/
Conditionally Evenly Convex Sets and Evenly QuasiConve Conditionally Evenly Convex Sets and Evenly QuasiConve

Conditionally Evenly Convex Sets and Evenly QuasiConve - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
505 views
Uploaded On 2015-06-13

Conditionally Evenly Convex Sets and Evenly QuasiConve - PPT Presentation

We introduce a generalization of this concept in the conditional framework and provide a generalized version of the bipolar theorem This notion is then applied to obtain the dual representation of conditionally evenly quasiconvex maps 1 Introduction ID: 85129

introduce generalization

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Conditionally Evenly Convex Sets and Eve..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

quasiconvexityofafunction,i.e.thepropertythattheconditionallowerlevelsetsareevenlyconvex,isaweakerassumptionthanquasiconvexityandlower(orupper)semicontinuity.InSection3weapplythenotionofconditionallyevenlyconvexsettothethedualrepresentationofevenlyquasiconvexmaps,i.e.conditionalmaps:E!L0( ;G;P)withthepropertythattheconditionallowerlevelsetsareevenlyconvex.WeproveinTheorem17thatanevenlyquasiconvexregularmap:E!L0(G)canberepresentedas(X)=sup2L(E;L0(G))R((X););(1)whereR(Y;):=inf2Ef()j()Yg;Y2L0(G);EisatopologicalL0-moduleandL(E;L0(G))isthemoduleofcontinuousL0-linearfunctionalsoverE.Theproofofthisresultisbasedonaversionofthehyperplaneseparationtheoremandnotonsomeapproximationorscalarizationarguments,asithappenedinthevectorspacesetting(see[FM11]).BycarefullyanalyzingtheproofonemayappreciatemanysimilaritieswiththeoriginaldemonstrationinthestaticsettingbyPenotandVolle[PV90].Onekeydi erencewith[PV90],inadditiontotheconditionalsetting,isthecontinuityassumptionneededtoobtaintherepresentation(1).Wework,asin[CV09],withevenlyquasiconvexfunctions,anassumptionweakerthanquasiconvexityandlower(orupper)semicontinuity.Asexplainedin[FM11]therepresentationofthetype(1)isacornerstoneinordertoreacharobustrepresentationofQuasi-convexRiskMeasuresorAcceptabilityIndexes.2OnConditionallyEvenlyConvexsetsTheprobabilityspace( ;G;P)is xedthroughoutthispaper.Wheneverwewilldiscusscon-ditionalpropertieswewillalwaysmakereference,evenwithoutexplicitlymentioningitinthenotations-toconditioningwithrespecttothesigmaalgebraG.WedenotewithL0=:L0( ;G;P)thespaceofGmeasurablerandomvariablesthatarePa.s. nite,whereasbyL0thespaceofextendedrandomvariableswhichmaytakevaluesinR[f1g.Weremindthatallequalities/inequalitiesamongrandomvariablesaremeanttoholdP-a.s..AstheexpectedvalueEP[]ismostlycomputedw.r.t.thereferenceprobabilityP,wewilloftenomitPinthenotation.ForanyA2Gtheelement1A2L0istherandomvariablea.s.equalto1onAand0elsewhere.Ingeneralsince( ;G;P)are xedwewillalwaysomitthem.Wede neL0+=fX2L0jX0gandL0++=fX2L0jX�0g.Theessential(Palmostsurely)supremumesssup(X)ofanarbitraryfamilyofrandomvariablesX2L0( ;F;P)willbesimplydenotedbysup(X),andsimilarlyfortheessentialin mum(see[FS04]SectionA.5forreference).De nition1(Dualpair)Adualpair(E;E0;h;i)consistsof:1.