/
Approximating independent sets in sparse graphs Nikhil Approximating independent sets in sparse graphs Nikhil

Approximating independent sets in sparse graphs Nikhil - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
436 views
Uploaded On 2015-04-30

Approximating independent sets in sparse graphs Nikhil - PPT Presentation

The best known result for the problem is an SDP based log log d log approximation due to Halperin It is also known that no d log approximation exists assuming the Unique Games Conjecture We show the following two results i The natural LP formulatio ID: 57316

The best known result

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Approximating independent sets in sparse..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

O(d(loglogd)2=log2d).Ourproofoftheorem1.1isnon-algorithmicanddoesnotgivean~O(d=log2d)approximationalgorithm,evenifweallowsub-exponentialinnrunningtime.Inparticular,itisbasedonaresultofAlon[3]ontheexistenceoflargeindependentsetsinlocallysparsegraphs,whichinturnisbasedonanentropy-basedapproachofShearer[22].Theorem1.1suggeststhat~ (d=log2d)mightbetherightapproximationthresholdfortheproblem,atleastwhendisconstant.Oursecondresultgivesanalgorithmthatim-provesthepreviouslyknownapproximationbyamodest (loglogd)factor,althoughattheexpenseofsomewhathigherrunningtime.Theorem1.2.ThereisanalgorithmbasedonlogO(1)dlevelsofthemixed-hierarchy,thathasapproximationratioO(d=logd)andrunsintimenO(1)exp(logO(1)d).Whiletheloglogdimprovementisperhapsnotsointerestingbyitself,ourtechniquesmaybemoreinter-esting.TheimprovementinTheorem1.2isbasedoncombiningHalperin'sapproachtogetherwithanideausedbyAjtai,Erd}os,KomlosandSzemeredi[1]toshowthatKr-free,degree-dgraphshaveindependencenum-ber r(nloglogd=d)(i.e.an (loglogd)factormorethanthenaivebound).Speci cally,weusetheprop-ertiesofhierarchiestosimulatetheapproachofAjtaietal.[1]ontopofHalperin'salgorithmandcombineboththeirimprovements.BothTheorems1.1and1.2extendtothecasewhendistheaveragedegree(insteadofmaximum)usingstandardtechniques.However,forsimplicityweonlyfocusonmaximumdegreesettinghere.1.2OurTechniques.We rstgiveabriefoverviewofprevioustechniques,andthendescribeourmainideas.Let (G)denotethesizeofamaximumindependentsetinagraphG.Letdand ddenotethemaximumandaveragedegreeofG.Thenaivegreedyalgorithmimplies (G)n=(d+1)foreveryG.Infact,itimpliesthat (G)= (n= d),sincewecandeletetheverticeswithdegreemorethan2 d(thereareatmostn=2ofthem)andthenapplythegreedyalgorithm.Asthegreedyguaranteeistightingeneral(e.g.ifthegraphisadisjointunionofn=(d+1)copiesofthecliqueKd+1),thetrivialupperboundof (G)ncannotgiveanapproximationbetterthand+1andhencestrongerupperboundsareneeded.Anaturalboundisthecliquecovernumber (G),de nedastheminimumnumberofvertexdisjointcliquesneededtocoverV.Asanyindependentsetcancontainatmostonevertexfromanyclique, (G) (G).Ramsey-theoreticapproaches.Lookingat (G)naturallyleadstoRamseytheoreticconsiderations.Onemusteithershowthatthegraphcanbecoveredbylargecliques,inwhichcase (G)issmallandthetrivialn=(d+1)solutiongivesagoodapproximation.Otherwise,if (G)islarge,thenthisessentiallymeansthattherearenotmanylargecliquesandonemustarguethatalargeindependentsetexists(andcanbefoundeciently).Forboundeddegreegraphs,awell-knownresultofthistypeisthat (G)= (nlogd=d)fortriangle-freegraphs[2,21](i.e.iftherearenocliquesofsize3).Aparticularlyelegantproof(basedonanideaduetoShearer[22]isin[5].Moreoverthisboundistight,andsimpleprobabilisticconstructionsshowthatthisboundcannotbeimprovedevenforgraphswithlargegirth.ForthecaseofKr-freegraphswithr4,thesit-uationislessclear.Ajtaietal.[1]showedthatKr-freegraphshave (G)= (n(log(logd=r))=d),whichim-pliesthat (G)= (nloglogd=d)forrlogd.ThisresultwasthebasisoftheO(d=loglogd)approximationdueto[14].Shearer[22]improvedthisresultsubstan-tiallyandshowedthat (G)cr(logd=loglogd)(n=d)forKr-freegraphs.Howeverhisargumentisexistential(andusesanelegantentropybasedapproach)andwearenotawareofanyalgorithmicvariantsorapplicationsofthisresult.Removingtheloglogdfactoraboveisamajoropenquestion,evenforr=4.Semide niteProgramming.SDPsprovideatleastasstrongupperboundson as (G),asthewell-known#-functionofLovaszsatis es (G)#(G) (G).TheO(dloglogd=logd)approximationsdueto[15,13]arebothbasedonSDPs.FordetailsonSDPs,andtheLovasz#-function,wereferthereaderto[11]Boundingtheintegralitygap.WedescribethemainideasbehindTheorem1.1.Forsimplicity,supposethatwehavead-levelmixedhierarchyformulationM(d)(insteadofanO(log4d)-levels).The rstobservationisthatifM(d)hasasolutionofvaluesay4nloglogd=logd),thenHalperin'salgo-rithmalreadyreturnsasucientlylargeindependentset(detailsinTheorem3.1below).Sowecanassumethattheobjectivevalueiso(nloglogd=logd).Forcon-creteness,letussupposethateachvertexcontributesexactly1=logdtotheobjective.Observethatad-levelSherali-Adamssolutionspec-i esavalidlocaldistributionoverindependentsetsforeverysubsetofverticesofsized.Fixavertexvandconsiderthelocal-distributionvoverindependentsetsinthesubgraphGjN(v)ofGinducedbytheneighbor-hoodN(v)ofv.Asxu=1=logdforeveryvertexu,eachsuchu2N(v)mustliein1=logdfraction(ac- 2.ForallS0S[n]withjSjt+1,thedistributionD(S0);D(S)agreeonS0.ThenYS=PD(S)[^i2S(yi=1)]isafeasiblesolutionforthelevel-tSheraliAdamsrelaxation.Conversely,foranyfeasiblesolutionfY0Sgforthelevel-(t+1)Sherali-Adamsrelaxation,thereexistsafamilyofdistributionssatisfyingtheaboveproperties,aswellasYS=PD(S)[^i2S(yi=1)]=Y0SforallS0S[n]suchthatjSjt+1.Here,Condition1impliesthatforasubsetofverticesSwithjSjt+1,thelocal-distributionD(S)hassupportonthevalidindependentsetsinthegraphinducedonS,andCondition2guaranteesthatdi erentlocaldistributionsinduceaconsistentdistributiononthecommonelements.Forourpurposes,wewillalsoimposethePSDconstraintonthevariablesyijatthe rstlevel(i.e.weaddtheconstraintsin(2.3)onyijvariables).WewillcallthistheleveltmixedhierarchyformulationanddenoteitbyM(t).Asolutiontothe`-levelmixedrelaxationabovespeci esvaluesySformulti-setsSwithjSj`+1.HowevertokeepthenotationconsistentwiththeLP2.1,wewillusexitodenotethemarginalsonthesetscorrespondingtosinglevertices.Ramsey-theoreticlowerboundsontheindepen-dencenumber.Wewillusethefollowingresultonindependencenumberofgraphswithfewtriangles.Theorem2.2.