Eng The University of Texas at Austin brPage 2br Introduction A sensor array is a group of sensors located at spatially separated points Sensor array processing focuses on data collected at the sensors to carry out a given estimation task Applicatio ID: 36479 Download Pdf
Tags :Download Pdf - The PPT/PDF document "Spatial Array Processing Signal and Imag..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
Presentation on theme: "Spatial Array Processing Signal and Image Processing Seminar Murat Torlak Telecommunications Information Sys"— Presentation transcript
SpatialArrayProcessingSignalandImageProcessingSeminar MuratTorlakTelecommunications&InformationSys.Eng.TheUniversityofTexasatAustin 1 IntroductionAsensorarrayisagroupofsensorslocatedatspatiallyseparatedpointsSensorarrayprocessingfocusesondatacollectedatthesensorstocarryoutagivenestimationtaskApplicationAreasSeismicexplorationAnti-jammingcommunicationsYES!Wirelesscommunications 2 ProblemStatement q1 2 D s1(t) s2(t) 1.Numberofsources2.Theirdirection-of-arrivals(DOAs)3.SignalWaveforms 3 IsotropicandnondispersivemediumUniformpropagationinalldirectionsFar-FieldRadiusofpropogationsizeofarrayPlanewavepropogationZeromeanwhitenoiseandsignal,uncorrelatedNocouplingandperfectcalibration 4 AntennaArray 123ArrayResponseVectorFar-FieldAssumptionDelayPhaseShifthift;ej2fc4sin=c=cSingleSourceCase 5 GeneralModelBysuperposition,forsignals, 6 Low-ResolutionApproach:BeamformingBasicIdeaUseDFT(orFFT)tondthefrequenciesfrequenciesF(w1)LookforthepeaksinTosmoothoutnoise NNXtjFx(t)j2 7 BeamformingAlgorithmAlgorithm1.Estimate 2.Calculate3.Findpeaksofforallpossible's.4.CalculateAdvantage-SimpleandeasytounderstandDisadvantage-Lowresolution 8 NumberofSourcesDetectionofnumberofsignalsfor }RsA+Efn(t)n(t)g| {z isthenoisepower.NonoiseandrankofEigenvaluesofwillbe;:::Realpositiveeigenvaluesbecauseisreal,Hermition-symmetricrankChecktherankoforitsnonzeroeigenvaluestodetectthenumberofsignalsNoiseeigenvaluesareshiftedbyDetectthenumberofprincipal(distinct)eigenvalues 9 SubspacedecompositionbyperformingeigenvalueistheeigenvectoroftheeigenvalueCheckwhich,whereisaprojectionmatrixSearchforallpossiblesuchthat AfterEVDofwherethenoiseeigenvectormatrix Foratrue=cisarootofof;z;:::;:::;z1;:::;z(M1)]:Aftereigenvaluedecomposition,-Obtain-Form-Obtainrootsbyrooting-Pickrootslyingontheunitcircle-Solvefor EstimationofSignalParametersviaRotationallyInvariantTechniques(ESPRIT)DecomposeauniformlineararrayofsensorsintotwosubarrayswithNotetheshiftinvariancepropertyGeneralformrelatingsubarray(1)tosubarray(2)containssufcientinformationof isanonsingularunitarymatrixcomesfromaGrahm-SchmitorthogonalizationMultiplybothsidesbythepseudoinverseofmeansthepseudo-inverseEigenvaluesofarethoseof SuperresolutionAlgorithms1.Calculate 2.Performeigenvaluedecomposition3.Basedonthedistributionof,determine4.Useyourfavoritediraction-of-arrivalestimationalgorithm:(a)MUSIC:Findthepeaksoffor-Findcorrespondingthepeaksof(b)Root-MUSIC:Rootthepolynomial-Picktherootsthatareclosesttotheunitcircle (c)ESPRIT:Findtheeigenvaluesof 2c4 SignalWaveformEstimationGiven,recoverDeterministicMethodNonoisecase:ndsuchthatcandothejobWithnoise,Disadvantageincreasednoise StocasticApproachtominimizeUsetheLangrangemethodDifferentiatingit,weobtain;orCapon'sBeamformer SubspaceFrameworkforSinusoidLetusselectawindowofi.e.,,x(t);:::+1)]+1) {z }a(k)ke(k+k)t| isthewindowsize,thenumberofsinusoids,and SubspaceFrameworkforSinusoidTherefore,thesubspacemethodscanbeappliedtoThenndingisasimpleleastsquaresproblem. WirelessCommunications Personal Communications Services (PCS) Cellular Telephony Wireless LAN MultipathsDirect Path co-channel interference To Networks Direct PathMultipath Direct Path Outdoors IncreasingDemandforWirelessServicesUniqueProblemscomparedtoWiredcommunications ProblemsinWirelessCommunicationsScarceRadioSpectrumandCo-channelInterference 111342324 StationMultipathDirect PathMultipath Coverage/Range SmartAntennaSystemsEmploymorethanoneantennaelementandexploitthespatialdimensioninsignalprocessingtoimprovesomesystemoperatingparameter(s):Capacity,Quality,Coverage,andCost. User OneUser TwoMultiple RF ModuleConventionalCommunication ModuleAdvanced Signal ProcessingAlgorithms ExperimentalValidationofSmartUplinkComparisonofconstellationbefore(upper)andaftersmartuplinkprocessing(middleandlower) imaginary axisimaginary axisimaginary axis real axis Equalized Signal 2 real axis Equalized Signal 1 real axis Antenna Output SelectiveTransmissionUsingDOAsBeamformingresultsfortwosourcesseparatedby 1 1.5 2x 104 0 0.2 0.4 0.6 0.8 1 Power SpectrumFrequency [Hz], User #1 0.5 1 1.5 2x 104 0 0.2 0.4 0.6 0.8 1 Power SpectrumFrequency [Hz], User #2 SelectiveTransmissionUsingDOAsBeamformingresultsfortwosourcesseparatedby 1 1.5 2x 104 0 0.2 0.4 0.6 0.8 1 Power SpectrumFrequency [Hz], User #1 0.5 1 1.5 2x 104 0 0.2 0.4 0.6 0.8 1 Power SpectrumFrequency [Hz], User #2 FutureDirectionsAdaptthetheoreticalmethodstottheparticulardemandsinspecicapplicationsSmartAntennasSyntheticapertureradarUnderwateracousticimagingChemicalsensorarraysBridgethegapbetweentheoreticalmethodsandreal-timeapplications