/
Responses of terrestrial aridity to global warming Qia Responses of terrestrial aridity to global warming Qia

Responses of terrestrial aridity to global warming Qia - PDF document

jane-oiler
jane-oiler . @jane-oiler
Follow
422 views
Uploaded On 2015-04-30

Responses of terrestrial aridity to global warming Qia - PPT Presentation

This study examines how the terrestrial mean aridity responds to global warming in terms of P PET using the Coupled Model Intercomparison Project phase 5 transient CO increase to 2 57559 CO simulations We show that the percentage increase rate in av ID: 57652

This study examines how

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Responses of terrestrial aridity to glob..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Responsesofterrestrialariditytoglobalwarming QiangFu 1,2 andSongFeng 3 1 CollegeofAtmosphericSciences,LanzhouUniversity,Lanzhou,China, 2 DepartmentofAtmosphericSciences,Universityof Washington,Seattle,Washington,USA, 3 DepartmentofGeosciences,UniversityofArkansas,Fayetteville,Arkansas,USA Abstract Thedrynessofterrestrialclimatecanbemeasuredbytheratioofannualprecipitation( P )to potentialevapotranspiration(PET),wherethelatterrepresentstheevaporativedemandoftheatmosphere, whichdependsonthesurfaceairtemperature,relativehumidity,windspeed,andavailableenergy.Thisstudy examineshowtheterrestrialmeanaridityrespondstoglobalwarmingintermsof P/ PETusingtheCoupled ModelIntercomparisonProjectphase5transientCO 2 increaseto2×CO 2 simulations.Weshowthatthe (percentage)increase(rate)in P averagedoverlandis~1.7%/°Coceanmeansurfaceairtemperatureincrease, whiletheincreaseinPETis5.3%/°C,leadingtoadecreasein P /PET(i.e.,adrierterrestrialclimate)by~3.4%/°C. Notingasimilarrateofpercentageincreasein P overlandtothatinevaporation( E )overocean,weproposea frameworkforexaminingthechangein P/ PET,inwhichwecomparethechangeinPEToverlandand E overocean,bothexpressedusingthePenman – Monteithformula.Weshowthatadrierterrestrialclimateis causedby(i)enhancedlandwarmingrelativetotheocean,(ii)adecreaseinrelativehumidityoverlandbutan increaseoverocean,(iii)partofincreaseinnetdownwardsurfaceradiationgoingintothedeepocean,and (iv)differentresponsesofPEToverlandand E overoceanforgivenchangesinatmosphericconditions (largelyassociatedwithchangesintemperatures).Therelativecontributionstothechangeinterrestrialmean aridityfromthesefourfactorsareabout35%,35%,15%,and15%,respectively.Theslightslowdownofthe surfacewindoverbothlandandoceanhaslittleimpactontheterrestrialmeanaridity. 1.Introduction Thedrynessofterrestrialclimatecanbemeasuredintermsofanaridityindexthatisde  nedbytheratio ofannualprecipitation( P )toannualpotentialevapotranspiration(PET)[ MiddletonandThomas ,1992].The PETistheevaporativedemandoftheatmosphere,indicatingthemaximumamountofevaporationone wouldget,inagivenclimate,fromawell-wateredsoilvegetationsurface[ Arya ,2001].Thetrueevaporation ( E )overlandthatusuallyre  ectstheamountofwatersupply(e.g.,precipitation)willbelessthanthePET unlessthesoilissaturatedwithwater.The P/ PETratioisthusaquantitativeindicatorofthedegreeof waterde  ciencyatagivenlocation,whichmaybenearzeroindesertbutcanexceedunityinwetclimate. UndertheUnitedNationsConventiontoCombatDeserti  cation[ UnitedNationsConventiontoCombat Deserti  cation ,1994]classi  cation,drylandsarecharacterizedby P/ PET 0.65andarefurtherdivided intohyperarid( P/ PET 0.05),arid(0.05 P/ PET 0.2),semiarid(0.2 P/ PET 0.5),anddrysubhumid (0.5 P/ PET 0.65)regions[ Mortimore ,2009; Hulme ,1996; MiddletonandThomas ,1992].Knowledgeof howanthropogenicclimatechangewillaffecttheterrestrialaridityisessentialforwaterresourceandland usemanagements,especiallyoverdrylandregions[e.g., Mortimore ,2009; Reynoldsetal .,2007; Fu ,2008; Fu andMa ,2008; OverpeckandUdall ,2010]. Byanalyzingclimatemodelsimulationsfortheperiod1948 – 2100, FengandFu [2013]showthatthe P/ PET decreasesinmosttropicalandmidlatitudelandregionsastheEarthwarms.Thisdryingwouldleadto theworld ’ sdrylandstobecome5.8×10 6 km 2 (or10%)largerthanthecurrentclimatologybytheendof thiscenturyunderahighgreenhousegasemissionscenario(RepresentativeConcentrationPathway 8.5(RCP8.5)).ThemajorexpansionofaridregionswouldoccuroversouthwesternNorthAmerica,the northernfringeofAfrica,southernAfrica,andAustralia,whilemajorexpansionsofsemiaridregionswould occuralongthenorthcoastoftheMediterranean,southernAfrica,andpartsofNorthandSouthAmerica [ FengandFu ,2013].Anincreaseinaridityandexpansionofdrylandsinresponsetoglobalwarmingwill increasethefractionoftheworld ’ spopulationaffectedbywaterscarcityandlanddegradation.The21st centurydryingisalsoshownby Cooketal .[2014]. FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 1 PUBLICATION S JournalofGeophysicalResearch:Atmospheres RESEARCHARTICLE 10.1002/2014JD021608 KeyPoints:  Theresponseofterrestrialaridityto globalwarmingintermsofP/PET  AdecreaseinP/PET(i.e.,adrier terrestrialclimate)by~3.4%/°C  ExaminetheP/PETchangeby comparingchangesinPEToverland andEoverocean Correspondenceto: Q.Fu, qfuatm@gmail.com Citation: Fu,Q.,andS.Feng(2014),Responses ofterrestrialariditytoglobalwarming, J.Geophys.Res.Atmos. , 119 ,doi:10.1002/ 2014JD021608. Received4FEB2014 Accepted10JUN2014 Acceptedarticleonline13JUN2014 ClimatemodelsrobustlypredictanincreaseinglobalmeanprecipitationinresponsetoaCO 2 increase [ Mitchelletal .,1987; AllenandIngram ,2002; HeldandSoden ,2006; LambertandWebb ,2008; StephensandEllis , 2008; PendergrassandHartmann ,2014].Theprojectedincreaserateis~1.4%°C  1 ,withrespecttoglobal meansurfacetemperatureincreaseduetoatransientCO 2 doubling,andhasbeenattributedtoan atmosphericenergybudgetconstraint[e.g., AllenandIngram ,2002; PendergrassandHartmann ,2014].Here wequantifythechangeofterrestrialmean P/ PETduetoatransientCO 2 increaseanddiscusstheunderlying physicalprocessesresponsibleforit. Globalmeanannualprecipitationandevaporationmustremainequalsincetheatmosphereisasmall reservoirforwater.Assumingasimilarincreaseinterrestrialmeanprecipitationtothatoverocean, Sherwood andFu [2014]arguethatthePETwillincreasemuchfasterthan P inresponsetoglobalwarming,leadingto