([2,21])LetGbeagraphwithaveragedegree d,andatmost d2ntriangles.Then, (G)= (log(1=)(n= d)).Remark:Thisresultisalgorithmic.Infactitfollowsdirectlyfromtheclassicfactthat (G)= (nlog d= d)fortrianglefreegraphs[2,21].Indeed,sampleeachvertexwithprobabilityp=1=(2p d).Thisgivesagraphwithn0=pnverticesinexpectation(andtightlyconcentratedaroundthisvalue).Moreovertheaveragedegreeisd0=p d=1=2p andthenumberoftrianglesisp3 d2n=pn=4inexpectation.RemovingeveryvertexinvolvedinatrianglegivesatrianglefreegraphG0with (n0)vertices,and (G0)= (n0log(d0)=d0)= (nlog(1=)= d).Thefollowingresultwillbecrucialinourargu-ments.Theorem2.3.(Alon[3],Theorem1.1)LetG=(V;E)beagraphonnverticeswithmaximumde-greed1inwhichforeveryvertexv2Vthein-ducedsubgraphonthesetofallneighborsofvisk-colorable.Then,theindependencenumberofGisatleastc log(k+1)n dlogd,forsomeabsolutepositiveconstantc.Theresultabovealsoholdsunderthefollowingweakercondition.Theorem2.4.(Alon[3])LetGbeagraphwithmax-imumdegreed,andletk1beaninteger.IfforeveryvertexvandeverysubsetSN(v)withjSjklog2d,itholdsthatthesubgraphinducedonShasanindependentsetofsizeatleastjSj=k,then (G)= (nlogd=(dlogk)).Theproofoftheorem2.4canbefoundintheAppendix.3IntegralityGapInthissectionweshowthattheintegralitygapoftherelaxationM(log4d)isO(d(loglogd)2=log2d)=~O(d=log2d).GivenagraphGonnvertices,letYdenotesomeoptimumsolutiontotherelaxationM(log4d).Wewill rstpreprocessthesolutionYslightlytohavesomedesirableproperties.3.1PreprocessingLetsdenotetheobjectivevalueofthesolutionY.Wecanassumethats4n=log2d,otherwisethenaivegreedyalgorithmtriviallygivesaO(d=log2d)approximation.Moreimportantly,wecanalsoassumethatsisnottoolarge,otherwiseHalperin'salgorithmalreadygivesagoodapproximation.Inparticular,weneedthefollowingresultabouttheSDPformulation(2.2).Theorem3.1.(Halperin[15],Lemma5.2)Let2[0;1 2]beaparameterandletZbethecollectionofvectorsvisatisfyingkvik2intheSDPsolution.Thenthereisanalgorithmthatreturnsanindependentsetofsize d2 dp lndjZj.AsHalperinusesanSDPwhichlooksdi erentfromours(2.2)(thoughtheyareequivalent),wesketchtheproofofTheorem3.1intheAppendixforcompleteness.NotethatintheformulationM(log4d),wehavekvik2=yii=y0i=xi.Let:=3loglogd=logdandletZdenotethesetofverticeswithxi.Then,theorem3.1returnsanindependentsetofsize (jZjlog5d=d).IfjZjn=log3dthenthisgivesanindependentofsize (nlog2d=d)andhenceanO(d=log2d)approximatesolution.SowecanassumethatjZjn=log3d.AsthecontributionofverticesinZtotheobjectivescanbeatmostjZj,thiscontributioniso(s)ass4n=log2d.Thisallowsustoupperboundsasfollows.(3.4)sn+jZj1=(3+o(1))nloglogd logd: withthegraphG0=GandapplythealgorithminLemma4.1repeatedlyuntilthecase(1)holdsorun-til`=(4loglogd)= iterationsarecompleted.LetG1;G2;:::;Gkbethesequenceofthesubgraphspro-ducedforsomek`.Letniand didenotethenumberofverticesandaveragedegreeofGi.Notethatby(4.7),ni= diformsanincreasingsequence.Iftheprocessterminatesafter`steps,thenn` d`1+1 `n d=n dlog (1)dandhencethegreedyalgorithmappliedtoG`givesthedesiredindependentset.Ontheotherhand,iftheprocessterminatesatstepkfork`,thenwegetanindependentset(incase1)ofsize ((nk= dk)loglogd).Thisisatleast ((n0= d0)loglogd),asni= diisincreasing.Asn0=nand d0= d,theresultfollows.ItremainstoproveLemma4.1.Proof.