingagainEq.(),butwithnegativetimes,weobtain: 2d symshowingthattheOnsagercoefcientscanbeexpressedasthetemporalgrowthofthemeansquaredisplacementsofthesystemvariablesfromtheirequilibriumvalues.Theseresultsareeasilyextendedtothecasewherewehavebothvariables,i.e.evenandoddvariablesundertimereversal.Inthiscase,thephe-nomenologicalequations()canbegeneralizedas:(xx)(xy)(yx)(yy)  S x;Yi=1  S arethethermodynamicforcesassociatedwiththe-variables,respectively.Withthehelpofthesequantities,thereciprocityrelations()weregeneralized TheGreen-Kuborelationisalsocalledtheuctuation-dissipationtheoremofthesecondkind.See[ 2.3Onsager’sReciprocityRelationsbyCasimirin1945as[(xx)(xx)(xy)(yx)(yy)(yy)Substituting(),()and()intothegeneralizedform(1.26)oftheen-tropyproductionterm, kdS weobtain: kd (xx)(yy)ThisshowsthatneithertheantisymmetricpartsoftheOnsagercoefcients(xx)(yy),northecouplingtermsbetween-variables,(xy)(yx),giveanycontributiontotheentropyproductionrate.Itshouldbestressedthat,whenweapplytheOnsager-Casimirreciprocityrela-tions,wemustmakesurethatthevariables(andthereforetheirtimederivatives,oruxes,aswell)areindependentfromeachother,andsimilarlyforthethermody-namicforces.Comment2.1Inthecourseofderivingthereciprocityrelations,wehaveassumedthatthesameequations()governboththemacroscopicevolutionofthesystemandtherelaxationofitsspontaneousdeviationsfromequilibrium.ThisconditionisoftenreferredtoasOnsager’spostulateandisthebasisoftheLangevinequation(seeChap.Theuctuation-dissipationtheorem,Eqs.()and(),canbeseenasanaturalconsequenceofthispostulate.Comment2.2Thesimplestwaytoseethemeaningoftheuctuation-dissipationtheoremistoconsiderthefreediffusionofBrownianparticles(seeSect.).First,considerahomogeneoussystem,followasingleparticleasitmovesrandomlyanddeneacoefcientofself-diffusionas(onehalfof)thetimederiva-tiveofitsmeansquaredisplacement.Then,takethesystemoutofequilibrium,anddenethegradientdiffusivityastheratiobetweenthematerialuxresultingfromanimposedconcentrationgradientandtheconcentrationgradientitself.AsshownbyEinsteininhisPh.D.thesisonBrownianmotion[],whentheproblemislin-ear(i.e.whenparticle-particleinteractionsareneglected),thesetwodiffusivitiesare Asshownin[],whenuxesandforcesarenotindependent,butstilllinearlyrelatedtooneanother,thereisacertainarbitrarinessinthechoiceoftheindependentvariables,sothatattheendthephenomenologicalcoefcientscanbechosentosatisfytheOnsagerrelations.Onsagerstatedthat“theaverageregressionofuctuationswillobeythesamelawsasthecorre-spondingmacroscopicirreversibleprocess”.Seediscussionsin[ThisprocessissometimescalledKnudseneffusion 202MicroscopicReversibilityequaltoeachother,thusestablishingperhapsthesimplestexampleofuctuation-dissipationtheorem.Althoughwetakethisresultforgranted,itisfarfromobvious,asitstatestheequalitybetweentwoverydifferentquantities:ononehand,theuc-tuationsofasystemwhenitismacroscopicallyatequilibrium;ontheotherhand,itsdissipativepropertiesasitapproachesequilibrium.2.4Fluctuation-DissipationTheoremAswesawintheprevioussection,theßuctuation-dissipationtheorem(FDT)con-nectsthelinearresponserelaxationofasystemtoitsstatisticaluctuationpropertiesatequilibriumanditreliesonOnsager’spostulatethattheresponseofasysteminthermodynamicequilibriumtoasmallappliedforceisthesameasitsresponsetoaspontaneousuctuation.First,letusderivetheFDTinaverysimpleandintuitiveway,followingtheoriginalformulationbyCallenandGreene[].Assumethataconstantthermo-dynamicforce/kTisappliedtothesystemforaninnitetime0andthenitissuddenlyturnedoffat0.Therefore,at0thesystemwillhaveanon-zeropositionofstableequilibrium,,suchthatminmin istheminimumworkthattheconstantforce,,hastoexerttodisplacethesystemtopositionNow,intheabsenceofanyexternalforce,i.e.when0,themeanvalueofthe-variablerelaxesintimefollowingEq.(),with,(t)(t)(t)expisaconstantphenomenologicalrelaxationcoefcient.Therefore,substituting()into()weobtain:(t)(t) (t)expisatimedependentrelaxationcoefcient.Ontheotherhand,thefunctionisrelatedtothecorrelationfunctionatequilib-.Infact,fromthedenition(),substituting()weseethat:(t)expexp 