drierconditionsoverlandinthefuture.Thisisbecauselandsurfaceswarmabout50%morerapidlythan oceans[e.g., Manabeetal .,1992; Joshietal .,2008],andrelativehumidityonaveragedecreasesoverland butincreasesoverocean[ Simmonsetal .,2010; IntergovernmentalPanelonClimateChange ( IPCC ),2013]. ScheffandFrierson [2014]examinedthechangesinPET  eldscalculatedfromtheoutputsoftheglobal climatemodelsparticipatinginthephase5oftheCoupledModelIntercomparisonProject(CMIP5)[ Taylor etal .,2012]between2081 – 2099fromtheRCP8.5scenarioand1981 – 2099fromthehistoricalruns.They showedthatthe%changeinlocalannualmeanPETisalmostalwayspositive,onaverageinthelowdouble digitsintermsofmagnitude,usuallyincreasingwithlatitude.Theincreaseisdominatedbythedirect, positiveeffectsofwarmingatconstantrelativehumidity.However,therateofpercentagechangeofterrestrial mean P/ PETwithrespecttotemperatureincreaseduetoatransientCO 2 increaseanditspartitioningtochanges inrelevantmeteorologicalvariableshasnotbeenquanti  edanddocumentedbefore. Thispaperexaminesthechangeof P/ PETinthe1%increaseinCO 2 untilthedoubledscenariofromthe CMIP5globalclimatemodels(GCMs).Section2describesthemethodsanddatausedinthisstudy.The changesin P and E overbothlandandoceanandPETand P/ PEToverlandarepresentedinsection3. Thecausesofthechangein P/ PETareexaminedinsection4,followedbythesummaryandconclusions insection5. 2.MethodsandData 2.1.ThePETAlgorithm WecalculatedthePETusingthePenman – Monteithalgorithm[ Maidment ,1993; Allenetal .,1998]that includestheeffectsofavailableenergy( R n  G ,where R n isthenetdownwardradiationand G istheheat  ux intotheground),surfaceairtemperature( T a ),relativehumidity(RH),andwindspeed( u ).ThePenman – MonteithalgorithmwasrecommendedbytheFoodandAgricultureOrganizationasthestandardmethod forcomputingthePET[ Allenetal .,1998].Thisalgorithmcanbewrittenintheform[ Allenetal .,1998; Scheff andFrierson ,2014] PET ¼ R n  G ðÞ  T a ðÞþ  a c p e  T a ðÞ 1  RH ðÞ C H u jj  T a ðÞþ  1 þ r s C H u jj ðÞ = L v ; (1) where e *isthesaturatedwatervaporpressure,  = de*/dT ,  a isthesurfaceairdensity, c p isthespeci  c heatofair, C H isthebulktransfercoef  cient, r s isthebulkstomatalresistanceunderwell-wateredconditions, L v isthelatentheatofvaporizationforwater,  =( c p p s )/( 0 . 622L v ),where p s isthesurfacepressure,and u isthe windat2mabovethesurface. Equation(1)isderivedfromthestandardbulkformulaeforthesensibleheat(SH)andlatentheat(LH)  uxes alongwiththesurfaceenergybudgetequationintheforms SH ¼  a c p C H T s  T a ðÞ u jj ; (2) LH ¼  a L v C H q  T s ðÞ  q  T a ðÞ RH ðÞ u jj = 1 þ r s C H u jj ðÞ ; (3) R n  G ¼ SH þ LH ; (4) where T s isthetemperatureatthesurfaceinterface,LH=PET* L v ,and q *isthesaturatedwatervapormixing ratio(i.e.,0.622 e */ p s ).Inequation(3),thewatervaporatthesurfaceinterfaceisassumedtobesaturated. Equation(3)indicatesthatPETisdeterminedbythevaporpressurede  cit,i.e., e * ( T s )  e * ( T a )RH,andthe surfacewind. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 2 ThePenman – Monteithalgorithmisphysicallybasedandissuperiortoempiricallybasedformulations thatusuallyonlyconsidertheeffectoftemperature[ Donohueetal .,2010; Dai ,2011; Shef  eldetal .,2012]. InthecalculationsofPETinthispaper,weuseda r s of70s/manda C H of4.8×10  3 [ Allenetal .,1998]. Scheff andFrierson [2014]usedequation(1)withsimilar r s and C H values. Theactualevaporation( E )overoceancanbeconsideredasthepotentialevaporationoverwater.Since equations(2) – (4)arevalidoverwaterbysetting r s =0,weusedequation(1)tocalculatetheactual evaporation( E )overoceanwith r s =0.Additionally,weuseda C H of1.5×10  3 overocean[ RichterandXie , 2008;I.Richter,personalcommunication,2014].Wewillcomparethe E anditschangeoveroceanas obtainedfromthePenman – Monteithalgorithmwiththeircounterpartsobtaineddirectlyfromthemodels. Aswewilldiscusslater,thisisaveryusefulapproachthatpermitsustoplacePEToverlandand E over oceaninthesameframeworkasabasisforinterpretingthechangesofterrestrialmeanaridityinresponseto globalwarming. InthecalculationofPEToverland( E overocean)usingequation(1),weusedtheactualLH+SHto replace R n  G [ ScheffandFrierson ,2014].AlhoughtheactualLHandSHoverlandforthegiven R n  G are differentfromthosederivedfromequations(2) – (4),whereasaturatedwatervaporisassumedatthe surface,theirsummationsarethesamefollowingequation(4).Finally,thechangeinthesurfacestability (i.e., T a  T s )overoceancanbederivedinthePenman – Monteithframework,whichwillalsobecompared withthatobtaineddirectlyfromtheCMIP5models. 2.2.CMIP5Data Weusedtheoutputfromthe25globalclimatemodels( Table1)thatparticipate dintheCMIP5transient CO 2 1%/yrincrease(1pctCO 2 )experiments[ Tayloretal .,2012].The1pcCO 2 experimentisdesignedto diagnosetransientcli materesponseto1%yr  1 CO 2 increase,whichisinitializedfromthemulticentury preindustrialquasi-equilibriumcontrolsimulat ions.Themodelswereintegratedfor140years,but onlythe  rst70yearsofthedatawereanalyzedinourstudy.Formodelswithmultiple-ensemble simulations,the  rstensemblerunwasused.Thechangewa stakenasthedifferencebetweenthe averagesfortheyears61 – 70and1 – 10ofthesimulations,wheretheyear70correspondstothetimeof Table1. AListofCMIP5GCMsUsedinThisStudy ModelNameOrigin ACCESS1.0CommonwealthScienti  candIndustrialResearch,Australia ACCESS1.3CommonwealthScienti  candIndustrialResearch,Australia CanESM2CanadianCentreforClimate,Canada CCSM4NationalCenterforAtmosphericResearch,USA CESM1-BGCNationalCenterforAtmosphericResearch,USA CMCC-CMCentroEuro-MediterraneoperiCambiamenti,Italy CNRM-CM5CentreNationaldeRecherchesMeteorologiques,France CNRM-CM5-2CentreNationaldeRecherchesMeteorologiques,France CSIRO-Mk3.6CommonwealthScienti  candIndustrialResearch,Australia GFDL-CM3GeophysicalFluidDynamicsLaboratory,USA GFDL-ESM2GGeophysicalFluidDynamicsLaboratory,USA GFDL-ESM2MGeophysicalFluidDynamicsLaboratory,USA GISS-E2-HNASAGoddardInstituteforSpaceStudies,USA GISS-E2-RNASAGoddardInstituteforSpaceStudies,USA HadGEM2-ESMetOf  ceHadleyCentre,UK INM-CM4InstituteforNumericalMathematics,Russia IPSL-CM5A-LRInstitutPierre-SimonLaplace,France IPSL-CM5A-MRInstitutPierre-SimonLaplace,France IPSL-CM5B-LRInstitutPierre-SimonLaplace,France MIROC5AtmosphereandOceanResearchInstitute,Japan