(E;+)(resp.(E0;+))isanystructuresuchthattheformalsumx1A+y1ACbelongstoE(resp.x01A+y01AC2E0)foranyx;y2E(resp.x0;y02E0)andA2GwithP(A)�0andthereexistsannullelement02E(resp.02E0)suchthatx+0=xforallx2E(resp.x0+0=x0forallx02E0).2.Amaph;i:EE0!L0suchthathx1A+y1AC;x0i=hx;x0i1A+hy;x0i1AChx;x01A+y01ACi=hx;x0i1A+hx;y0i1ACh0;x0i=0andhx;0i=02 Notation4FixasetCE.AstheclassA(C):=fA2GjC1A=E1Agisclosedwithrespecttocountableunion,wedenotewithACtheG-measurablemaximalelementoftheclassA(C)andwithDCthe(P-a.s.unique)complementofAC(seealsotheRemark30).HenceC1AC=E1AC:Wenowgivetheformalde nitionofconditionallyevenlyconvexsetintermsofintersectionsofhyperplanesinthesamespiritof[Fe52].De nition5AsetCEisconditionallyevenlyconvexifthereexistLE0(ingeneralnon-uniqueandemptyifC=E)suchthatC=\x02Lfx2Ejhx;x0iYx0onDCgforsomeYx02L0:(3)Remark6NoticethatforanyarbitraryD2G,LE0thesetC=\x02Lfx2Ejhx;x0iYx0onDgforsomeYx02L0isevenlyconvex,eventhoughingeneralDCD.Remark7WeobservethatsinceEsatis es(CSet)thenautomaticallyanyconditionallyevenlyconvexsetsatis es(CSet).AsaconsequencetheremightexistasetCwhichfailstobeconditionallyevenlyconvex,sincedoesnotsatisfy(CSet),butCccisconditionallyevenlyconvex.ConsiderforinstanceE=L1G(F);E0=L1G(F),endowedwiththepairinghx;x0i=E[xx0jG].Fixx02L1(F);Y2L0(G)andthesetC=fx2L1(F)jE[xx0jG]Yg:ClearlyCisnotconditionallyevenlyconvexsinceC$Ccc;ontheotherhandCcc=fx2L1G(F)jE[xx0jG]Ygwhichisbyde nitionevenlyconvex.Remark8RecallthatasetCEisL0-convexifx+(1�)y2Cforanyx;y2Cand2L0with01.Supposethatalltheelementsx02E0satisfy:hx+(1�)y;x0ihx;x0i+(1�)hy;x0i,forallx;y2E,2L0:01:IfEisL0�convextheneveryconditionallyevenlyconvexsetisalsoL0�convex.Inordertoseparateonepointx2EfromasetCEinaconditionalwayweneedthefollowingde nition:De nition9Forx2EandasubsetCofE;wesaythatxisoutsideCif1Afxg\1AC=?foreveryA2GwithADCandP(A)&#x-278;0.Thisisofcourseamuchstrongerrequirementthanx=2C.De nition10ForCEwede nethepolarandbipolarsetsasfollowsC:=fx02E0jhx;x0i1onDCforallx2Cg;C:=fx2Ejhx;x0i1onDCforallx02Cg=\x02Cfx2Ejhx;x0i1onDCg:4 Let:E!L0be(REG).TheremightexistasetA2Gonwhichthemapisin nite,inthesensethat()1A=+11Aforevery2E.ForthisreasonweintroduceM:=fA2Gj()1A=+11A82Eg:ApplyingLemma36inAppendixwithF:=f()j2EgandY0=+1wecandeducetheexistenceoftwomaximalsetsT2Gand2GforwhichP(T\)=0,P(T[)=1and()=+1onforevery2E;()+1onTforsome2E:(5)De nition15Amap:E!L0(G)is(QCO)conditionallyquasiconvexifUY=f2Ej()1TYgareL0-convex(accordingtoRemark8)foreveryY2L0(G).(EQC)conditionallyevenlyquasiconvexifUY=f2Ej()1TYgareconditionallyevenlyconvexforeveryY2L0(G).Remark16For:E!L0(G)thequasiconvexityofisequivalenttothecondition(x1+(1�)x2)(x1)_(x2);(6)foreveryx1;x22E,2L0(G)and01.Inthiscasethesetsf2Ej()1DYgareL0(G)-convexforeveryY2L0(G)andD2G(Thisfollowsimmediatelyfrom(6)).MoreoverunderthefurtherstructuralpropertyofRemark8wehavethat(EQC)implies(QCO).WewillseeintheL0-modulesframeworkthatifthemapiseitherlowersemicontinuousoruppersemicontinuousthenthereverseimplicationholdstrue(seeProposition23,Corollary26andProposition27).WenowstatethemainresultofthisSection.Theorem17Let(E;E0;h;i)beadualpairingintroducedinDe nition1.If:E!L0(G)is(REG)and(EQC)then(x)=supx02E0R(hx;x0i;x0);(7)whereforY2L0(G)andx0,R(Y;x0):=inf2Ef()jh;x0iYg:(8)4ConditionalEvenlyconvexityinL0-modulesThissectionisinspiredbythecontributiongiventothetheoryofL0-modulesbyFilipovicetal.