/
networktrafcredundancy[5]andcachingredundancy[13],[9].Cachinghasbeent networktrafcredundancy[5]andcachingredundancy[13],[9].Cachinghasbeent

networktrafcredundancy[5]andcachingredundancy[13],[9].Cachinghasbeent - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
357 views
Uploaded On 2016-10-24

networktrafcredundancy[5]andcachingredundancy[13],[9].Cachinghasbeent - PPT Presentation

LINKNAME LINKSPEED 1SECTRAFFIC SECSOFTRAFFIC INA10GBCACHE OC24 12Gbps 015GBs 64secs OC48 24Gbps 031GBs 32secs OC192 99Gbps 125GBs 4secs OC768 398Gbps 5GBs 2secs OC1536 796Gbps 1 ID: 479988

LINKNAME LINKSPEED 1-SECTRAFFIC SECSOFTRAFFIC INA10GBCACHE OC-24 1 2Gbps 0.15GBs 64secs OC-48 2 4Gbps 0.31GBs 32secs OC-192 9 9Gbps 1.25GBs 4secs OC-768 39 8Gbps 5GBs 2secs OC-1536 79 6Gbps 1

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "networktrafcredundancy[5]andcachingredu..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

networktrafcredundancy[5]andcachingredundancy[13],[9].Cachinghasbeentraditionallyusedtoreducetrafcredundancy[4],[6].Assumingasetofavailablecaches,asopposedtoasingleproxycache,redundancycanstillexistbetweencachedcontentsindifferentlocations,somethingthathasalsobeeninvestigatedinthepastforoverlaycachingschemes[13],[9].However,andasmentionedearlier,overlayschemesrequiresomeformofco-operationbetweenthecachesthemselvesand/orbetweenthecachesandacentralmanagemententity.Incontrast,inthecaseofin-networkcaching,managementhastohappeninanuncoordinated,uncooperativefashion.Inthispaper,weconsidereachpathofcachingentitiesasapoolofcachingresources;wetrytondoptimalwaysofdistributingcontentinthesecachesinordertoeliminatecachingredundancyandinturn,reducetrafcredundancy.Ourresultsshowthatcarefulcontentowmultiplexingincachescanachieveupto20%morecachehits.Surprisingly,thistranslatestooneorderofmagnitudereductionintermsoftrafcredundancy.II.SYSTEMMODELANDASSUMPTIONSWearguethatin-networkcachemanagementhastotakeintoaccounttheapproximatecachecapacityofthepathofcachesandtheestimatedamountoftrafcthatthesecachesserveperunittime,inordertomakedecisionsonwhethertocacheincomingcontentsornot.InSectionII-A,wemakeassumptionsthathelpusapproximatethecachecapacityofagivenpathandinSectionII-B,wepresentourdesignprinciples.A.AssumptionsonCachingTechnologiesBydenition,cachingisdifferenttostorage,bothinnet-worksandincomputersystems,inthatcachingkeepscontentsstoredforaspecicamountoftimeandnotindenitely,asinstorage.Therefore,thesizeofacacheisarelativefactor,whichcannotstandonitsown,butinsteadhastobelinkedtotheamountoftimethatagivencontentiscachedfor.We,therefore,associatethecachesizewiththetrafcthatthecorrespondingrouterservespersecond.Ourcachesizeunitisthenumberofsecondsworthoftrafccachedinagivenrouteranddependsonthespeedoftheoutgoinglinksoftherouterinquestion.Oneimportantquestionthenis:“Forhowlongcanweaffordtocachecontentsinagivenrouter?”.Furthermore,giventhatinthisstudyweareconcernedwithpathsofcachesandnotwithsingle-cachesonly,anotherimportantquestionis:“Forhowlongdoweneedtocachecontentsinagivenpathinordertominimiseredundanttrafcandmaximisegain?”.Ourreasoningforansweringthesequestionsisasfollows:Today'smemoryaccesstechnologiesguaranteeline-speedaccesstoDRAMchipsofupto10GBytesatareasonableprice[16].Thismeansthata5GByte-long LINKNAME LINKSPEED 1-SECTRAFFIC SECSOFTRAFFIC INA10GBCACHE OC-24 1,2Gbps 0.15GBs 64secs OC-48 2,4Gbps 0.31GBs 32secs OC-192 9,9Gbps 1.25GBs 4secs OC-768 39,8Gbps 5GBs 2secs OC-1536 79,6Gbps 10GBs 1sec OC-3072 159,2Gbps 20GBs 0.5secs TABLEILINKSPEEDSANDRELATEDCACHINGPROPERTIEScachebehinda40Gbpslink1cansafelybeassumedtoholdcontentsforonesecond(seealsoTableI).Withoutlossofgenerality,weassumethateachcachealongapathhassufcientmemorytocachecontentsinaDRAMchipforatleastonesecond(seethirdcolumninTableI).Authorsin[5]showupto60%bandwidthsavingsbyredundanttrafceliminationwithintherst10secondsaftertheoriginaltransmission,insomeenterprisenet-works.Weassociateredundanttrafc,i.e.,subsequentrequestsforthesamecontent,withtheaforementionedresult.Thatis,weconsider,withoutlossofgenerality,thatanycontentshouldbekeptinanyoneofthepath'scachesforatargettimewindow,Ttw,of10seconds.Boththeabovesettingsarerelativelyarbitraryandcanchangeinthefuture,butthesevaluesareagoodstartingpointbasedontoday'stechnology.Inaddition,ourconceptsandalgorithmspresentednextarestillapplicableshouldthesevalueschange.B.SystemModelWeassumethetopologyofFig.1.Thepathfromsourcetodestinationcomprisesnrouters,whererouterrihasNicacheslots,eachabletoholdoneaddressablecontentchunk;basedonthediscussionabove,weassumethatNislotscanholdonesecondworthoftrafc.OurmodelnotationisgiveninTableII.PathCacheCapacity.ThecachingcapacityofourpathofcachesisPni=1Ni,intermsofmemory,whichamountstonsecondsworthoftrafccachedalongthepath.PathCacheCapability.GiventhatourtargettimewindowisTtwsecondsworthoftrafccachedalongagivenpath,thecachingcapabilityofann-longpath,asafractionoftherequiredcapacityforTtwseconds,isPni=1Ni TtwN,whereNistheaveragecachesizealongthepath.Werevisittheissueofaveragecachesizeinthenextsection.SymmetricPaths.RequestandContentmessagesfollowthesameroute,accordingtorecentproposals[1],[19],[2],[21].PathLengthMonitoring.SimilartotheTTLeldincludedinIPpackets,ourdesignrequiresthatICNrequestmessage1Tothebestofourknowledge,operatorstodateuselinksofupto40Gbps,whilesomeoperatorsplantoupdatealimitednumberoftheirlinksto100Gbps:http://www.prnewswire.com/news-releases/verizon-rst-service-provider-to-announce-100g-deployment-on-us-network-118891754.html

Related Contents


Next Show more