/
BEST a program for optimal planning of X-ray data collection from protein crystals BEST a program for optimal planning of X-ray data collection from protein crystals

BEST a program for optimal planning of X-ray data collection from protein crystals - PowerPoint Presentation

joyce
joyce . @joyce
Follow
342 views
Uploaded On 2022-06-11

BEST a program for optimal planning of X-ray data collection from protein crystals - PPT Presentation

Alexander Popov ESRF MX group Geometry Optimal starting spindle angle and scan range Maximum rotation angle without spot overlap Optimal Multiplicity Space group Cell parameters Orientation ID: 916580

data popov resolution collection popov data collection resolution intensity optimal sad damage crystal dose xds statistics orientation mosflm group

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "BEST a program for optimal planning of X..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Slide2

BESTa program for optimal planning of X-ray data collection from protein crystals

Alexander Popov

ESRF, MX group

Slide3

Geometry

Optimal starting spindle angle and scan range

Maximum rotation angle without spot overlap

Optimal Multiplicity

Space group, Cell parameters, Orientation,

Mosaicity

I(h,k,l), Ibackground

Statistics calculationReconstruction of average intensity vs. resolutionStatistics modeling based on Wilson distributionRadiation damage modeling

MOSFLM XDS

Optimal plan(s) of data collection

Initial Images

BEST

Ω

= 90

°

Slide4

Optimal

starting

spindle angle

and scan range

GEOMETRY

Maximum

rotation angle without spot

overlap

Space group, Cell parameters, Orientation,

Mosaicity, Spot Size

Slide5

A.Popov

5

Main uncertainties of the observed intensities are determined

by counting statistics

DATA STATISTICS

I

b

I

p

I

p

I

b

Slide6

A.Popov

6

Statistics

Slide7

A.Popov

7

Wilson plot

Slide8

A.Popov

8

Slide9

A.Popov

9

Intensity decay:

Slide10

10/12/2014

10

Global radiation damage

Slide11

A.Popov

11

Slide12

A.Popov

12

Basic ideas of BEST

σ

2

І

(

J)=ko

+k1J+k2J2

Semi-empirical model for diffraction intensity vs reciprocal space coordinateSemi-empirical model of variance vs integrated intensity

Integration over the scanned reciprocal space using Wilson distributionRadiation-damage model

Resolution-dependent intensity decay:

Slide13

A.Popov

13

<I

D

>/ <I

o

>

<

/I>

R

1IDose [Gy] , d=2.5 Å

Expected Intensity Variation

SAD

Slide14

Intensity vs. crystal position

Intensity Anisotropy

φ

=0º

φ

=90º

Slide15

A.Popov

15

Slide16

A.Popov

16

Optimal Oscillation Range

Slide17

User choices

MOSFLM

XDS

Optimal plan(s) of data collection

Statistics

B-factor

Beamline Flux

Crystal contents

RADDOSE

Absorbed dose rate

Initial Images

BEST

4.1

Data collection strategy accounting radiation damage

Detector parameters

Beamline

parameters and limitations

Optimize data collection

Optimize SAD data collection

Find optimal crystal orientation

Low-resolution optimal

Rad. Damage sensitivity

Multi-positional data

collection

Helical data collection

Estimate data statistics

Dose (Time) limit

Geometry limits

Aimed statistics

Aimed completeness

Aimed redundancy

Aimed resolution

Crystal shape and size

Beam profile and size

Slide18

A.Popov

18

Slide19

Olof Svensson, NorStruct 20130910

19

EDNA characterisation v1.3

A workflow written in Python

MOSLFM

indexing

LABELIT

DISTL

Indexing

Evaluation

MOSFLM

integration

[RADDOSE]

BEST

MOSFLM

Predictions

LABELIT

indexing

Indexing

Evaluation

Failure

Ok

Ok

Failure

+ Xtal info

+ beam flux

+ diffraction plan

Data collection plan

XDS backg.

estimation

Slide20

A.Popov

20

20

EDNA

Slide21

A.Popov

21

Slide22

A.Popov

22

cyan fluorescent protein

............... Routine data collection.......

