/
2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T 2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T

2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
377 views
Uploaded On 2015-11-21

2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,T - PPT Presentation

q1qr1thentheestimateofCorollary2becomestrivialThesecondconsiderablylargerinvolumepartofthepaperdealswiththeupperboundsWegivehereanumberofdi erentconstructionsSomeofthemcanberegardedasre nedan ID: 201247

q1qr1 thentheestimateofCorollary2becomestrivial.Thesecond considerablylargerinvolumepartofthepaper dealswiththeupperbounds.Wegivehereanumberofdi erentconstructions.Someofthemcanberegardedasre nedan

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWeno..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANWenoticethatTheorem1extends[DKSS,Theorem11]andindeed,thelatterresultisaparticularcaseoftheformer,obtainedforr=1.TheproofofTheorem1usesthepolynomialmethodinthespiritof[DKSS,SS08],themajornoveltyintroducedbeingthatinourpresentsettings,wehavetoconsiderpolynomialsovertheringofrationalfunctions.Usingtheinequality(1+x)�m1�mx;x0;m1;onereadilyderivesCorollary2.Ifnr1areintegers,qaprimepower,andKFnqaKakeyasetofrankr,thenjKj�1�n(q�1)q�rqn:Weremarkthatintheparticularcaser=n�1abetterestimateisknown:namely,[FLS10,Theorem5.1]showsthatifn3is xedandKFnqisaKakeyasetofrankn�1,thenjKjqn�q2+o(q2)asq!1.Tofacilitatecomparisonbetweenestimates,weintroducethefollowingterminology.GiventwoboundsB1andB2forthesmallestsizeofaKakeyasetinFnq(whichareeitherbothupperboundsorbothlowerbounds),wesaythattheseboundsareessentiallyequivalentinsomerangeofnandqifthereisaconstantCsuchthatforallnandqinthisrangewehaveB1CB2;B2CB1;andalsoqn�B1C(qn�B2);qn�B2C(qn�B1):Wewillalsosaythattheestimates,correspondingtothesebounds,areessentiallyequiv-alent.Withthisconvention,itisnotdiculttoverifythatforevery xed"�0,theestimatesofTheorem1andCorollary2areessentiallyequivalentwhenevern(1�")qr�1.Ifn1+1 q�1qr�1,thentheestimateofCorollary2becomestrivial.Thesecond,considerablylargerinvolumepartofthepaper,dealswiththeupperbounds.Wegivehereanumberofdi erentconstructions.Someofthemcanberegardedasre nedandadjustedversionsofpreviouslyknownones;other,toourknowledge,didnotappearintheliterature,buthavebeen\intheair"forawhile.We rstpresentaKakeyasetconstructiongearedtowardslarge elds.Itisbasedonthe\quadraticresidueconstruction"duetoMockenhauptandTao[MT04](withare nementbyDvir,see[SS08]),the\liftingtechnique"from[EOT09],andthe\tensor 4S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANandthattheinequality(1�x)m1�mx+(mx)2;0x1;m1showsthatifrnrqr�1,thenindeed1�q�q 2qrbn r+1c1� n rq�(r�1);withabsoluteimplicitconstants.Therefore,wehaveCorollary5.Letn�r1beintegersandqaprimepower.ThereexistsaKakeyasetKFnqofrankrsuchthatjKjqn� �qn�(r�1);moreover,ifnrqr�1,theninfactjKjqn� n