2.4Fluctuation-DissipationTheoremComparingthelasttwoequations,weconclude:(t)(t).Thisrelationrepresentstheuctuation-dissipationtheorem.Notethat,when0,therelation()isidenticallysatised,since,whileTheuctuation-dissipationtheoremcanalsobedeterminedassumingageneral,time-dependentdrivingforce,(t).Inthiscase,duetothelinearityoftheprocess,wecanwrite:(t) (t)isthegeneralizedsusceptibility,with(t)0for0.Denotingby(\n)(\n)(\n),theFouriertransforms()of(t)(t)(t),respec-tively,wehave:(\n) (\n)(\n).Ingeneral,(\n)isacomplexfunction,with(r)(i),wherethesuperscripts(r)(i)indicatetherealandimaginarypart.Since(t)isreal,wehave:(\n),wheretheasteriskindicatescomplexconjugate,showingthat(r)isanevenfunc-tion,while(i)isanoddfunction,i.e.,(r)(r)(\n)(i)(i)(\n).Analogousrelationsexistsregardingthecorrelationfunction(t).Infact,consideringthemicroscopicreversibility()andtherealitycondition,weob-(\n)(\n)\n),i.e.theFouriertransformofthecorrelationfunctionisarealandsymmetricmatrix.AsshowninAppendix,usingthecausalityprinciple,i.e.imposingthat(t)0for0,weseethatthegeneralizedsusceptibilityissubjectedtotheKramers-Kronigrelation(),sothat(t)canberelatedto(t)as[cf.Eq.(C.30(\n) (\n). Thesameresultcanbeobtainedassumingthattheconstantthermodynamicforceissuddenlyturnedonat0,sothatforlongtimesthesystemwillhaveanon-zeropositionofstableequi-.Inthatcase,redeningtherandomvariable,wendagainEq.(Thisisasomewhatsimpliedanalysis.Formoredetails,see[ 2MicroscopicReversibilitySubstitutingthisresultintoEq.()andconsidering(),weseethattheuctuation-dissipationtheoremcanbewritteninthefollowingequivalentform:(r)(\n) (i)(\n)(s)wherethesuperscripts(s)denotesthesymmetricpartofthetensor.Notethat,since(\n) 2 =1 (i)(\n) d\n,usingthedispersionequation()with0,weobtaintheobviousrelation,(r)wherewehaveusedthefactthatisanevenfunction.Thisresultcanbeeasilyextendedtocrosscorrelationfunctionsbetween-and-typevariables,consideringthat(\n)isanimaginaryandantisymmetricma-trix,i.e.,(\n)=Š(\n)=Š\n).Attheend,theuctuation-dissipationrelationbecomes,(i)(\n) (r)(\n)(a)wherethesuperscripts(a)denotestheantisymmetricpartofthetensor.Tobetterunderstandthemeaningoftheuctuation-dissipationrelation,considerthesinglevariablecase, Now,Fouriertransformingthisequation,weobtain()with,(\n) g(Mi\n) i\nLi\nL Ontheotherhand,thecorrelationfunction()gives:(t) geŠ,(2.55) Here,whentheappliedforceisconstant,theequilibriumstatewillmovefrom0toF/(gkT) 2.4Fluctuation-DissipationTheorem23whoseFouriertransformyields:( ) g(M thusshowingthattheFDT()isidenticallysatised.Identicalresultsareobtainedinthemulti-variablecase,wherewehave: istheOnsagerphenomenologicalcoefcient,whileNotethatthesymmetryofisadirectconsequenceoftheOnsagerreciprocitySometimes,itisconvenienttoconsidertheuctuationsofasbeingcausedbyarandomctitiousforce,sothattheinstantaneousvalueof(notitsmeanvalue,whichisidenticallyzero)islinearlyrelatedtothroughthesamegeneralizedthatgovernstherelaxationofthesystemfarfromequilibrium,(t) Inthiscase,consideringthat( ),wehave:( )(kT)( )( )( )then,weobtain:( )(kT) (i)( ) (kT)Therefore,whenthegeneralizedsusceptibilitycanbeexpressedasEq.(),we( )(kT).Infact,inthiscaseEq.()becomestheLangevinequation(seenextchapter), ThisisclearlyequivalenttotheOnsagerregressionhypothesis.Notethathereandinthefollow-denotestheuctuation( 242MicroscopicReversibility istheuctuatingux,satisfyingthefollowingrelation:(t)(t),(t)istheDiracdelta.Thisshowsthatthereisnocorrelationbetweentheparticlepositionandtherandomforce(seeProblem).Infact,itisthislackofcorrelationthatisatthefoundationoftheOnsagerregressionhypothesis,thereforejustifyingtheLangevinequation,asdiscussedinthenextchapter.2.5ProblemsProblem2.1ConsiderasmallparticleofarbitraryshapemovinginanotherwisequiescentNewtonianuid.Increepingowconditions,determinethesymmetryrelationssatisedbytheresistancematrixconnectingvelocityandangularvelocitywiththeforceandthetorquethatareappliedtotheparticle.Problem2.2Consideradriven1Doscillatorofmassatfrequency,withdampingforce,withdenotingthedisplacementfromitsequilibriumposition,0.Determinethespectrumoftherandomforce.References1.Callen,H.B.,Greene,R.F.:Phys.Rev.,702(1952)2.Callen,H.B.,Greene,R.F.:Phys.Rev.,1387(1952)3.Callen,H.B.,Welton,T.A.:Phys.Rev.,34(1951)4.Casimir,H.B.G.:Rev.Mod.Phys.,343(1945)5.deGroot,S.R.,Mazur,P.:Non-EquilibriumThermodynamics.Dover,NewYork(1962),Chap.VIII.46.Einstein,A.:Ann.Phys.(Berlin),549(1905)7.Green,M.S.:J.Chem.Phys.,398(1954)8.Kubo,R.:J.Phys.Soc.Jpn.,570(1957)9.Marconi,U.M.B.,etal.:Phys.Rep.,111(2008)10.Meixner,J.:Rheol.Acta,465(1973)11.Nyquist,H.:Phys.Rev.,110(1928)12.Onsager,L.:Phys.Rev.,405(1931)13.Onsager,L.:Phys.Rev.,2265(1931)14.Tolman,R.C.:ThePrinciplesofStatisticalMechanics,p.163.Dover,NewYork(1938),Chap.5015.vanKampen,N.G.:StochasticProcessesinPhysicsandChemistry.North-Holland,Amster-dam(1981),Chap.VIII.8