[FKV09]ononehandandontheothertotheextendedresearchprovidedbyGuofrom1992untiltoday(seethereferencesin[Gu10]).ThefollowingProposition23showsthatthede nitionofaconditionallyevenlyconvexsetistheappropriategeneralization,inthecontextoftopologicalL0module,ofthenotionofanevenlyconvexsubsetofatopologicalvectorspace,asinbothsettingconvex(resp.L0-convex)setsthatareeitherclosedoropenareevenly(resp.conditionallyevenly)convex.Thisisakeyresultthatallowstoshowthattheassumption(EQC)istheweakestthatallowstoreachadualrepresentationofthemap.WewillconsiderL0,withtheusualoperationsamongrandomvariables,asapartiallyorderedringandwewillalwaysassumeinthesequelthat0isatopologyonL0suchthat(L0;0)isatopologicalring.Wedonotrequirethat0isalineartopologyonL0(sothat(L0;0)maynotbeatopologicalvectorspace)northat0islocallyconvex.6 Lemma22.1.LetEbeatopologicalL0-module.IfCiE,i=1;2;areopenandnonemptyandA2G,thenthesetC11A+C21ACisopen.2.Let(E;Z;)beL0-moduleassociatedtoZ.Thenforanynetf gE,2E,2EandA2G !=)( 1A+1AC)!(1A+1AC):Proof.1.Toshowthisclaimletx:=x11A+x21ACwithxi2CiandletU0beaneighborhoodof0satisfyingxi+U0Ci.ThenthesetU:=(x1+U0)1A+(x2+U0)1AC=x+U01A+U01ACiscontainedinC11A+C21ACanditisaneighborhoodofx,sinceU01A+U01ACcontainsU0andisthereforeaneighborhoodof0.2.Observethataseminormsatis esk1A( �)k=1Ak �kk �kandtherefore,bycondition3.inDe nition21theclaimfollows.Inparticular, !=)( 1A)!(1A). Proposition23Let(E;Z;)beL0-moduleassociatedtoZandsupposethatCEsatis es(CSet).1.SupposethatthestrictlypositiveconeL0++is0-openandthatthereexistx002Eandx02Esuchthatx00(x0)�0:UnderAssumptionS-Open,ifCisopenandL0-convexthenCisconditionallyevenlyconvex.2.UnderAssumptionS-Closed,ifCisclosedandL0-convexthenitisconditionallyevenlyconvex.Proof.1.LetCEbeopen,L0-convex,C6=?andletAC2GbethemaximalsetgivenintheNotation4,beingDCitscomplement.SupposethatxisoutsideC,i.e.x2Esatis esfxg1A\C1A=?foreveryA2G,ADC,P(A)�0.De netheL0-convexsetE:=f2Ejx00()�x00(x)g=(x00)�1(x00(x)+L0++)andnoticethatfxg1A\E1A=;foreveryA2G.AsL0++is0-open,EisopeninE:Asx00(x0)�0;then(x+x0)2EandEisnon-empty.ThenthesetC0=C1DC+E1ACisL0-convex,open(byLemma22)andsatis esfxg1A\C01A=;foreveryA2Gs.t.P(A)�0.AssumptionS-Openguaranteestheexistenceofx2Es.t.x(x)�x()82C0;whichimpliesx(x)�x()onDC,82C.Hence,byTheorem11,Cisconditionallyevenlyconvex.2.LetCEbeclosed,L0-convex,C6=?andsupposethatx2Esatis esfxg1A\C1A=?foreveryA2G,ADC,P(A)�0.LetC0=C1DC+fx+"g1ACwhere"2L0++.ClearlyC0isL0-convex.InordertoprovethatC0isclosedconsideranynet !,f gC0.Then =Z 1DC+fx+"g1AC,withZ 2C,and(x+")1AC=1AC:Takeany2C.AsCisL0-convex, 