(Lemma4.1).StartwiththegraphGandletV=V(G).IfthereisavertexvsuchthatthegraphinducedonitsneighborhoodN(v)hasatleast djN(v)jedges,removeS=fvg[N(v)fromG.ContinuetheprocessontheremaininggraphwithvertexsetVnSuntilnosuchvertexexistsorwhenthenumberofremainingvertices rstfallsbelown=2.Weconsidertwocasesdependingonwhentheprocessterminates.1.Ifmorethann=2verticesareleft,thenintheremaininggraphG,theneighborhoodN(v)ofeachvertexvcontainsatmost djN(v)jedges,andthusthetotalnumberoftrianglesisatmost(1=3) dPvN(v)= n d2=3.MoreoverasGhasatleastn=2vertices,itsaveragedegreeisatmost2 d.Thusbytheorem2.2,Gcontainsanindependentsetofsize (log(1= )(n= d))= (nloglogd= d).Thisgivesthedesiredset.2.Ifn=2orfewerverticeswereleft(theremustbeatleastn=2�d),considerthesetsS1;:::;STthatwereremovedfromGduringtheprocess,whereSi=vi[N(vi).AsthenumberofedgesineachsubgraphSiisatleast djN(vi)j= djSi�1j djSij=2:ThenumberofedgesinGthathavebothendpointsinthesetSiforsomei,isatleastTXi=1 djSij=2 d=2(n=2) jEj=2;wherejEjdenotesthenumberofedgesinG.NowconsiderthedistributionovertheindependentsetsinSideterminedbythelocal-distributionD(Si)givenbytheSherali-Adamssolution.Foreachi=1;:::;Twedothefollowing:SampleanindependentsetTiSiaccordingtotheproba-bilitiesdeterminedbyD(Si).Letp=1=logd.Foreachvertexv2Ti,sampleitindependentlywithprobabilityp=xv,andrejectitotherwise.Thisstepiswell-de nedasxvpforeachvertexv2G.LetUiTidenotethesetofverticesthataresampled.Clearly,eachUiisanindependentsets,andeachvertexv2SiliesinUiwithprobabilityexactlyp.Forverticesv2(Vn(S1[:::[ST)),wesampleeachofthemindependentlywithprobabilityp.LetG0bethegraphinducedonthesampledvertices.TheexpectednumberofverticesinG0isnp.Moreover,asjSijd+1foreachi,thenumberofverticesistightlyconcentratedaroundnp(withstandarddeviationO(p npd)).Thecrucialpointisthatanedgee2Gwithbothitsend-pointsinsomeSihas0probabilityoflyinginG0andexactlyp2probabilityotherwise.ThustheexpectednumberofedgesinG0isjEj(1� =2)p2=n d(1� =2)p2=2(andtightlyconcentrated).Thisgivesusthatd0=dp(1� =2)pluslowerordertermswithhighprobability.Thusn0= d0isatleast(1+ =4)n=dwithhighprobability,asdesired.WenotethatweonlyrequiretheShearli-AdamslocaldistributiononsubsetsofverticesthatlieinsomeneighborhoodN(v).Thus,therunningtimetocomputethesolutiontotherelaxationisnO(1)exp(d).Wenowshowhowthenumberoflevelsrequiredcanbereduced.4.3Reducingthenumberoflevels.Wesketchtheideatoreducethenumberoflevelstopolylog(d),anddefertherelativelystandarddetailstothefullversionofthepaper.Observethatintheproofoflemma4.1,wedonotnecessarilyrequireadistributionovertheindependentsetsTiofSi.Infact,anydistributionoversubsetsTiwithedgedensityaconstantfactorlessthanthatofSisucestoarguethatthegraphG0hasn0=d0(1+c )n=dforsomeconstantc.NowthecrucialpointisthatthegraphinducedonSiisquitedense.Ithasatmostdverticesandatleast djSijedges.Moreover,wecanassumethat dd=loglogd,otherwisethegreedyalgorithm(ap-pliedafterremovingverticesofdegreemorethan2 d)al-readyreturnsanindependentsetofsize (nloglogd=d).ThustheedgedensityofSiisatleast djSij=jSij2 foreveryvertexvandeverysubsetSN(v)withjSjklog2d,itholdsthatthesubgraphinducedonShasanindependentsetofsizeatleastjSj=k,then (G)= (nlogd=(dlogk)).We rstneedthefollowingbasicfact(seeLemma2.2in[3]foraproof).Lemma5.1.LetFbeafamilyof2xdistinctsubsetsofanx-elementsetX.ThentheaveragesizeofamemberofFisatleastx=(10log(1+1=)).Proof.LetWbearandomindependentsetofverticesinG,chosenuniformlyamongallindependentsetsinG.Foreachvertexv,letXvbearandomvariablede nedasXv=djv\Wj+jN(v)\Wj.SincejWjcanbewrittenasPvjv\Wjandasitsatis esjWj(1=d)PvjN(v)\Wj(avertexinWcanbeinatmostdsetsN(v)),wehavethatjWj1 2dXvXv:Thustoshowthat (G)islarge,itsucestoshowthat(5.8)E[Xv]logd=(80logk+1):Toshow(5.8),weprovethatinfactitholdsforeveryconditioningofthechoiceoftheindependentsetinV�(N(v)[fvg).Inparticular,letHdenotethesubgraphofGinducedonV�(N(v)[fvg).ForeachpossibleindependentsetSinH,wewillshowthatE[XvjW\V(H)=S]logd=(80logk+1):FixachoiceofS.LetXdenotethenon-neighborsofSinN(v),andletx=jXj.Letbesuchthat2xdenotesthenumberofindependentsetsintheinducedsubgraphGjXofGonX.Now,conditioningontheintersectionW\V(H)=S,thereareprecisely2x+1possibilitiesforW:oneinwhichW=S[fvgand2xinwhichv=2WandWistheunionofSwithanindependentsetinGjX.Bylemma5.1,theaveragesizeofanindependentsetinXisatleastx 10log1=+1andthuswehavethatE[XvjW\V(H)=S](5.9)d1 2x+1+x 10log(1=+1)2x 2x+1:Now,if2x+1p d,thenthe rsttermisatleastp dandwearedone.Otherwise,itmustbethatx(1=2)logdandhencetherighthandsidein(5.9)isatleast(5.10)logd 40log(1=+1):Wenowconsidertwocasesdependingonthevalueofx.Ifxklog2d,thenbyourassumption,XcontainscanindependentsetofsizeatleastjXj=kandhence2x2x=kandhence1=k.Thisgivesthat(5.10)isatleastlogd 40log(k+1).Ontheotherhandifxklog2d,thenbyourassumption,Xcontainsatleast2log2dindependentsets,andhencexlog2d.Asxd,itfollowsthatlog2d=d1=dandhencelog(1=+1)2logd.Thustherighthandsideof(5.9)isatleastx 20log(1=+1)log2d 40logd:5.2ProofofTheorem3.1.Weprovethefollowingresult.Theorem3.1[Halperin[15]]Let2[0;1 2]beaparameterandletZbethecollectionofvectorsvisatisfyingkvik2intheSDPsolution.Thenthereisanalgorithmthatreturnsanindependentsetofsize d2 dp lndjZj.Proof.Letai=viv0=kvik2,andletwi=vi�hvi;v0iv0denotetheprojectionofvitov?0,thehyper-planeorthogonaltov0.Askwik2+hvi;v0i2=kvik2,weobtainkwik2=ai�a2i.Letui=wi=jwij.Nowforanypairofverticesi;j,wehavethatwiwj=vivj�hvi;v0ihvj;v0i:Asvivj=0if(i;j)2E,wehavethatwiwj=vivj�hvi;v0ihvj;v0i=�aiajandhenceuiuj=�p aiaj p (1�ai)(1�aj)� (1�):Thelaststepfollowsasai;ajandasx=1�xisincreasingforx2[0;1].Thustheunitvectorsuicanbeviewedasafeasiblesolutiontoavectork-coloring(inthesenseof[17])wherekissuchthat1=(k�1)==(1�).Thisgivesk=1=,andnowwecanusetheresultof[17](Lemma7.1)thatsuchgraphshaveindependentsetsofsize (jZj=d1�2=kp lnd)= (jZjd2=(dp lnd)).