/
Quantum  Gates  and Christopher Quantum  Gates  and Christopher

Quantum Gates and Christopher - PowerPoint Presentation

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
345 views
Uploaded On 2019-06-22

Quantum Gates and Christopher - PPT Presentation

Monroe University of Maryland Quantum Simulations with Atoms Aarhus Amherst Basel Berkeley Bonn Citadel Clemson Denison Duke Erlangen ETHZurich Freiburg Georgia Tech Griffith Hannover ID: 759692

quantum amp state nature amp quantum nature state qubits qubit atomic arxiv debnath spins modes 04512 1603 ion ghz 2016 trapped 2015

Share:

Link:

Embed:

Download Presentation from below link

Download Presentation The PPT/PDF document "Quantum Gates and Christopher" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Slide1

Quantum

Gates and

ChristopherMonroe

University of Maryland

Quantum Simulations

with Atoms

Slide2

Aarhus

AmherstBaselBerkeleyBonnCitadelClemsonDenisonDukeErlangenETH-ZurichFreiburgGeorgia TechGriffith HannoverHoneywellIndianaInnsbruckLincoln LabsLockheedMaryland/JQIMainzMITMunichNIST-BoulderNorthwesternNPL-TeddingtonOsakaOxfordParisPretoriaPTB-BraunschweigSaarbruckenSandiaSiegenSimon FraserSingaporeSussexSydneyTsinghua-BeijingUCLAWashington-SeattleWeizmannWilliams

Trapped Atomic

Ions

Yb

+

crystal

~5

m

m

Slide3

2

S

1/2

w

HF

/2

p = 12.642 812 118 GHz

| = |0,0

| = |1,0

Atomic

Qubit (

171

Yb

+

)

Slide4

2

S

1/2

2

P

1/2

369 nm

2.1 GHz

g/2p

= 20 MHz

|



|



Atomic Qubit

D

etection

w

HF

/2

p

= 12.642 812 118 GHz

#

photons collected in

500

m

s

0

5

10

15

20

25

0

1

Probability

|

z

Slide5

2

S

1/2

2

P

1/2

369 nm

g/2p

= 20 MHz

|



|



2.1 GHz

Atomic Qubit Detection

>99

%

detection

efficiency

#

photons collected in 500

m

s

0

5

10

15

20

25

0

1

Probability

|

z

|

z

w

HF

/2

p

=

12.642 812 118 GHz

Slide6

2

S

1/2

2

P

1/2

|



|



Atomic Qubit Manipulation

D

= 33

THz

355

nm

2

P

3/2

g/2p

= 20 MHz

w

HF

/2

p

=

12.642 812 118 GHz

Slide7

Quantum Gates

Slide8

~5

m

m

d

r

Entangling Trapped Ion Qubits

Cirac and

Zoller

(1995)

Mølmer

& Sørensen (1999)

Solano, de Matos Filho, Zagury (1999)

Milburn, Schneider, James (2000

)

d

~ 10

nm

e

d

~ 500

D

ebye

“dipole-dipole coupling”

 

 

 

 

f

or full

entanglement

Slide9

Programmable Quantum Computer

Module (5 qubits)

S.

Debnath

,

et al

., arXiv:1603.04512

(to appear in Nature, 2016

)

Slide10

Programmable Quantum Computer… Physical Layer

Harris Corp

32channel AOM

2

μ

m pixels

H7260 32-channel

PMT Array

Laser

Coherent 355nm laser

S.

Debnath

,

et al

., arXiv:1603.04512

(to appear in Nature, 2016

)

Slide11

Addressing

crosstalk measurements (~1% nearest-neighbor)

S.

Debnath

,

et al

., arXiv:1603.04512

(to appear in Nature, 2016

)

Slide12

Many ions: phonon modes

transverse modes

frequency

a

xial modes

 

N

ions in a line

transverse trap frequency

w

x

= high as you can go

axial trap frequency

 

 

 

 

laser

m

J

. P. Schiffer, Phys. Rev. Lett. 70, 818 (1993

)

Ising

XX gate:

pulse-shape laser to decouple all modes of motion

Slide13

Controlled-Phase Gate

 

± phase of

Ising

coupling

S.

Debnath

,

et al

., arXiv:1603.04512

(to appear in Nature, 2016

)

Slide14

QFT circuit (

n=5 qubits)

controlled phase gate

Quantum Fourier Transform (QFT)

 

input

amplitudes

output

amplitudes

 

S.

Debnath

,

et al

., arXiv:1603.04512

(to appear in Nature, 2016

)

Slide15

state preparation

results

e.g. state with

period 8

=

7

15

23

31

QFT: Period Finding

S.

Debnath

,

et al

., arXiv:1603.04512

(to appear in Nature, 2016

)

Slide16

fidelity 83%

(excl. spam ~1.4%)

Toffoli

gate

Slide17

Quantum Simulation

Slide18

F

=

F0|↑↑| - F0|↓↓|

weak/slow global

spin-dependent force

Slide19

|

|

ADD: Independent spin flips

B

F

=

F

0

|



|

-

F

0

|



|

g

lobal spin-dependent force

F

=

F

0

|



|

-

F

0

|



|

Slide20

Adiabatic Quantum Simulation

Initialization:

spins

along y

Detection:

measure

spins

along x

Time (<1

0 msec

)

from S

. Lloyd, Science

319

, 1209

(2008

)

 

 

Slide21

Antiferromagnetic

Néel order of N=10 spins

All in state

2600

runs,

a

=1.12

AFM ground state order

222 events

441 events out of 2600 = 17

%

Prob

of any state at random =2 x (1/2

10

) =

0.2%

219 events

R. Islam et

al., Science

340

, 583 (2013)

All in state

Slide22

First Excited States

(Pop

. ~2% each)

Slide23

Second

Excited States

(Pop.