1DC+1AC=Z 1DC+1AC2Cand,byLemma22, 1DC+1AC!1DC+1AC:=Z2C,asCisclosed.Therefore,=Z1DC+fx+"g1AC2C0.SinceC0isclosed,L0-convexandfxg1A\C01A=;foreveryA2G,assumptionS-Closedguaranteestheexistenceofx2Es.t.x(x)�x()82C0;whichimpliesx(x)�x()onDC,82C.Hence,byTheorem11,Cisconditionallyevenlyconvex. Proposition24Let(E;Z;)andEberespectivelyasinde nitions19and21,andlet0beatopologyonL0suchthatthepositiveconeL0+isclosed.ThenanyconditionallyevenlyconvexL0-conecontainingtheoriginisclosed.Proof.From(20)andthebipolarTheorem12weknowthatC=C=\x02Cfx2Ejhx;x0i0onDCg:8 andx002Esuchthatx00(x0)�0.Thisandthenextitem2allowtheapplicationofProposition23.AfamilyZofL0-seminormsonEinducesatopologyonEinthefollowingway.Forany niteSZand"2L0++de neUS;":=fx2EjkxkS"gU:=fUS;"jSZ niteand"2L0++g:Ugivesaconvexneighborhoodbaseof0anditinducesatopologyonEdenotedbyc.Wehavethefollowingproperties:1.(E;Z;c)isa(L0;jj)-moduleassociatedtoZ,whichisalsoalocallyconvextopologicalL0-module(seeProposition2.7[Gu10]),2.(E;Z;c)satis esS-OpenandS-Closed(seeTheorems2.6and2.8[FKV09]),3.Anytopological(L0;jj)module(E;)islocallyconvexifandonlyifisinducedbyafamilyofL0-seminorms,i.e.c,(seeTheorem2.4[FKV09]).Aprobabilistictopology;[Gu10]ThesecondtopologyontheL0-moduleEisatopologyofamoreprobabilisticnatureandoriginatedinthetheoryofprobabilisticmetricspaces(see[SS83]).HereL0isendowedwiththetopology;ofconvergenceinprobabilityandsothepositiveconeL0+is0-closed.Accordingto[Gu10],forevery;2Randa nitesubfamilySZofL0-seminormsweletVS;;:=fx2EjP(kxkS)&#x-278;1�gV:=fUS;;jSZ nite,&#x-278;0;01g:Vgivesaneighborhoodbaseof0anditinducesalineartopologyonE,alsodenotedby;(indeedifE=L0thenthisisexactlythetopologyofconvergenceinprobability).Thistopologymaynotbelocallyconvex,buthasthefollowingproperties:1.(E;Z;;)becomesa(L0;;)-moduleassociatedtoZ(seeProposition2.6[Gu10]),2.(E;Z;;)satis esS-Closed(seeTheorems3.6and3.9[Gu10]).ThereforeProposition23canbeapplied.5OnConditionallyEvenlyQuasi-ConvexmapsonL0-moduleAsanimmediateconsequenceofProposition23wehavethatlower(resp.upper)semicontinuityandquasiconvexityimplyevenlyquasiconvexityof.FromTheorem17wethendeducetherepresentationforlower(resp.upper)semicontinuousquasiconvexmaps.(LSC)Amap:E!L0(G)islowersemicontinuousifforeveryY2L0thelowerlevelsetsUY=f2Ej()1TYgare-closed.Corollary26Let(E;Z;)andE0=Eberespectivelyasinde nitions19and21,satisfyingS-Closed.If:E!L0(G)is(REG),(QCO)and(LSC)then(7)holdstrue.Intheuppersemicontinuouscasewecansaymore(theproofispostponedtoSection6).(USC)Amap:E!L0(G)isuppersemicontinuousifforeveryY2L0thelowerlevelsetsUY=f2Ej()1TYgare-open.10 Proof.1.Lemma31showsthatP(HC;x)�0.Since1ACE=1ACC,ifx=2Cwenecessarilyhave:P(HC;x\AC)=0andthereforeHC;xDC.2.IfxisoutsidejCthenxisoutsidejDCCandx=2C.ThethesisfollowsfromHC;xDCandthefactthatHC;xisthelargestsetD2GforwhichxisoutsidejDC.3.isaconsequenceofLemma35(seeAppendix)item1. ProofofTheorem11.