rqn�(r�1)(withabsoluteimplicitconstants).WeremarkthatCorollaries2and5givenearlymatchingboundsonthesmallestpossiblesizeofaKakeyasetofrankrinFnqinthecasewhererisbounded,qgrows,andthedimensionndoesnotgrow\toofast".Incontrast,forqboundedandngrowing,neither(1)norTheorem4givesatisfactoryupperbound.Speci cally,theO-termin(1)donotevenallowforconstructingKakeyasetsofsizeo(qn),whereastheestimateofTheorem4isnon-trivial,butrelativelyweak.Addressingthissituation rstinthecaser=1,wedevelopfurthertheideabehindtheproofof[SS08,Theorem8]toshowthattheO-termjustmentionedcanbewellcontrolled,makingtheresultnon-trivialintheregimeunderconsideration.Theorem6.Letn1beanintegerandqaprimepower.Thereexistsarank-1KakeyasetKFnqwithjKj8&#x]TJ/;༶ ;.9;Ւ ;&#xTf 1;.42; 31;&#x.681;&#x Td ;&#x[000;&#x]TJ/;༶ ;.9;Ւ ;&#xTf 1;.42; 31;&#x.681;&#x Td ;&#x[000;&#x]TJ ;� -2;.52;&#x Td ;&#x[000;&#x]TJ ;� -2;.52;&#x Td ;&#x[000;:2�1+1 q�1�q+1 2nifqisodd;3 2�1+1 q�1�2q+1 3nifqisanevenpowerof2;3 22(q+p q+1) 3nifqisanoddpowerof2:Theorem6istobecomparedagainstthecaser=1ofTheorem1showingthatifKFnqisarank-1Kakeyaset,thenjKj�q2=(2q�1)n.ForseveralsmallvaluesofqtheestimateofTheorem6canbeimprovedusingacombinationofthe\missingdigitconstruction"andthe\randomrotationtrick"ofwhichwelearnedfromTerryTaowho,inturn,referstoImreRuzsa(personalcommunicationinbothcases).Fora eldF,byFwedenotethesetofnon-zeroelementsofF. 6S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANAaanimmediateconsequencewehaveTheorem10.Letnr1beintegersandqaprimepower.ThereexistsaKakeyasetKFnqofrankrsuchthatjKj�1��1�q�bn=qrcqrqn:Usingtheestimatesbn=qrc�n=qr�1and(1�x)m1�mx(appliedwithx=q�bn=qrcandm=qr),weobtainCorollary11.Letnr1beintegersandqaprimepower.ThereexistsaKakeyasetKFnqofrankrsuchthatjKjqn(1�q�r)+r+1:ItisnotdiculttoverifythatCorollary11supersedesCorollary5forn(r+2)qr,andthatforngrowing,Theorem10supersedesTheorem4ifrissucientlylargeascomparedtoq(roughly,r&#x-278;Cq=logqwithasuitableconstantC).AslightlymorepreciseversionofCorollary11isthatthereexistsaKakeyasetKFnqofrankrwithjKjqn�bn=qrc+r;thisisessentiallyequivalenttoTheorem10providedthatn(r+1)qr.(Ontheotherhand,Theorem10becomestrivialifnqr.)TheremainderofthepaperismostlydevotedtotheproofsofTheorems1,6,7,and8,andLemma9.Fortheconvenienceofthereaderandself-completeness,wealsoprove(aslightlygeneralizedversionof)Lemma3intheAppendix.Section6containsashortsummaryandconcludingremarks.2.ProofofTheorem1.AsapreparationfortheproofofTheorem1,webrie yreviewsomebasicnotionsandresultsrelatedtothepolynomialmethod;thereaderisreferredto[DKSS]foranin-depthtreatmentandproofs.Fortherestofthissectionweusemultidimensionalformalvariables,whicharetobeunderstoodjustasn-tuplesof\regular"formalvariableswithasuitablen.Thus,forinstance,ifnisapositiveintegerandFisa eld,wecanwriteX=(X1;:::;Xn)andP2F[X],meaningthatPisapolynomialinthenvariablesX1;:::;XnoverF.ByN0wedenotethesetofnon-negativeintegers,andforXasaboveandann-tuplei=(i1;:::;in)2Nn0weletkik:=i1++inandXi:=Xi11Xinn.LetFbea