~

1%

each)

Slide24

Distribution of all 210 = 1024 states

Probability

0

341

682

1023

Nominal

AFMstateB << J0

0101010101

1010101010

Probability

0.100.080.060.040.02

Initial

paramagnetic

stateB >> J0

R. Islam et al., Science340, 583 (2013)

0

341

682

1023

Slide25

AFM

order of N=14 spins (16,384 configurations)

Slide26

Propagation of correlations and entanglement

with long-range interactions P. Richerme et. al., Nature 511, 198 (2014) P. Jurcevic et al., Nature 511, 202 (2014)Many-Body Spectroscopy C. Senko et. al., Science 345, 430 (2014)Spin-1 Dynamics C. Senko, et al., Phys. Rev. X 5, 021026 (2015)Many-body Localization J. Smith, et al., arXiv 1508.07026 (2015)

etc…

Slide27

Dynamics of N=22 spins

initial state at t=0

state measured at

J

0

t = 36

 

a =

0.6

B. Neyenhuis et al., in preparation (2015)

Slide28

Scaling Up

Slide29

# qubits in

a module

100

Cost

per Qubit

Qubit economics

2

$1M

$100M

$10M

Slide30

Scaling through Modularity

Slide31

a

(C.O.M.)

b

(stretch)

c

(Egyptian)

d

(stretch-2)

Mode competition –

example: axial modes, N = 4 ions

Fluorescence counts

Raman Detuning

d

R

(MHz)

-15

-10

-5

0

5

10

15

20

40

60

a

b

c

d

a

b

c

d

2a

c-a

b-a

2b,a+c

b+c

a+b

2a

c-a

b-a

2b,a+c

b+c

a+b

carrier

axial modes only

mode

amplitudes

cooling beam

Nature

417, 709 (2002)

Quantum CCD Multiplexer

Slide32

Univ. of

Maryland

Boulder

Slide33

(to 1,000,000 qubits?)

N trapped ion

quantum registers

N × N optical

crossconnect

switch

N/2 beam

splitters

CCD camera

N collection

fibers

C. Monroe, J. Kim, et al.,

Phys. Rev. A 89, 022317 (2014)

Slide34

171

Yb

+

ion

optical

fiber

50/50

BS

Simon & Irvine, PRL

91

, 110405 (2003)

L.-M.

Duan

, et. al., QIC

4

, 165 (2004)

Y. L. Lim, et al., PRL

95

, 030505 (2005)

D.

Moehring

et al.,

Nature

449

, 68 (

2007)

50/50

PBS

50/50

PBS

H

1

V

1

V

2

H

2

Heralded coincident events (

p

suc

=1/2

):

(H

1

& V

2

) or (V

1

& H

2

)

→ |

↓↑

-

|

↓↑

(H

1

&

V

1

)

or (

V

2

&

H

2

) → |↓↑ + |↓↑(H1 & H1) or (H2 & H2) → |↓↓(V1 & V1) or (V2 & V2) → |↑↑

l

/4

l

/4

171

Yb

+

ion

Current:

Linking remote atoms with photons

D. Hucul, et al., Nature Phys. 11, 37 (2015)

NA=0.6

Slide35

1947: first transistor

2000: integrated circuit

2015: qubit collection

Large scale quantum network?

single module

N ion trap modules

Slide36

Slide37

Single Module

~100 spins on two 19” Racks

Slide38

Superconducting Circuits

Leading Quantum Computer Hardware Candidates

CHALLENGES

s

hort (10-6 sec) memory0.05K cryogenicsall qubits different not reconfigurable

Superconducting qubit

: “right or left current”

FEATURES & STATE-OF-ARTconnected with wiresfast gates5-10 qubits demonstratedprintable 2D circuits and VLSI

Atomic qubits connected through laser forces on motion or photons

individual

atoms

lasers

photon

Trapped Atomic Ions

FEATURES & STATE-OF-ART

very long (>>1 sec) memory

5-20

qubits

demonstratedatomic qubits all identicalconnections reconfigurable

CHALLENGESlasers & opticsslow gateshigh vacuumengineering needed

Investments:

IARPA Lockheed

GTRI UK Gov’t

Sandia

LARGE

Investments:

Google/UCSB

IBM

Lincoln Labs Intel/Delft

Slide39

Grad Students

David Campos

Clay Crocker

Shantanu

Debnath

Caroline

Figgatt

David

Hucul (UCLA)Volkan InlekKevn LandsmanAaron LeeKale JohnsonHarvey KaplanAntonis KyprianidisKsenia SosnovaJake SmithKen Wright

UndergradsEric BirckelbawKate CollinsAkshay GrewalMicah HernandezHannah Ruth

ARO

LPS/NSA

Postdocs

Kristi Beck

Paul

HessMarty LichtmanNorbert LinkeSteven MosesBrian Neyenhuis ( Lockheed)Guido PaganoPhil Richerme ( Indiana)Grahame Vittorini ( Honeywell)Jiehang Zhang

Res. Scientists

Jonathan MizrahiKai HudekMarko CetinaJason Amini

Trapped Ion Quantum Information

www.iontrap.umd.edu

Collaborators

Luming

Duan

(Michigan)

Philip

Hauke

(Innsbruck)

David

Huse

(Princeton)

Alexey

Gorshkov

(JQI/NIST)

Alex

Retzker

(Hebrew U)