(1))(2).LetLE0,Yx02L0andletC=:\x02Lf2Ejh;x0iYx0onDCg;whichclearlysatis esCcc=C.Byde nition,ifthereexistsx2Es.t.xisoutsideCthen1Afxg\1AC=?8ADC;A2G,P(A)&#x-278;0,andthereforebythede nitionofCthereexistsx02Ls.t.hx;x0iYx0onDC:Hence:hx;x0iYx0&#x-278;h;x0ionDCforall2C:(2))(1)WeareassumingthatCis(CSet),andthereexistsx2Es.t.x=2C(otherwiseC=E).From(28)weknowthat=fy2EjyisoutsideCgisnonempty.Byassumption,forally2thereexists0y2E0suchthath;0yihy;0yionDC;82C.De neBy:=f2Ejh;0yihy;0yionDCg:Byclearlydependsalsoontheselectionofthe0y2E0associatedtoyandonC,butthisnotationwillnotcauseanyambiguity.Wehave:CByforally2,andCTy2By:Wenowclaimthatx=2Cimpliesx=2Ty2By,thusshowingC=\y2By=\0y2Lf2Ejh;0yiY0yonDCg;(17)whereL:=0y2E0jy2 ,Y0y:=hy;0yi2L0,andthethesisisproved.Supposethatx=2C,then,byLemma31,xisoutsidejHC,wherewesetforsimplicityH=HC;x.Takeanyy26=?andde ney0:=x1H+y1 nH2.TakeBy0=f2Ejh;0y0ihy0;0y0ionDCgwhere0y02E0istheelementassociatedtoy0.Ifx2By0thenwewouldhave:hx;0y0ihy0;0y0i=hx;0y0ionHDC,byLemma32item1,whichisacontradiction,sinceP(H)&#x]TJ/;༔ ; .96;& T; -4;.2;Q -;.9;U T; [0;0.Hencex=2By0Ty2By: Proposition33UnderthesameassumptionsofTheorem11,thefollowingareequivalent:1.Cisconditionallyevenlyconvex2.foreveryx2E,x=2C,thereexistsx02E0suchthath;x0ihx;x0ionHC;x82C;whereHC;xisde nedinLemma31.Proof.(1)=)(2):WeknowthatCsatis es(CSet).Asx=2C,from(28)andLemma31weknowthatthereexistsy2Es.t.yisoutsideCandthatH=:HC;xsatis esP(H)&#x]TJ/;༔ ; .96;& T; 10;&#x.516;&#x 0 T; [0;0.De ne~x=x1H+y1 nH.Then~xisoutsideCandbyTheorem11item2thereexistsx02E0h;x0ih~x;x0ionDC;82C:Thisimpliesthethesissinceh~x;x0i=hx;x0i1H+hy;x0i1 nHandHDC.(2)=)(1):Weshowthatitem2ofTheorem11holdstrue.ThisistrivialsinceifxisoutsideCthenx=2CandHC;x=DC: ProofofTheorem12.Item(1)isstraightforward;thefactthatCisconditionallyevenlyconvexfollowsfromthede nition;theproofofCCisalsoobvious.WenowsupposethatCis12 ProofofTheorem17.Let:E!L0(G).TheremightexistasetA2Gonwhichthemapisconstant,inthesensethat()1A=()1Aforevery;2E.ForthisreasonweintroduceA:=fB2Gj()1B=()1B8;2Eg:ApplyingLemma36inAppendixwithF:=f()�()j;2Eg(weconsidertheconvention+1�1=0)andY0=0wecandeducetheexistenceoftwomaximalsetsA2GandA`2GforwhichP(A\A`)=0,P(A[A`)=1and()=()onAforevery;2E;(1)(2)onA`forsome1;22E:(21)Recallthat2Gisthemaximalsetonwhich()1=+11forevery2EandTitscomplement.NoticethatA.Fixx2EandG=f(x)+1g.Forevery"2L0++(G)wesetY"=:01+(x)1An+((x)�")1G\A`+"1GC\A`(22)andforevery"2L0(G)++wesetC"=f2Ej()1T"Y"g:(23)Step1:onthesetA,(x)=R(hx;x0i;x0)foranyx02E0andtherepresentation(x)1A=maxx02E0R(hx;x0i;x0)1A(24)triviallyholdstrueonA.Step2:bythede nitionofY"wededucethatifC"=;forevery"2L0++then(x)()onthesetA`forevery2Eand(x)1A`=R(hx;x0i;x0)1A`foranyx0.Therepresentation(x)1A`=maxx02E0R(hx;x0i;x0)1A`(25)triviallyholdstrueonA`.Thethesisfollowspastingtogetherequations(24)and(25)Step3:wenowsupposethatthereexists"2L0++suchthatC"6=;.Thede nitionofY"impliesthatC"1A=E1AandAisthemaximalelementi.e.A=AC"(givenbyDe nition4).MoreoverthissetisconditionallyevenlyconvexandxisoutsideC".Thede nitionofevenlyconvexsetguaranteesthatthereexistsx0"2E0suchthathx;x0"i&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;h;x0"ionDC"=A`;82C":(26)Claim:f2Ejhx;x0"i1A`h;x0"i1A`gf2Ej()&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;((x)�")1G+"1GConA`g.