eld,n1aninteger,andX=(X1;:::;Xn)andY=(Y1;:::;Yn)formalvariables.ToeverypolynomialPinnvariablesoverFandeveryn-tuplei2Nn0there 8S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANLemma15([DKSS,Lemma8]).Letn1beaninteger,Panon-zeropolynomialinnvariablesovera eldF,andSFa niteset.ThenXz2Sn(P;z)degPjSjn�1:Corollary16.Letn1beaninteger,Panon-zeropolynomialinnvariablesovera eldF,andSFa niteset.IfPvanishesateverypointofSnwithmultiplicityatleastm,thendegPmjSj.WearenowreadytoproveTheorem1.ProofofTheorem1.Assumingthatmandkarepositiveintegerswithkqrqm�k q�1(5)(notypo:kentersbothsides!),weshow rstthatm+n�1njKjn+kn;(6)andthenoptimizebymandk.Supposeforacontradictionthat(6)fails;thus,byLemma13,thereexistsanon-zeropolynomialPoverFqofdegreeatmostkinnvariables,vanishingateverypointofKwithmultiplicityatleastm.Writel:=lqm�k q�1mand xi=(i1;:::;in)2Nn0satisfyingw:=kikl.LetQ:=P(i),theithHassederivativeofP.SinceKisaKakeyasetofrankr,foreveryd1;:::;dr2Fnqthereexistsb2Fnqsuchthatb+t1d1++trdr2Kforallt1;:::;tk2Fq;hence,(P;b+t1d1++trdr)m;andtherefore,byLemma12,(Q;b+t1d1++trdr)m�wwhenevert1;:::;tr2Fq.ByLemma14,wehave(Q;b+t1d1++trdr)(Q(b+T1d1++Trdr);(t1;:::;tr));whereQ(b+T1d1++Trdr)isconsideredasapolynomialinthevariablesT1;:::;Tr.Thus,foreveryd1;:::;dr2Fnqthereexistsb2FnqsuchthatQ(b+T1d1++Trdr)vanisheswithmultiplicityatleastm�wateachpoint(t1;:::;tr)2Frq.ComparedwithdegQ(b+T1d1++Trdr)degQk�wq(m�w)(asitfollowsfromwl),inviewofCorollary16thisshowsthatQ(b+T1d1++Trdr)isthezeropolynomial. 10S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANProof.LetK:=f(x1;:::;xj;t;0;:::;0):0jn�1;t2F;x1;:::;xj2If(t)g:Sincefisnon-linear,wehavejIf(t)j�1foreacht2F,anditfollowsthatjKj=n�1Xj=0Xt2FjIf(t)jj=Xt2FjIf(t)jn�1 jIf(t)j�1:ToshowthatKisarank-1Kakeyasetweprovethatitcontainsalineineverydirectiond=(d1;:::;dn)2Fnnf0g.Withoutlossofgeneralityweassumethat,forsomej2[1;n�1],wehavedj+1=1anddj+2==dn=0,andweletb:=(f(d1);:::;f(dj);0;:::;0):Foreveryt2Fwehavethenb+td=(f(d1)+td1;:::;f(dj)+tdj;t;0;:::;0)2K;completingtheproof.TheassertionofTheorem6forqoddfollowsimmediatelyfromLemma17uponchoos-ingF:=Fqandf(x):=x2,andobservingthatthenjIf(t)j=(q+1)=2foreacht2Finviewofx2+tx=(x+t=2)2�t2=4:InthecaseofqeventheassertionfollowseasilybycombiningLemma17withthefollowingtwopropositions.Proposition18(cf.[W93]).Supposethatqisanevenpowerof2andletf(x):=x3(x2Fq).Thenforeveryt2FqwehavejIf(t)j(2q+1)=3.Proposition19.Supposethatqisanoddpowerof2andletf(x):=xq�2+x2(x2Fq).Thenforeveryt2FqwehavejIf(t)j2(q+p q+1)=3.TocompletetheproofofTheorem6itremainstoprovePropositions18and19.Indeed,Proposition18followsimmediatelyfromthemainresultof[W93];however,weincludebelowaself-containedproofsinceitalsoservesasasimpli edmodelofthemoreinvolvedproofofProposition19.Weneedthefollowingwell-knownfact.Lemma20.Supposethatqisapowerof2,andletTrdenotethetracefunctionfromthe eldFqtoitstwo-elementsub eld.For ; ; 2Fqwith 6=0,thenumberofsolutions 