MIROC-ESMJapanAgencyforMarine-EarthScienceandTechnology,Japan MPI-ESM-LRMaxPlanckInstituteforMeteorology,Germany MPI-ESM-MRMaxPlanckInstituteforMeteorology,Germany MPI-ESM-PMaxPlanckInstituteforMeteorology,Germany MRI-CGCM3MeteorologicalResearchInstitute,Japan JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 3 CO 2 doubling.Notethatonlythe changeintheCO 2 isconsideredinthe 1pcCO2experiment,whiletheRCP scenarioexperimentconsideredthe changesinlanduse,aerosols,CO 2 ,as wellasothergreenhousegases. Inthisstudy,wede  nethelandasthe terrestrialregionsbetween60°Sand 90°N,whichcovers26.5%oftheglobe. Wewillpresentresultsaveragedover land,ocean,andovertheglobe.The oceancovers70.8%oftheglobe,and theremaining2.7%oftheglobe isAntarctica. Theensemblemeanofthe25models usedinthisstudyshouldbeinterpreted asourbestestimateofclimateresponse totheCO 2 increase.Incontrast,the individualensemblememberssimulate randominternalvariationsofthe climatesystem,andtheycontainbiases inherentinindividu almodels.Herewe use1standarddeviationofthe25 modelsasameasureofuncertainties associatedwithnaturalvariationsand modelerrors. Table2showstheannualmeanvaluesof the  rst10yearsfor P , E ,PET, T a ,RH, u , R n  G , R n , R n , s ,and R n , L ,averagedover land,ocean,andtheglobefromthe ensemblemeanofthe25CMIP5models. Thenumbersintheparentheses indicatethe1standarddeviationofthe 25modelresults.Asexpected,theglobal Table2. AnnualMeanValuesintheFirst10YearsoftheTransientCO 2 IncreaseSimulations(1pctCO 2 )AveragedOver Land,Ocean,andGlobeFromtheEnsembleAverageof25CMIP5GCMs(TheNumbersintheParenthesesIndicate1 StandardDeviationofthe25ModelResults) a LandOceanGlobeGlobe(obs) P (mm)870(90)1194(55)1083(55)1124(128) E (mm)604(60)1300(62)1083(55)1124(128) PET(mm)1112(66)notapplicable(NA)NANA T a (°C)12.2(1.0)15.7(0.6)13.5(0.6)13.8 RH(%)66.8(3.3)81.0(3.7)77.3(3.0)77.7 u (m/s)3.1(0.5)7.1(0.5)6.0(0.5)3.8 R n  G (W/m 2 )85.4(5.3)118.1(4.5)106.0(4.0)112(12) R n (W/m 2 )86.2(5.4)119.0(3.9)106.8(3.6)112.6(12) R n , s (W/m 2 )159.0(7.3)174.9(4.3)167.1(3.5)165(7) R n , L (W/m 2 )  72.7(6.6)  55.9(3.7)  60.3(3.8)  52.4(10) a Thequantitiesincludeprecipitation( P ),evaporation( E ),potentialevapotranspiration(PET),near-surfaceairtempera- ture( T a ),relativehumidity(RH),surfacewindspeed( u ),availableenergy( R n  G ),netdownwardradiation( R n ),net downwardsolarradiation( R n , s ),andnetdownwardlong-waveradiation( R n , L ).Observedglobalmeanquantitiesare alsoshownforthecomparison: Ta ,RH,and u arefromNationalCentersforEnvironmentalPredictionreanalysisduring 1961 – 1990,andothersarefrom Stephensetal .[2012],withtheobservationaluncertaintiesintheparentheses. Figure1. Temporalvariationsofannualmean(a)precipitation( P ), (b)potentialevapotranspiration(PET),and(c)aridityindex( P /PET) averagedoverland(Thearidityindexshownhereistheannualmean P averagedoverlanddividedbyannualmeanPETaveragedoverland). Theblacklinesaretheensembleaverageofthe25CMIP51pctCO 2 simulations,andthegreyshadingdenotes1standarddeviationofthe 25models.Theunitsareinpercentageanomaliesrelativetotheaver- agedvaluesofthe  rst10years. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 4 meanprecipitationandevaporation arethesameandareequivalent toalatentheat  ux(i.e., L v P )of 84.8Wm  2 .Notethattheglobalmean precipitation(latentheat  ux), R n  G , sensibleheat  ux(i.e., R n  G  LH), andnetdownwardradiation,aswellas itsshort-waveandlong-wave components,agreewellwiththe observationswithinobservational uncertainties(Table2).Thesimulated T a andRHvaluesagreewellwith thosefromthereanalysis,while thesimulatedglobalmeansurface windspeedislargerthanthatfrom thereanalysis. Thepercentagechangesinvarious surfacevariables(e.g.,mean precipitationoverland)fromeach modelarescaledbythechangein surfaceairtemperatureaveraged overocean,whichde  nestherateof percentagechange.Weusetheocean meansurfaceairtemperature increaseratherthantheglobalmean temperatureincreaseforscaling becausethechangeinlandsurfaceair temperatureislargelydeterminedby thatoverocean[e.g., Manabeetal ., 1992; Joshietal .,2008].Theuseofthe oceanmeansurfaceairtemperature changeforscalingalsohelpsfacilitate theinterpretationofthe P /PET changesintermsoftheevaporation overocean. 3.Changesof P , E ,PET,and P /PET 3.1.TemporalVariationsin P ,PET,and P /PETandSpatialPatternsoftheChanges Figure1showsthetimeseriesofannualmean P ,PET,and P /PET,averagedoverland,inunitsofpercentage anomalieswithrespecttoaveragedvaluesofthe  rst10years.Weseeincreasesin P andPETbuta decreasein P /PETduetoanincreaseinCO 2 concentrationintheatmosphere.Anincreasein P cannotkeep pacewiththeincreasingPET,causingadecreasein P /PET(Figure1). Figure2showstheglobaldistributionsofthepercentagechangesin P ,  PET,and P /PETbetweenthe years61 – 70and1 – 10.Notethatthesummationofpercentagechangesin P and  PETisapproximatelyequal tothepercentagechangein P /PET(seeequation(5)).ThespatialpatternsshowninFigure2areverysimilarto thoseofthechangesin P ,PET,and P /PETattheendofthe21stcenturyrelativetocurrentclimate,from theCMIP5scenarioRCP8.5simulations[see FengandFu ,2013,Figures7and8].Oneimportantdifferenceis thattheareaofprecipitationdecreaseneartheMediterraneanSea,associatedwiththeCO 2 increase only(Figure2a),issigni  cantlylarger(extendingmoreeastandsouth)ascomparedwiththatduetochanges innotonlyCO 2 butalsoaerosols,landsurface,ozone,andothergreenhousegasesinRCP8.5.Thisleadstoa largerdryingareaovernorthernAfricaandAsia(Figure2c). Figure2. Globaldistributionsofpercentagechanges(%)in(a) P ,(b)  PET, and(c) P /PETtakenasthedifferencebetweentheaveragesfortheyears 61 – 70and1 – 10oftheCMIP51pctCO 2 simulations( P /PETiscalculatedas theaveraged P dividedbyaveragedPET).Gridpointsarestippledwhen morethan80%ofthe25modelsagreeonthesign. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 5 3.2.RatesofChangein P , E ,PET, and P /PET Beforepresentingtheratesofchange in P , E ,PET,and P /PET,Figure3 showstheocean T a changes (Figure3a)andtheratioof T a changes overlandandocean(Figure3b)from theindividualmodels.Theensemble meanocean T a increasesby1.39°C, withastandarddeviationof0.28°C, whilethemeanlandtooceanratiois 1.59,withastandarddeviationof0.13. Theglobalmean T a increaseper°C ocean T a increaseis1.16witha standarddeviationof0.03(notshown). Figure4showsthepercentagechange ratesinannualmeanprecipitation (left)andevaporation(right)averaged overland,ocean,andtheglobe. Themultimodelensemblemean precipitationchangeratesoverland andoceanareboth~1.65%/°C, supportingthestatementof Sherwood andFu [2014]thatthemean precipitationoverlandandocean changessimilarly.Notethatthe intermodeldifferencesaresigni  cantlylargerforland P changes,whichre  ectsalargerinterannual variabilityin P overland(notshown).Alternatively,theglobalmean P changescaledbytheocean T a change(i.e.,1.66%/°C)canberescaledastheglobalmean P changedividedbytheglobalmean T a change:1.66%/°C/1.16=1.43%/°C,whichisconsistentwithpreviousstudies[e.g., PendergrassandHartmann , 2014].Asfor P ,land E changesshowlargerintermodeldifferencesthanocean E .Themultimodelmeanvalue forland E changesissmallerthanthatforocean E .Figure4showsthattherateofpercentagechangeof ocean E isverysimilartothoseofboth landandocean P ,indicatingthatthe averaged P changesoverbothlandand oceanarelargelyconstrainedbythe evaporationoverocean. Figure5showstheratesofpercentage changeinannualmeanPET(middle)and P /PET(right)overland.Thechangeratein P isalsoshowninFigure5(left)foradirect comparison.Themultimodelensemble meanrateis5.3%/°CforPET,whichismuch largerthantherateofincreaseof precipitation.Allmodelsprojectadrier futureclimateoverland[ FengandFu , 2013; Cooketal .,2014].Themultimodel meanchangerateinthearidityindexis  3.4%/°C.Figure5indicatesthatalthough landonaveragewillgetmoreprecipitation inawarmingclimate,itwillnotget enoughtokeeppacewiththegrowing evaporativedemand,leadingtoadrier Figure3. (a)Thechangeofsurfaceairtemperature( T a )averagedover ocean,takenasthedifferencebetweentheaveragesfortheyears61 – 70and 1 – 10oftheCMIP51pctCO 2 simulations,versusindividualmodels.(b)The changeofsurfaceairtemperature( T a )averagedoverlandscaledbyocean meansurfaceairtemperaturechange.Themultimodelensemblemeanvalue alongwithitsstandarddeviationandrangeisshownineachpanel. Figure4. Percentage(%)changesin(left)annualmean P and(right) evaporation( E )averagedoverland,ocean,andglobe,scaledby oceanmeansurfaceairtemperatureincreases(°C)fromtheCMIP5 1pctCO 2 simulations.Theresultsareplottedwithboxandwhisker diagramsrepresentingpercentilesofchangescomputedfromthe 25models.Thecentralline(blackdot)withineachboxrepresentsthe median(mean)valueofthemodelensemble.Thetopandbottomof eachboxshowsthe75thand25thpercentiles,andthetopand bottomofeachwhiskerdisplaythe95thand5thpercentilevaluesin theensemble,respectively. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 6 terrestrialclimate[ SherwoodandFu ,2014]. Below,wewillexaminetheeffectsofchangesin varioussurfacemeteorologicalvariablesincluding surfaceairtemperature,relativehumidity,wind speed,andavailableenergyonthe P /PETchanges. 4.Attributionsof P /PETChanges OverLand Thepercentagechangein P /PETcanbewritten inthefollowingform[ FengandFu ,2013]:  P PET  = P PET    P P   PET PET : (5) Approximatingthepercentagechangein P over landwith E overocean,equation(5)becomes  P PET  = P PET    E E  Ocean   PET PET : (6) Sincetheactualevaporationoveroceanisthesameasthepotentialevaporationthere,whichcanalso bederivedusingthePenman – Monteithalgorithm,wecanexaminethechangein P /PETintheframeworkof thePETbycomparingitschangesoverlandandocean(seeequation(6)).Table3showsthatthe E andits changeoveroceanfromthePenman – Monteithalgorithmareconsistentwiththoseobtaineddirectlyfrom theGCMs. SherwoodandFu [2014]arguethatthedifferencesbetween  PET PET and  E E  Ocean arelargelycausedbythe enhancedwarmingoverlandrelativetooceanaswellastherelativehumiditychangesoverlandandocean withoppositesign.Herewequantifytheseeffectsaswellastheeffectsofchangesinwindspeedand availableenergyatthesurface.Beforedoingso,we  rstpresentthechangesinrelevantsurface meteorologicalvariablesoverlandandthoseoverocean. 4.1.Changesin T a ,RH, u ,and R n  G OverLandandOcean Theratesofchangein T a ,RH, u ,and R n  G overlandandoceanareshowninFigure6.Therateofchange insurfaceairtemperatureoveroceanisonefollowingthede  nition. TheGCMssuggestthat T a overlandincreases~60%fasterthan T a overoceanwithsmallmodel-to-model differences(Figure6,left).Thisphenomenoniswelldocumentedanddiscussedinliteratures[e.g., Manabe etal .,1992; Joshietal .,2008; ByrneandO ’ Gorman ,2013].AlargerwarmingwouldleadtoalargerPET increase[ FengandFu ,2013; ScheffandFrierson ,2014].Therefore,thereisalargerincreaseinPEToverland thantheincreasein E overoceanduetothedirecttemperatureeffects. TheRHoverlanddecreasesinalmostalltheGCMswithameanvalueof  0.76%/°C,whileitincreasesinall theGCMsoveroceanwithameanvalueof0.27%/°C(Figure6,middleleft).Previousstudiesalsoshowa decreaseinRHoverlandandanincreaseoveroceanfrombothmodelsimulationsandobservations [ RowellandJones ,2006; RichterandXie ,2008; Simmonsetal .,2010; O ’ GormanandMuller ,2010].SincePET Figure5. Percentage(%)changesinthe(left)annualmean P , (middle)PET,and(right) P /PETaveragedoverland,scaledby oceanmeansurfaceairtemperatureincreases(°C)fromthe CMIP51pctCO 2 simulations.Theresultsareplottedwithbox andwhiskerdiagramsasde  nedinFigure4. Table3. ComparisonofAnnualMeanEvaporation( E )andItsPercentageChangeRateandSurfaceStability( T a  T s ) ChangeRateOverOceanEstimatedUsingthePenman – MonteithAlgorithmandThoseDirectlyFromtheGCMs a E (mm)PercentageChangeRatein E (%/°C)ChangeRatein T a  T s (°C/°C) Penman – Monteith1267(90)1.92(0.39)0.07(0.03) DirectlyfromtheGCMs1300(62)1.71(0.40)0.06(0.02) a Theensemblemeanvaluesalongwith1standarddeviation(thenumbersintheparentheses)ofthe25modelresults areshown. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 7 increaseswithdecreasingRH(seeequation(1)),thechangesinRHoverland(ocean)wouldresultinan increase(adecrease)ofPET( E )overland(ocean),leadingtoalargerdifferencebetweenlandPETandocean E .NotethatthemultimodelmeanvalueoftheglobalmeanRHchangesisnear0(notshown). Themeanratesofchangeofsurfacewindspeedsoverlandandoceanareboth  0.004m/s/°C(Figure7, middleright).Therefore,theyshouldhavelittleeffectonthechangesofPEToverlandand E overocean. ThechangesofPEToverlandand E overoceanarethenlargelycausedbythechangesinthevapor pressurede  citthatarethusabout5.3%/°Coverlandand1.7%/°Coverocean.Itisinterestingtonoticethat thereisasigni  cantdecreaseinobservedsurfacewindspeedsglobally[ McVicaretal .,2012].Forexample, about40%decreaseinsurfacewindwasreportedinthelast4decadesoverIndia[ Padmakumarietal ., 2013].Aerosolscouldcausethedecreaseofsurfacewind[ Yangetal .,2013].Understandingofobserved changesinsurfacewindanditsimpactonthePET( E )arebeyondthescopeofthepresentstudybutwillbe addressedinourfutureresearcheffort. PETisproportionaltotheavailableenergy( R n  G ).Theratesofchangeof R n  G overlandandoceanare showninFigure6(right).Themultimodelmeanvalueis1.47W/m 2 /°Coverlandand0.78W/m 2 /°Cover ocean.Therefore,thechangein R n  G mayalsocontributetoalargerincreaseinPEToverlandthan E over ocean.BycomparingthenetdownwardradiationchangesinFigure7(left)withthe R n  G changesin Figure6(right),wenotethatthereisanear-zero G changeoverlandbutarateofchangeof~1.0W/m 2 /°C overocean.Despitetheslightlysmaller R n increaseoverlandthanoverocean(Figure7,left),thereisalarger increasein R n  G overland,becausepartoftheincreasednetdownwardradiationattheoceansurfaceis transportedtodeepocean[ Hansen etal .,2005; Johnsonetal .,2011; Loeb etal .,2012; Stephensetal .,2012]. Itisalsointerestingtonotethatthereis anincreasein R n , s overlandbuta decreaseoverocean,althoughbothare statisticallyinsigni  cant(Figure7, middle).Thereisasigni  cantincrease in R n , L overbothlandandocean,and theincreaseoverlandissmaller (Figure7,right).Theatmospheric warmingduetoCO 2 leadstomoreH 2 O intheatmosphere.Theincreaseofboth CO 2 andH 2 Ocauseslargerdownward surfaceinfraredradiation.Asmaller R n , L butalarger R n , s overlandthanthose overoceanindicateadecreaseincloud fractionoverlandrelativetothat overocean. Figure6. Changesin(left) T a ,(middleleft)relativehumidity(RH),(middleright)windspeed( u ),and(right)availableenergy ( R n  G )averagedoverlandandocean,scaledbyoceanmeansurfaceairtemperatureincreases,fromtheCMIP51pctCO 2 simulations.Theresultsareplottedwithboxandwhiskerdiagramsasde  nedinFigure4. Figure7. Changesin(left)netdownwardradiation( R n ),(middle)netdown- wardshort-waveradiation( R n , s ),and(right)netdownwardlong-wave radiation( R n , L )averagedoverlandandocean,scaledbyoceanmeansur- faceairtemperatureincreases,fromtheCMIP51pctCO 2 simulations.The resultsareplottedwithboxandwhiskerdiagramsasde  nedinFigure4. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 8 Theevaporationchangeoveroceancorrespondstoachangeof1.73Wm  2 /°Cintermsoflatentheat  ux. Notingthechangeof0.78Wm  2 /°Cin R n  G orSH+LH,wehaveachangeof  0.95Wm  2 /°CinSHover ocean.Usingequation(2),weobtainarateofchangeof0.07°C/°Cfor T a  T s ,whichisconsistentwiththat obtaineddirectlyfromtheGCMs(Table3). RichterandXie [2008]showthatoceansurfaceevaporation increasesby2%/°Cofsurfacewarming,ratherthanthe7%/°Cratesimulatedforatmosphericmoisture, becauseoftheincreaseinsurfacerelativehumidityandsurfacestabilityandthedecreaseinsurfacewind speed.IntheframeworkofthePenman – Monteithalgorithm,thechangein T a  T s alongwith E ,scaledby the T a change,ispredictedbythechangesinavailableenergy,surfacewind,andrelativehumidity. 4.2.EffectsofChangesin T a ,RH, u ,and R n  G Upon P /PET Usingequation(1)tocalculatetheevaporationoverocean,weobtainarateofpercentagechangeof ~1.9%/°Cintheannualmeanevaporationoverocean(Table3),similartothatobtaineddirectlyfrommodels. Hereweemployequation(1)toquantifytheindividualcontributionsofchangesintemperatures,relative humidity,windspeed,andavailableenergytothetotalpercentagechangesinPEToverland, E overocean, andultimately P /PEToverland.Forexample,inordertoisolatetheeffectofthetemperaturechangeon PEToverland,wecalculatethePETusing T inthelast10yearsbutRH, u ,andSH+LHfromthe  rst10years andcompareitwithPETusingtheinputsfromthe  rst10years.SeeAppendixAforthedetailsonthe methodofderivingtheindividualcontributions. Thesecond(third)columnofTable4showsthatthechangeinPET( E )overland(ocean)isdominatedbythe changeintemperatures,whilethechangesinRHandavailableenergyalsomakeappreciablecontributions [ ScheffandFrierson ,2014].(Thenumbersintheparentheseswillbediscussedlater.)Theincreasein temperaturesresultsinalargerPEToverlandandalarger E overocean(seesecondrowinTable4),butthe formerismorethantwiceaslargeasthelatter.Thisisbecauseoftheenhancedwarming(60%)overland relativetothatoveroceanandalsopartlybecausethe E overoceanislesssensitivetotemperaturewhen r s =0.0[ ScheffandFrierson ,2014]. Thedecrease(increase)inRHoverland(ocean)resultsinanincrease(decrease)inPET( E )(seethethirdrowin Table4)andhencealargerdifferencebetweenPETand E .Theincreaseinavailableenergyoverbothlandand oceanincreasesPEToverlandand E overocean(seethe  fthrowinTable4).However,theincreasein availableenergyoverocean,andthus E ,issmallerbecausepartofdownwardradiationistransported downwardintothedeepocean(section4.1).Surfacewindspeedchangeslittleandthusmakeslittle contributiontothechangeofterrestrialmeanaridity(seethefourthrowinTable4). Thenetcontributionsfromindividualsurfacemeteorologicalvariables(i.e., T a ,RH, u ,and R n  G )tothe changesin P /PETarethedifferencesbetweenthethirdandsecondcolumnsfollowingequation(6),which areshowninthefourthcolumninTable4.Intermsofthetotalchangeratein P /PET,theycorrespond torelativecontributionsof53%,37%,1%,and8%,respectively(seethe  fthcolumninTable4).Note thatthesecontributionsarenotonlydeterminedbythecontrastingchangesoverlandandoceanin surfacemeteorologicalvariablesbutalsoareaffectedbythecoef  cientsandbackgroundatmospheric Table4. EffectsofSurfaceAirTemperature( T a ),RelativeHumidity(RH),WindSpeed( u ),andAvailableEnergy ( R n  G )onthePercentageChangeRatesinPotentialEvapotranspiration(PET)OverLand,Evaporation( E )Over Ocean,and P /PETOverLand,EstimatedUsingthePenman – MonteithAlgorithmBasedon25CMIP51pctCO 2 Increaseto2×CO 2 Simulations a PET(%/°C) E (%/°C) P/ PET(%/°C) RelativeContributiontothe Total P/ PETChange(%) T a 3.481.68(2.19,  0.51)  1.80(  1.29,  0.51)53(38,15) RH0.95  0.31(  0.34,0.03)  1.26(  1.29,0.03)37(38,  1) u  0.03  0.06(  0.03,  0.03)  0.03(0.0,  0.03)1(0,1) R n  G 0.880.62(0.47,0.15)  0.26(  0.41,0.15)8(12,  4) Total5.281.92(2.29,  0.37)  3.36(  2.99,  0.37)100(89,11) a Thepercentagechangein P /PETisapproximatedbyequation(6).The  rstnumberinparenthesesgivesthechange basedonthePenman – Monteithalgorithmusingthelandcoef  cientsandbackgroundatmosphericconditions,while thesecondoneistheeffectofdifferencesincoef  cientsandbackgroundconditionsbetweenlandandocean.See thetextandAppendixAforthedetailsonthemethods. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 9 conditionsusedinthePenman – Monteithequation,whichaffectthesensitivityofPET( E )tothechanges inthesevariables. The  rstnumberintheparenthesisofthethirdcolumninTable4isthesecondcolumnscaledby  x O /  x L , where  x O and  x L arethechangesinthecorrespondingsurfacevariablesfromthemultimodelensemble meansoveroceanandland,respectively.Wehave  x O /  x L =0.628,  0.355,1.0,and0.531forchangesin T a , RH, u ,andSH+LH,respectively.Forexample,wehave3.48×0.628=2.19.Theythuscanbeconsideredas the E changesoveroceanfromthePenman – Monteithalgorithmusingthelandcoef  cients( r s and C H ) andthebackgroundatmosphericconditions.Thesecondnumberintheparenthesesisthedifference betweenthenumberoutsidetheparenthesesandthe  rstnumberinsidethem.Itshowstheeffectofusing thecoef  cientsandbackgroundatmosphericconditionsoveroceanversusthoseoverlandforgiven changesinatmosphericconditions.Thenumbersintheparenthesesinthefourthand  fthcolumnsarethe correspondingvaluesforthechangesin P /PETandtherelativecontributions,respectively.Thesenumbers thusshowtheeffectsofcontrastingchangesinsurfacemeteorologicalvariablesoverlandandocean, versusthoseduetotheuseofthedifferent(landversusocean)coef  cientsandbackgroundatmospheric conditionsinestimatingtheeffectsofgivenatmosphericchanges.Therefore,thecausesofthedrier terrestrialclimatearefurtherquanti  edhereintermsof(i)enhancedlandwarmingrelativetoocean,(ii)a decreaseinRHoverlandbutanincreaseoverocean,(iii)partofincreaseinnetdownwardradiationgoing intothedeepocean,and(iv)differentresponsesofPEToverlandand E overoceanforgivenchangesin atmosphericconditions.Therelativecontributionstothechangeinterrestrialmeanaridityfromthesefour factorsare38%,38%,12%,and11%,respectively(Table4). Table4(andTables5and6later)con  rmsthatthePETover landismoresensitivetothesurfaceairtemperaturethan the E overocean.Thisisbecausethedenominatorin equation(1)becomesmoresensitivetotemperaturewhen r s =0.0overocean,cancelinglargerpartofthetemperature sensitivityofthenumerator.Italsoindicatesthatthe E overoceanismoresensitivetotheavailableenergychange. Thisisbecausetheenergyterminequation(1)makesupa largerproportionofthenumeratorduetoasmaller C H over ocean.ThePEToverlandand E overoceanhowever respondsimilarlytoagivenchangeinRH(Table4).Overall, theeffectofdifferingresponsesofPEToverlandversus E overoceanforgivenchangesinatmosphericconditionsis largelyassociatedwithchangesintemperatures. Table5isthesameasTable4exceptthatthe  rstnumberin theparenthesesgivesthechangebasedonthePenman – Monteithalgorithmusingtheoceancoef  cientsand backgroundatmosphericconditions,whilethesecond oneistheeffectofthedifferencesincoef  cientsand backgroundconditionsbetweenlandandoceanforgiven atmosphericconditionchangesoverland.Therelative contributions(thenumbersintheparenthesesofthe  fth Table5. SameasTable4ExceptThattheFirstNumberintheParenthesesGivestheChangeBasedonthePenman – MonteithAlgorithmUsingtheOceanCoef  cientsandBackgroundAtmosphericConditions,WhiletheSecondOneis theEffectofDifferencesinCoef  cientsandBackgroundConditionsBetweenOceanandLand PET(%/°C) E (%/°C) P/ PET(%/°C) RelativeContributiontothe Total P/ PETChange(%) T a 3.48(2.67,0.81)1.68  1.80(  0.99,  0.81)53(30,23) RH0.95(0.87,0.08)  0.31  1.26(  1.18,  0.08)37(35,2) u  0.03(  0.06,0.03)  0.06  0.03(0.0,  0.03)1(0,1) R n  G 0.88(1.17,  0.29)0.62  0.26(  0.55,0.29)8(16,  8) Total 5.28(4.65,0.63)1.92  3.36(  2.73,  0.63)100(81,18) Table6. RelativeContributionsofSurfaceair Temperature( T a ),RelativeHumidity(RH),Wind Speed( u ),andAvailableEnergy( R n  G )onthe PercentageChangeRatesin P /PET a RelativeContributiontothe Total P/ PETChange(%) T a 53(34±4,19±4) RH37(36±2,0±2) u 1(0±0,1±0) R n  G 8(14±2,  6±2) Total100(85±4,15±4) a The  rstnumberinthparenthesesgivesthe relativecontributionsofcontrastingchangesof T a ,RH, u ,and R n  G basedonthePenman – Monteithalgorithmusingthesamecoef  cients andbackgroundatmosphericconditionsover landandocean.Thesecondnumberinthe parenthesesisthecorrespondingcontributions duetodifferingresponsesofPEToverlandand E overoceantogivenchangesinatmospheric conditions.Theuncertaintiesareassociatedwith referencecoef  cientsandbackgroundconditions thatareusedeitheroveroceanorland. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 10 column)usingtheoceancoef  cientsandatmosphericbackgroundconditions(Table5)areslightly differentfromthoseusingthelandconditions(Table4).Bytakingtheaverageofthe  fthcolumnsfrom Tables4and5,weobtaintheTable6.Itshowsthattherelativecontributionstothechangeinterrestrial meanaridityareabout35%,35%,15%,and15%,respectively,duetocontrastingchangesoverlandversus oceanin T a ,RH,SH+LH,anddifferingresponsesofPEToverlandand E overoceantogivenchangesin atmosphericconditions. Inthisstudy,weuseda C H of4.8×10  3 anda r s of70s/m,correspondingtoagrass-likesurface[ Allenetal ., 1998],asuniversalconstantsoverland. ScheffandFrierson [2014]examinedtheeffectofsetting r s =0,as usedby Burkeetal .