-q minimize total time, default minimize the absorbed dose

Slide23

A.Popov

23

BEST prediction

XDS

Slide24

A.Popov

24

---------------------------------------------

Resolution

RFriedel

(%) I/Sigma Redundancy

--------------------------------------------- 10.12 0.8 74.1 23.7 6.90 0.8 43.6 23.7 5.34 1.1 48.4 23.0 4.51 1.2 47.5 23.5 3.98 1.6 34.5 20.6 3.60 2.5 22.4 13.9 3.31 4.0 14.0 11.9 3.08 6.6 8.3 7.0

2.89 10.5 5.2 6.1 2.73 15.6 3.7 2.5 2.60 23.0 2.4 3.8----------------------------------------------------------------------SAD optimization

Minimum of RFriedel = <|<E2+/w>-<E2-/w>|> is a targetnoise only, no anomalous scattering itself:decay, non-isomorphismexact pair-vice dose differences for Bijvoet mates

http://skuld.bmsc.washington.edu/cgi-bin/MAD_power.pl

.............. SAD data collection............

-

asad, strategy for SAD data collection, resolution selected automatically,rot.interval=360 dg.-SAD {

no|yes|graph}, strategy for SAD data collection if "yes", "graph" - estimation of resolution for SAD

Slide25

A.Popov

25

SAD optimization

Minimum of

R

Friedel

=

<|<E2+> - <E2->|> is a target

site-specific damage processes the radiation damage may start affecting anomalous signal

Dose>2 MGy

Garman limitDose>30 MGy

Slide26

Olof Svensson, NorStruct 20130910

26

Kappa goniostat re-orientation

Slide27

A.Popov

27

Kappa goniostat re-orientation

Slide28

User

MOSFLM

XDS

Plan

of data

collection

Beamline

Flux

Crystal contentsCrystal sizes

RADDOSE

Absorbed dose rate

Initial Images

Rad

. Damage

sensitivity

BEST

Induced Burn Strategy

11 cycles for testing

10 cycles for burning

Minimal RD inside the testing cycles

Must induce significant changes in Intensity

The intensity measurements remain statistically significant up to the last cycle of data collection

Measurements

XDS auto

RDFIT

Slide29

29

Example results from ”burning strategy”

Slide30

A.Popov

30

Slide31

Multi-positional

or

helical

data collection

FAE crystals

ID23-1

E=12.75Kev, I=35 mA

, Aperture=0.03 mmFlux=1.5x1011 Photon/secFAE2 – 5 positions

The 70 kDa membrane protein FtsH from Aquifex

aeolicus I222, a = 137.9, b = 162.1, c = 170

Slide32

A.Popov

32

Diffraction resolution vs. absorbed

dose

for

different crystal size

B-factor=16 Á2

completeness =100%Rot.range=26°150 µm100 µm30 µm

10 µm5 µm

Slide33

Macrhodopsin

ID23-1,

Aperture 20

Flux =4.7e+11 [photons/s]Dose rate =0.5 Mgy

/s

Resolution vs.

Total exposure

BEST estimations, No radiation damage

Or 25000 crystals

Slide34

Slide35

Two-dimension DC

Space group, Cell parameters, Orientation

MOSFLM XDS

Already collected data

X-ray

Test image(s)

Data Collection Strategy

Data Collection

Auto Processing

Number of crystals

Slide36

Beam profile effects

time (s)

ID23-2, 7e10 ph/s, trypsin, thin resolution shell [1.2 Å]

Log(I(t))

f

ast decay in the

b

eam center

slow decay at the tails

Slide37

1

st

order model convolved with the beam profile

measured with a 5 µm pinhole

1 fit parameter per data set, in all resolution shells :

β = 0.88 Å

2/MGy1st order rate equation, no intermediatesLog(I(h,t))

d= 1.8 Åd= 1.2 Åd= 2.4 Åd= 3.6 Å

t (sec)

ID23-2, 7e10 ph/s,

trypsin

Slide38

Background vs. Crystal position

Slide39

Slide40

Diffraction sample Modeling

Voxel

Volumetric Picture Element

Slide41

Ω

Flux

σ

x

σ

y

aperture

Slide42

Ω

min

Ω

max

Vertical max

Crystal horizontal

Vertical min

Slide43

First step - scaling

Slide44

First step - scaling

Slide45

Slide46

A.Popov

46

46

Acknowledgements

Gleb Bourenkov

ESRF MX Group

Olof Svensson & EDNA developers team