12S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANinviewof1�1+12=0.Assimplecomputationshowsthatxywithx;y2Fq;x6=yholdsifandonlyif1=(xy)=x+y;thatis,xy2+x2y+1=0.Forx2Fq xed,thisequationinyhas,byLemma20,two(non-zero)solutionsisTr(1=x3)=0,andnosolutionsifTr(1=x3)=1.Itfollowsthateachx2Fqcontainseitherthree,oronenon-zeroelementinitsequivalenceclass,accordingtowhetherTr(1=x3)=0orTr(1=x3)=1.Byaremarkatthebeginningoftheproof,asxrunsoverallelementsofFq,sodoes1=x3.Hence,thereareexactlyq=2�1thosex2FqwithTr(1=x3)=0,andq=2thosex2FqwithTr(1=x3)=1.Consequently,jIf(0)j,whichisthenumberofequivalenceclasses,isequaltoq=2�1 3+q=2=2q�1 3:Fortherestoftheproofweassumethatt6=0.Theequationx�1+x2+tx=t�1iseasilyseentohavethesolutionsetft;1=p tgwhich,therefore,isanequivalenceclass,consistingoftwoelementsift6=1orjustoneelementift=1.Fixx2Fqnft;1=p tg.Fory2Fq;y6=x,wehavexyifandonlyif1=(xy)=x+y+t;equivalently,xy2+x(x+t)y+1=0.Thisequationhastwosolutions(distinctfromxand0)ifTr(1=x(x+t)2)=0,andnosolutionsifTr(1=x(x+t)2)=1.Intheformercasetheequivalenceclassofxcontainsthreenon-zeroelements,and,consequently,ifweletN:=#x2Fqnft;1=p tg:Tr�1=(x(x+t)2)=0 ;thenjIf(t)j(q�2 3Nift=1;q�2 3N�1ift6=1:(7)ToestimateNwenoticethat1 x(x+t)2=1 t2x+1 t2(x+t)+1 t(x+t)2;andthatTr1 t(x+t)2=Tr1 p t(x+t);implyingTr1 x(x+t)2=Tr1 t2x+1 t2+1 p t1 x+t=Trx=p t+1=t x(x+t):Thus,ift=1,thenTr1 x(x+t)2=Tr1 x; 14S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANLemma21.Foreveryprimepowerqandfunctionf:Fq!Fq,thereexistsanelementt2FqwithjIf(t)j�q=2:Proof.Forx;y;t2Fqwewritextyiff(x)+tx=f(y)+ty;equivalently,ifeitherx=y,orx6=yand(f(x)�f(y))=(x�y)=�t.Itfollowsfromthe rstformofthisde nitionthattisanequivalencerelationonFqandjIf(t)jisthenumberofequivalenceclasses,andfromthesecondformthatforeverypair(x;y)withx6=ythereexistsauniquet2Fqwithxty.Foreacht2Fq,considerthegraph�tonthevertexsetFq,inwhichtwoverticesx6=yareadjacentifandonlyifxty.Bytheremarkjustmade,everyedgeofthecompletegraphonthevertexsetFqbelongstoexactlyonegraph�t.Consequently,thereexistst2Fqsuchthatthenumberofedgesof�t,whichwedenotebye(�t),doesnotexceedq�1�q2=(q�1)=2.Bytheconstruction,thegraph�tisadisjointunionofcliques;letkdenotethenumber,andm1;:::;mkthesizesofthesecliques.Thus,wehavem1++mk=qandjIf(t)j=k;anditremainstoshowthatk�q=2.Wedistinguishtwocases.Ifqiseventhen,usingconvexity,wegetq 2�1e(�t)=m12++mk2kq=k2=1 2qq k�1;whenceq�1�q2 2k;leadingtothedesiredbound.Ifqisodd,welets:=#fi2[1;k]:mi=1gandl:=#fi2[1;k]:mi2g;sothats+l=kands+2lq:(8)Thenq�1 2e(�t)=Xi2[1;k]:mi2mi2l(q�s)=l2=1 2(q�s)q�s l�1=1 2l(q�s)(q�k):Ifwehadkq=2,thiswouldyieldq 2�q�1 21 2l(q�s)q 2; 16S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANIfd="1e1++"nen2D0then,lettingb:=Pi2[1;n]:"i=0ei,foreacht2Fqwehave1(b+td)=0(d)+t�1(d)�2n=q�2(n=q)1=2;whenceb+td2A0.Thus,thesetK0:=B[A0containsalineineverypopulardirection.ToestimatethesizeofK0wenoticethat,lettingN:=2n=q�2(n=q)1=2+1,wehavejA0j=nXj=Nnj(q�2)n�j:Assumption(9)impliesthatthesummandsintheright-handsidedecayasjgrows,whencejA0jnnN(q�2)n�N:Consequently,writingH(x):=xln(1=x)+(1�x)ln(1=(1�x));x2(0;1)andusingawell-knownestimateforthebinomialcoecients,wegetjA0jnexp(nH(N=n)+(n�N)ln(q�2)):Now,inviewof(9)wehave1 