(27)Inordertoprovetheclaimtake2Esuchthathx;x0"i1A`h;x0"i1A`.BycontrawesupposethatthereexistsaFA`,F2GandP(F)&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;0suchthat()1F((x)�")1G\F+"1GC\F.Take2C"andde ne =1FC+1F2C"sothatweconcludethathx;x0"i�h ;x0"ionA`.Sinceh ;x0"i=h;x0"ionFwereachacontradiction.Oncetheclaimisprovedweendtheargumentobservingthat(x)1A`supx02E0R(hx;x0i;x0)1A`=R(hx;x0"i;x0")1A`(28)=inf2Ef()1A`jhx;x0"i1Ah;x0"i1A`ginf2Ef()1A`j()�((x)�")1G+"1GConA`g((x)�")1G\A`+"1GC\A`;(29)14 Proof.ThetwoclassesAandA`areclosedwithrespecttocountableunion.Indeed,forthefamilyA`,supposethatBi2A`;yi2Dccs.t.yiisoutsidejBiCcc:De neeB1:=B1,eBi:=BinBi�1,B:=1Si=1eBi=1Si=1Bi.ThenyiisoutsidejeBiCcc,eBiaredisjointelementsofA`andy:=P11yi1eBi2Dcc.Sinceyi1eBi=y1eBi,yisoutsidejeBiCccforalliandsoyisoutsidejBCcc.ThusB2A`.SimilarlyfortheclassA.TheRemark30guaranteestheexistenceofthetwomaximalsetsAM2AandA`M2A`,sothat:B2AimpliesBAM;B`2A`impliesB`A`M.Obviously,P(AM\A`M)=0;asAM2AandA`M2A`.WeclaimthatP(AM[A`M)=1:(31)Toshow(31)letD:= nAM[A`M 2G.BycontradictionsupposethatP(D)�0.FromD(AM)CandthemaximalityofAMwegetD=2A.Thisimpliesthatthereexistsy2Dccsuchthat1Dfyg\1DCcc=?(32)andobviouslyy=2Ccc,asP(D)�0.BytheLemma31thereexistsasetHCcc;y:=H2GsatisfyingP(H)�0,(14)and(15)withCreplacedbyCcc:Condition(15)impliesthatH2A`andthenHA`M.From(14)wededucethatthereexists2Cccs.t.1Ay=1AforallA nH:Then(32)impliesthatDisnotcontainedin nH;sothat:P(D\H)�0:ThisisacontradictionsinceD\HD(A`M)CandD\HHA`M.Item1isatrivialconsequenceofthede nitions. Lemma36WiththesymbolDdenoteanyoneofthebinaryrelations;;=;�,andwithCitsnegation.ConsideraclassFL0(G)ofrandomvariables,Y02L0(G)andtheclassesofsetsA:=fA2Gj8Y2FYDY0onAg;A`:=fA`2Gj9Y2Fs.t.YCY0onA`g:SupposethatforanysequenceofdisjointsetsA`i2A`andtheassociatedr.v.Yi2FwehaveP11Yi1A`i2F.ThenthereexisttwomaximalsetsAM2AandA`M2A`suchthatP(AM\A`M)=0,P(AM[A`M)=1andYDY0onAM,8Y2F YCY0onA`M,forsome Y2F:Proof.NoticethatAandA`areclosedwithrespecttocountableunion.ThisclaimisobviousforA.ForA`,supposethatA`i2A`andthatYi2Fsatis esP(fYiCY0g\A`i)=P(A`i):De ningB1:=A`i,Bi:=A`inBi�1,A`1:=1Si=1A`i=1Si=1BiweseethatBiaredisjointelementsofA`andthatY:=P11Yi1Bi2Fsatis esP(fYCY0g\A`1)=P(A`1)andsoA`12A`.TheRemark30guaranteestheexistenceoftwosetsAM2AandA`M2A`suchthat:(a)P(A\(AM)C)=0forallA2A,(b)P(A`\(A`M)C)=0forallA`2A`.Obviously,P(AM\A`M)=0;asAM2AandA`M2A`.ToshowthatP(AM[A`M)=1,letD:= nAM[A`M 2G.BycontradictionsupposethatP(D)�0.AsD(AM)C,fromcondition(a)wegetD=2A.Therefore,9 Y2Fs.t.P( YDY0 \D)P(D);i.e.P( YCY0 \D)�0.IfwesetB:= YCY0 \Dthenitsatis esP( YCY0 \B)=P(B)�0and,byde nitionofA`,BbelongstoA`.Ontheotherhand,asBD(A`M)C,P(B)=P(B\(A`M)C);andfromcondition(b)P(B\(A`M)C)=0,whichcontradictsP(B)�0. 16