[2006]and Dai [2013],aswellasinthecaseofpanevaporation.Itisfoundthatthechange inPETdueto T a becomes24%smaller.SincesucheffectonthePETchangesassociatedwithother meteorologicalvariablesisnegligible,thepercentagechangerateinPETisabout4.6%/°Cfrom 5.3%/°C×(0.53×0.76+0.37+0.01+0.08)(seeTable4),andthepercentagechangeratein P /PETbecomes about  2.9%/°C,when r s =0. ScheffandFrierson [2014]alsoexamineda “ rough, ” forest-likesurface,and theyfoundaslightlystrongerPETresponseto T a thanthe “ smooth ” grasssurface.Therefore,theresults presentedinthisstudyarerobustandarenotverysensitivetothewidelydifferentchoicesofvegetation parametersusedinthePenman – Monteithalgorithm. Theobservedpanevaporationhasnotincreasedasexpectedoverthepastfewdecades[ Wangetal .,2012]. Thisisbecausesigni  cantglobal “ stilling ” ofnear-surfacewindsandslightdecreasesindownwardsurface solarradiationcompensatefororevenexceedthechangesduetotemperatureandrelativehumidity [ McVicaretal .,2012].Butneitherthestillingofwindsnorthereducedsurfaceinsolationappearstobe connectedtoglobaltemperaturerise,andthesuggestedcausesareinsteadassociatedwithlanduse, aerosols,and/orinternalvariability[ Bichetetal .,2012; Wever ,2012; Yangetal .,2013; McVicaretal .,2012]. Recently, ZhangandCai [2013]showedthatprojectedcropwaterde  citsattheendofthe21stcentury arelikelytodeclineslightlydespitetherisingtemperature.TheyusedanempiricalequationforPETasa functionofthetemperatureanddiurnaltemperaturerange(DTR),developedby HargreavesandSamani [1985],wheretheeffectofsolarradiationisparameterizedintermsofDTR.Inawarmingclimatecausedby theincreaseofgreenhousegases,theDTRwilldecrease[ IPCC ,2013],whilethe R n , s willincrease(seeFigure7, middle).ThebottomlineisthatthedecreaseinPETcausedbythedecreaseinDTRfromtheempirical equationhasnophysicalbasisforthelong-termclimatechange.Inaddition,theempiricalequationdoesnot considertheeffectofchangesinRHand R n , l ,bothcontributingtotheincreaseinPET.Itisimportantto noticeherethatanempiricalrelationshipmaynotbeappropriatebeingappliedtothelong-termclimate changeatall,althoughitmay  tthecurrentclimatereasonablywell. 5.SummaryandConclusions Thedrynessofterrestrialclimatecanbeexpressedintermsoftheratioofannualprecipitation( P )to potentialevapotranspiration(PET).ThePETistheevaporativedemandoftheatmosphere,indicatingthe maximumamountofevaporationonewouldget,inagivenclimate,fromawell-wateredsurface.PETisa functionofsurfaceairtemperature,relativehumidity,windspeed,andavailableenergy.Thisstudyexamines howtheterrestrialmeanaridityrespondstoglobalwarmingintermsof P /PETusingtheCMIP5transientCO 2 1%/yrincreaseto2×CO 2 simulations.WecalculatedthePETusingthePenman – Monteithalgorithm,whichis basedonthebulkformulaeforthesensibleheatandlatentheat  uxesandthesurfaceenergybudget equation.ItisfoundthatthePenman – Monteithalgorithmcanalsobeusedtocalculatetheevaporation ( E )overoceanwiththeRHand r s valuesoverocean. Weshowthattherateofpercentageincreasein P averagedoverlandis~1.65%/°Criseinoceanmeansurface airtemperature,whiletheincreaseinPETis5.3%/°C,leadingtoadecreasein P /PET(i.e.,adrierterrestrial climate)by~3.4%/°C.Notingsimilarpercentageincreaseratesfor P overlandandevaporationover ocean,weproposeaframeworkforexaminingthepercentagechangeratesin P /PETbycomparingthe changeinPEToverlandwith E overocean,bothestimatedusingthePenman – Monteithformula.We documentthechangesin T a ,RH, u ,and R n  G overbothlandandoceanandquantifytheireffectsonthe changein P /PET.Itisfoundthatthecontributionsfrom T a ,RH, u ,and R n  G changestothechangesin P /PET are53%,37%,1%,and8%,respectively.Thesecontributionsarenotonlydeterminedbythecontrasting changesoverlandandoceanintherelevantsurfacemeteorologicalvariablesbutalsoareaffectedbythe JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 11 coef  cientsandbackgroundconditionsused,whichdeterminethesensitivityofPET( E )tothechanges insurfacevariables. Wefurtherseparatetheeffectsofthecontrastingchangesoverlandversusoceaninthesurface meteorologicalvariablesandthoseduetodifferingresponsesofPEToverlandand E overoceanforgiven atmosphericchanges.Adrierterrestrialclimatecanthenbeinterpretedby(i)enhancedlandwarming relativetoocean,(ii)adecreaseinRHoverlandbutanincreaseoverocean,(iii)partofincreaseinnet downwardradiationgoingintothedeepocean,and(iv)differingresponsesofPEToverlandand E over oceantogivenchangesinatmosphericconditions(largelyassociatedwithchangesintemperatures). Therelativecontributionstothechangeinterrestrialmeanaridityfromthesefourfactorsareabout35%, 35%,15%,and15%,respectively. AppendixA:ChangeinPETandContributionsFromChangesin T a ,RH, u ,and R n  G Herewede  ne E = R n  G andusethesubscripts “ 0 ” and “ 1 ” torepresentthemeanvaluesfortheyears1 – 10 and61 – 70ofthesimulations,respectively.Wealsodenotethechangeofavariable x as  x = x 1  x 0 .The changeinPETusingequation(1)canthenbewrittenintheform  PET ¼ E 1  T a 1 ðÞ þ  a c p e  T a 1 ðÞ 1  RH 1 ðÞ C H u 1 jj  T a 1 ðÞþ  1 þ r s C H u 1 jj ðÞ = L v  E 0  T a 0 ðÞþ  a c p e  T a 0 ðÞ 1  RH 0 ðÞ C H u 0 jj  T a 0 ðÞþ  1 þ r s C H u 0 jj ðÞ = L v ¼ E 0  T a 1 ðÞþ  a c p e  T a 1 ðÞ 1  RH 0 ðÞ C H u 1 jj  T a 1 ðÞþ  1 þ r s C H u 1 jj ðÞ = L v  E 0  T a 0 ðÞþ  a c p e  T a 0 ðÞ 1  RH 0 ðÞ C H u 0 jj  T a 0 ðÞþ  1 þ r s C H u 0 jj ðÞ = L v þ  E  T a 1 ðÞ  T a 1 ðÞþ  1 þ r s C H u 1 jj ðÞ = L v þ  a c p e  T a 1 ðÞ  RH ðÞ C H u 1 jj  T a 1 ðÞþ  1 þ r s C H u 1 jj ðÞ = L v Fromtheaboveequationandnotingthatthechangeinwindspeedissmall,wecanisolatetheeffectof temperaturechangebycomputingthePETusing T inthelast10yearsbutRH, u ,and E fromthe  rst10years minusthePETusingtheinputsfromthe  rst10years.TheeffectsofthechangesinRHor E howeverare estimatedbyusingPETwiththeinputsfromthelast10yearsminusthatcalculatedusingRHor E inthe  rst10yearsbutotherinputsfromthelast10years.Theeffectofwindspeedisestimatedsimilarlytothatfor thetemperature. References Allen,M.R.,andW.J.Ingram(2002),Constraintsonfuturechangesinclimateandthehydrologiccycle, Nature , 419 (6903),224 – 232, doi:10.1038/nature01092. Allen,R.G.,L.S.Pereira,D.Raes,andM.Smith(1998),Cropevapotranspiration:Guidelinesforcomputingcropwaterrequirements, FAO IrrigationandDrainagePap.56 ,Stylus,Sterling,Va. Arya,S.P.(2001), IntroductiontoMicrometeorology ,AcademicPress,SanDiego,Calif. Bichet,A.M.,M.Wild,D.Folini,andC.Schar(2012),Causesfordecadalvariationsofwindspeedoverland:Sensitivitystudieswithaglobal climatemodel, Geophys.Res.Lett. , 39 ,L11701,doi:10.1029/2012GL051685. Burke,E.J.,S.J.Brown,andN.Christidis(2006),Modelingtherecentevolutionofglobaldroughtandprojectionsforthetwenty-  rstcentury withtheHadleyCentreclimatemodel, J.Hydrometeor. , 7 ,1113 – 1125. Byrne,M.P.,andP.A.O ’ Gorman(2013),Land-oceanwarmingcontrastoverawiderangeofclimates:Convectivequasi-equilibriumtheory andidealizedsimulations, J.Clim. , 26 ,4000 – 4016. Cook,B.I.,J.E.Smerdon,R.Seager,andS.Coats(2014),Globalwarmingand21stcenturydrying, Clim.Dyn. ,doi:10.1007/s00382-014-2075-y. Dai,A.