qN n2 q1�1 q;andtherefore,sinceH(x)isconcaveandsymmetricaroundthepointx=1=2,using(9)onceagain,fromthemeanvaluetheoremwederiveH(N=n)�H(2=q)=O�(N=n�2=q)H0(1=q)=O�(lnq=(nq))1=2H0(1=q)=O�(lnq)3=2=(nq)1=2:HencenH(N=n)+(n�N)ln(q�2)=nH(2=q)+n(1�2=q)ln(q�2)+O�(n=q)1=2(lnq)3=2=nlnq�2 qln2+O�(n=q)1=2(lnq)3=2;implyingjA0jq 22=qnexp�O�(n=q)1=2(lnq)3=2:Sinceq=22=q�2forq3,weconcludethatjK0jjA0j+jBjq 22=qnexp�O�(n=q)1=2(lnq)3=2=q 22=qn+O�p nlnq=q: 18S.KOPPARTY,V.LEV,S.SARAF,ANDM.SUDANOfpossibleimprovementsandresearchdirections,thefollowingtwoseemofparticularinteresttous.First,itwouldbenicetobeattheuniversalsetconstructionintheregimejustmentioned(dimVgrowsandr2),ortoshowthatitproducesanessentiallybestpossiblebound.Eventhecaseq=r=2seemsnon-trivial:wedonotknowanyconstructionofKakeyasetsofrank2inFn2ofsizesmallerthanO(23n=4),theboundsuppliedby4-universalsets.TheseconddirectionstemsfromthefactthattheproductofKakeyasetsofrankrisaKakeyasetofrankrintheproductspace.Itisnotdiculttoderivethat,with(n)q(r)denotingthesmallestpossiblesizeofaKakeyasetofrankrinFnq,thelimitlimn!11 nln(n)q(r)existsforany xedqandr.Itwouldbeveryinterestingto ndthislimitexplicitly,evenforjustoneparticularpair(q;r)6=(2;1).Arguably,mostintriguingisthe rstnon-trivialcaseq=3;r=1,duetothefactthatlinesinFr3arethree-termarithmeticprogressions.Appendix:proofoftheliftinglemma.Weproveherethefollowinglemma,whichisaslightextensionofLemma3.Lemma22.Letnrr11beintegersandFa eld.SupposethatK1isaKakeyasetofrankr1inFn�(r�r1),consideredasasubspaceofFn,andletK:=K1[(FnnFn�(r�r1)).ThenKisaKakeyasetofrankrinFn.Proof.SupposethatLFnisasubspacewithdimL=r.FromdimL+dimFn�(r�r1)=dim(L+Fn�(r�r1))+dim(L\Fn�(r�r1))itfollowsthateitherL+Fn�(r�r1)isapropersubspaceofFn,ordim(L\Fn�(r�r1))=r1.Observingthatifv=2L+Fn�(r�r1),thenv+LisdisjointwithFn�(r�r1),weconcludethat,ineithercase,thereisatranslateofL,intersectingFn�(r�r1)byasubsetofar1-dimensionalsubspace.Hence,thereisalsoatranslateofL,theintersectionofwhichwithFn�(r�r1)iscontainedinK1.Bytheconstruction,thistranslateofLiscontainedinK.References[ABS09]N.Alon,B.Bukh,andB.Sudakov,DiscreteKakeya-typeproblemsandsmallbases,IsraelJ.Math.174(2009),285{301.[AS08]N.AlonandJ.H.Spencer,Theprobabilisticmethod,Thirdedition,Wiley-InterscienceSeriesinDiscreteMathematicsandOptimization,JohnWiley&Sons,Inc.,Hoboken,NJ,2008.xviii+352pp.[DKSS]Z.Dvir,S.Kopparty,S.Saraf,andM.Sudan,Extensionstothemethodofmultiplici-ties,withapplicationstoKakeyasetsandmergers,ElectronicColloquiumonComputationalComplexity(ECCC)16(2009).[EOT09]J.Ellenberg,R.Oberlin,andT.Tao,TheKakeyasetandmaximalconjecturesforalgebraicvarietiesover nite elds,Mathematika56(1)(2009),1{25.