/
Oftenweevaluatetheinnermostintegralinsidetheintegrandoftheouterinte-gr Oftenweevaluatetheinnermostintegralinsidetheintegrandoftheouterinte-gr

Oftenweevaluatetheinnermostintegralinsidetheintegrandoftheouterinte-gr - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
353 views
Uploaded On 2015-08-19

Oftenweevaluatetheinnermostintegralinsidetheintegrandoftheouterinte-gr - PPT Presentation

2 x1dxZ20x2x2 2x21 2dxZ20x4 2x2 2dx28 15CheckyourReadingWhyis15thedenominatoroftheresultinexample2TypeIIIntegrals Similarlywede133neatypeIIintegraltobeaniteratedintegraloftheformZdc ID: 110688

2 x1dx=Z20x2x2 2x21 2dx=Z20x4 2x2 2dx=28 15CheckyourReading:Whyis15thedenominatoroftheresultinexample2?TypeIIIntegrals Similarly wede…neatypeIIintegraltobeaniteratedintegraloftheformZdc

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Oftenweevaluatetheinnermostintegralinsid..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Oftenweevaluatetheinnermostintegralinsidetheintegrandoftheouterinte-gralratherthanwritingtheintegrationsseparately.EXAMPLE2EvaluatethetypeIintegralZ20Zx1x2ydydxSolution:We…rstevaluatetheinnerintegral:Z20Zx1x2ydydx=Z20Zx1x2ydydx=Z20x2y2 2 x1dx=Z20x2x2 2�x21 2dx=Z20x4 2�x2 2dx=28 15CheckyourReading:Whyis15thedenominatoroftheresultinexample2?TypeIIIntegrals Similarly,wede…neatypeIIintegraltobeaniteratedintegraloftheformZdcZv(y)u(y)f(x;y)dxdyItisevaluatedbyconsideringytobeconstantintheinnermostintegral,andthenintegratingtheresultwithrespecttoy.EXAMPLE3EvaluatethetypeIIintegralZ10Zyy2(x+y)dxdy2 Letg;hbecontinuouson[a;b]andsuppposethatg(x)h(x)forxin[a;b].IfRisaregioninthexy-planewhichisboundedbythecurvesx=a;x=b;y=g(x),andy=h(x), thenRissaidtobeatypeIregion.Let’s…ndthevolumeofthesolidbetweenthegraphoff(x;y)andthexy-planeoveratypeIregionRwhenf(x;y)0: Todoso,let’snoticethatifthesolidisslicedwithaplaneparalleltothexz-plane,thenitsareaisA(x)=Zh(x)g(x)f(x;y)dy4 Itfollowsthatiffxj;tjg,j=1;:::;n,isataggedpartitionof[a;b];thenthevolumeofthesolidunderthegraphoff(x;y)andovertheregionRisVnXj=1A(tj)xj5 AlimitofsuchsimplefunctionapproximationsyieldsthevolumesbyslicingformulaV=ZbaA(x)dx6 whichisillustratedbelow: Aftercombiningthiswiththede…nitionofA(x);theresultistheiteratedintegralV=Zba"Zh(x)g(x)f(x;y)dy#dx(1)EXAMPLE5Findthevolumeofthesolidunderthegraphoff(x;y)=2�x2�y2overthetypeIregionx=0y=0x=1y=x Solution:Accordingto(1),thevolumeofthesolidisV=Z10Zx0�2�x2�y2dydx7 WeevaluatetheresultingtypeIiteratedintegralby…rstevaluatingtheinnermostintegral:dV=Z102y�x2y�y3 3 x0dx=Z102x�4 3x3dx=2 3 CheckyourReading:Whyis2�x2�y2non-negativeovertheregionboundedbyx=0;x=1;y=0;y=x?Explain.VolumesofSolidsoverTypeIIRegions 8 