(2013),Increasingdroughtunderglobalwarminginobservationsandmodels, Nat.Clim.Change , 3 ,52 – 58. Dai,A.G.(2011),CharacteristicsandtrendsinvariousformsofthePalmerdroughtseverityindexduring1900 – 2008, J.Geophys.Res. , 116 , D12115,doi:10.1029/2010JD015541. Donohue,R.J.,T.R.McVicar,andM.L.Roderick(2010),Assessingtheabilityofpotentialevaporationformulationstocapturethedynamicsin evaporativedemandwithinachangingclimate, J.Hydrol. , 386 ,186 – 197. Feng,S.,andQ.Fu(2013),Expansionofglobaldrylandsinawarmingworld, Atmos.Chem.Phys. , 13 ,10,081 – 10,094. Fu,C.B.(2008),AriditytrendinNorthernChina,in RegionalClimateStudiesofChina ,chap.5,editedbyC.B.Fuetal.,pp.155 – 217, Springer,Berlin. Fu,C.B.,andZ.G.Ma(2008),Globalchangeandregionalariditytrend, Chin.J.Atmos.Sci. , 32 (4),752 – 760. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 12 Acknowledgments WethankJ.Scheff,S.Sherwood, D.Frierson,andJ.M.Wallacefortheir usefuldiscussions.WealsothankRuby Leung,theEditor,andthreeanonymous reviewersfortheirconstructive commentsandsuggestions.Thisstudy isinpartsupportedbytheNational BasicResearchProgramofChina (2012CB955303),NSFCgrant41275070, andtheNSFgrantAGS-1439964.Partof theworkwasdonewhenQ.F.visitedthe MPIforMeteorologyatHamburg,with theHumboldtResearchAward. Hansen,J.,etal.(2005),Earth ’ senergyimbalance:Con  rmationandimplications, Science , 308 ,1431 – 1435. Hargreaves,G.H.,andZ.A.Samani(1985),Referencecropevapotranspirationfromtemperature, Appl.Eng.Agri. , 1 (2),96 – 99. Held,I.M.,andB.J.Soden(2006),Robustresponsesofthehydrologicalcycletoglobalwarming, J.Clim. , 19 ,5686 – 5699. Hulme,M.(1996),Recentclimaticchangeintheworld ’ sdrylands, Geophys.Res.Lett. , 23 ,61 – 64,doi:10.1029/95GL03586. IntergovernmentalPanelonClimateChange(IPCC)(2013),Thephysicalsciencebasis,in ContributionofWorkingGroupItotheFifth AssessmentReportoftheIntergovernmentalPanelonClimateChange ,CambridgeUniv.Press,Cambridge,U.K.,andNewYork. Johnson,G.C.,etal.(2011),Oceanheatcontent, Bull.Am.Meteorol.Soc. , 92 ,S81 – S84. Joshi,M.M.,J.M.Gregory,M.J.Webb,D.M.H.Sexton,andT.C.Johns(2008),Mechanismsfortheland/seawarmingcontrastexhibitedby simulationsofclimatechange, Clim.Dyn. , 30 ,455 – 465. Lambert,F.H.,andM.J.Webb(2008),Dependencyofglobalmeanprecipitationonsurfacetemperature, Geophys.Res.Lett. , 35 ,L16706, doi:10.1029/2008GL034838. Loeb,N.,etal.(2012),HeatingofEarth ’ sclimatesystemcontinuesdespitelackofsurfacewarminginpastdecade, Nat.Geosci. , 5 ,110 – 113. Maidment,D.R.(1993), HandbookofHydrology ,McGraw-Hill,NewYork. Manabe,S.,M.J.Spelman,andR.J.Stouffer(1992),Transientresponsesofacoupledocean-atmospheremodeltogradualchangesof atmosphericCO 2 .PartII:Seasonalresponse, J.Clim. , 5 ,105 – 126. McVicar,T.R.,etal.(2012),Globalreviewandsynthesisoftrendsinobservedterrestrialnear-surfacewindspeeds:Implicationsforeva- poration, J.Hydro. , 416-417 ,182 – 205. Middleton,N.J.,andD.S.G.Thomas(1992), UNEP:WorldAtlasofDeserti  cation ,EdwardArnold,Sevenoaks. Mitchell,J.F.B.,C.A.Wilson,andW.M.Cunnington(1987),OnCO 2 climatesensitivityandmodeldependenceofresults, Q.J.R.Meteorol.Soc. , 113 (475),293 – 322,doi:10.1002/qj.49711347517. Mortimore,M.(2009), DrylandOpportunities ,IUCN,Gland,Switzerland,HED,London,U.K.,andUNDP,NewYork. O ’ Gorman,P.A.,andC.J.Muller(2010),HowcloselydochangesinsurfaceandcolumnwatervaporfollowClausius – Clapeyronscalingin climatechangesimulations?, Env.Res.Lett. , 5 ,025207. Overpeck,J.,andB.Udall(2010),Drytimesahead, Science , 328 ,1642 – 1643. Padmakumari,B.,A.K.Jaswal,andB.N.Goswami(2013),DecreaseinevaporationovertheIndianmonsoonregion:Implicationonregional hydrologicalcycle, Clim.Change ,doi:10.1007/s10584-013-0957-3. Pendergrass,A.G.,andD.L.Hartmann(2014),Theatmosphericenergyconstraintonglobal-meanprecipitationchange, J.Clim. , 27 ,757 – 768. Reynolds,J.F.,etal.(2007),Globaldeserti  cation:Buildingasciencefordrylanddevelopment, Science , 316 ,847 – 851. Richter,I.,andS.-P.Xie(2008),Mutedprecipitationincreaseinglobalwarmingsimulations:Asurfaceevaporationperspective, J.Geophys. Res. , 113 ,D24118,doi:10.1029/2008JD010561. Rowell,D.P.,andR.G.Jones(2006),CausesanduncertaintyoffuturesummerdryingoverEurope, Clim.Dyn. , 27 ,281 – 299. Scheff,J.,andD.Frierson(2014),Scalingpotentialevapotranspirationwithgreenhousewarming, J.Clim. , 27 ,1539 – 1558. Shef  eld,J.,E.F.Wood,andM.L.Roderick(2012),Littlechangeinglobaldroughtoverthepast60yr, Nature , 491 ,435 – 438. Sherwood,S.,andQ.Fu(2014),Adrierfuture?, Science , 343 ,737 – 739. Simmons,A.J.,K.M.Willett,P.D.Jones,P.W.Thorne,andD.P.Dee(2010),Low-frequencyvariationsinsurfaceatmospherichumidity, temperature,andprecipitation:Inferencesfromreanalysesandmonthlygriddedobservationaldatasets, J.Geophys.Res. , 115 ,D01110, doi:10.1029/2009JD012442. Stephens,G.L.,andT.D.Ellis(2008),Controlsofglobal-meanprecipitationincreasesinglobalwarmingGCMexperiments, J.Clim. , 21 , 6141 – 6155,doi:10.1175/2008JCLI2144.1. Stephens,G.L.,etal.(2012),AnupdateonEarth ’ senergybalanceinlightofthelatestglobalobservations, Nat.Geosci. , 5 ,691 – 696. Taylor,K.E.,R.J.Stouffer,andG.A.Meehl(2012),AnoverviewofCMIP5andtheexperimentdesign, Bull.Am.Meteorol.Soc. , 93 ,485 – 498. UnitedNationsConventiontoCombatDeserti  cation(1994),U.N.Doc.A/AC.241/27,33I.L.M.1328,UnitedNations. Wang,K.C.,R.E.Dickinson,andS.Liang(2012),Globalatmosphericevaporativedemandoverlandfrom1973to2008, J.Clim. , 25 , 8353 – 8361. Wever,N.(2012),Quantifyingtrendsinsurfaceroughnessandtheeffectonsurfacewindspeedobservations, J.Geophys.Res. , 117 ,D11104, doi:10.1029/2011JD017118. Yang,X.,Z.Yao,Z.Q.Li,andT.Fan(2013),HeavyairpollutionsuppressessummerthunderstormsincentralChina, J.Atmos.Solar-Terrestrial Phys. , 95-96 ,28 – 40. Zhang,X.,andX.Cai(2013),Climatechangeimpactsonglobalagriculturalwaterde  cit, Geophys.Res.Lett. , 40 ,1111 – 1117,doi:10.1002/ grl.50279. JournalofGeophysicalResearch:Atmospheres 10.1002/2014JD021608 FUANDFENG ©2014.AmericanGeophysicalUnion.AllRightsReserved. 13