Similarly,ifp(y)q(y)foryin[c;d],thentheregionRinthexy-planeboundedbythecurvesy=c;y=d;x=p(y),andx=q(y), issaidtobeatypeIIregion.Correspondingly,iff(x;y)0forall(x;y)inatypeIIregionR;thenthevolumeofthesolidunderz=f(x;y)andovertheregionRisV=ZdcZq(y)p(y)f(x;y)dxdy(2)EXAMPLE6Findthevolumeofthesolidunderthegraphoff(x;y)=x2+y2overthetypeIIregiony=0x=y2y=1x=ySolution:Todoso,weuse(2)toseethatV=Z10Zyy2�x2+y2dxdyEvaluatingtheinnermostintegralleadstoV=Z10"x3 3+xy2 yy2#dy=Z104 3y3�1 3y6�y4dy=3 35Finally,letusnotethatunboundedregionscanleadtoconvergentimproperintegrals.Indeed,unboundedsolidscanhavea…nitevolume.9 EXAMPLE7Findthevolumeofthesolidunderthegraphoff(x;y)=e�x�yoverthe…rstquadrant. Solution:Inthe…rstquadrant,xisin(0;1)andyisin(0;1):Thus,(2)impliesthatV=Z10Z10e�x�ydydxTheinnerintegralisevaluatedasanimproperintegralV=Z10limR!1ZR0e�x�ydydx=Z10limR!1�e�x�0�e�x�Rdx=Z10e�xdxTheresultingintegralisalsoevaluatedasanimproperintegral,lead-ingtoV=limS!1ZS0e�xdx=limS!1�e0�e�R=1Exercises10 IdentifyeachintegralaseithertypeIortypeIIandevaluate:1.R10R10(x+y)dydx2.R20R31x2ydydx3.R20R30xydxdy4.R10R30dydx5.R10Rx0�x2+y2dydx6.R0Rsin(x)0dydx7.R0R0cos(x)dydx8.R0Rx0sin(y)dydx9.R=40Rsec(x)tan(x)0dydx10.R20Rsin(x)0ydydx11.R0Rx0sin(x)dydx12.R10Ry0ex+ydxdy13.R0Rexp(x)0xdydx14.R10Ry0sin�y2dxdy15.R20Ry0ln�y2+1dxdy16.R30R1xeydxdy17.R21Rx20x x2+y2dydx18.R21Rx01 x2+y2dydxSketchtheregionRanddetermineitstype.Then…ndthevolumeofthesolidunderz=f(x;y)andoverthegivenregion.19.f(x;y)=x2+y220.f(x;y)=3R:y=0;y=1R:x=0;x=2x=0;x=1y=0;y=421.f(x;y)=3x+2y22.f(x;y)=6x+yR:x=0;x=1R:x=2;x=3y=0;y=x2y=0;y=ex23.f(x;y)=xy24.f(x;y)=y2R:y=0;y=1R:y=0;y==2x=�y;x=yx=0;x=sin(y)25.f(x;y)=ex+y26.f(x;y)=9�x2�y2R:y=0;y=1R:x=1;x=3x=0;x=1�yy=x;y=x2Thefollowingregionsareunbounded.SketchtheregionRanddetermineitstype.Then…ndthevolumeofthesolidunderz=f(x;y)andoverthegivenregion.27.f(x;y)=1 x2y228.f(x;y)=1 x2+y2R:xin(1;1);yin(1;1)R:x=0;x=229.f(x;y)=x�2e�y30.f(x;y)=1R:xin(1;1)R:xin(0;1)y=0;y=x�2y=x�e�x;y=x+e�x-31.AregularconewithaheighthandabasewithradiusRispositionedsothatitsaxisishorizontal.FindtheareaA(x)ofaverticalcross-sectionof11 FindtheareaA(x)ofacross-sectionatx.Whatisthevolumeofthepyramid?34.TheGreatPyramidis4810tallandhasasquarebasewhichis7560wideoneachside. WhatisthevolumeoftheGreatPyramid?(hint:seeproblem33).35.ExplainwhytheareaofatypeIregioncanbewrittenintheformA=ZbaZh(x)g(x)dydx36.ExplainwhytheareaofatypeIIregioncanbewrittenintheformA=ZdcZq(y)p(y)dxdy37.Explainwhyifa;b;c;anddareallconstant,thenZbaZdcf(x;y)dydx=ZdcZbaf(x;y)dxdywhenbothiteratedintegralsexist.38.Showthatifa;b;c;anddareconstant,thenZbaZdcf(x)g(y)dydx="Zbaf(x)dx#"Zdcg(y)dy#39.UsepropertiesoftheintegraltoshowthatZbaZq(x)p(x)[f(x;y)+g(x;y)]dydx=ZbaZq(x)p(x)f(x;y)dydx+ZbaZq(x)p(x)g(x;y)dydx13 40.UsepropertiesoftheintegraltoshowthatZbaZq(x)p(x)[f(x;y)+g(x;y)]dydx=ZbaZq(x)p(x)f(x;y)dydx+ZbaZq(x)p(x)g(x;y)dydx41.Showthatiffisdi¤erentiableon(a;b),thenforallcin(a;b)wehavef(c)(b�a)+Zbaf(x)dx=ZbaZxcf0(u)dudx42.Showthatiffisdi¤erentiableandiff(0)=0;thenZbaf(x)dx=ZbaZ10f0(ux)dudx14

Related Contents


Next Show more