PDF-Theorem20.3.LetAbeannnmatrix.ThenAisdiagonalisableifandonlyifwecan nd

Author : karlyn-bohler | Published Date : 2016-05-27

Example205IsitpossibletodiagonaliseA01216101211AIftheanswerisyesthendiagonaliseAWealreadysawthatv11613isaneigenvectorwitheigenvalue0v2121isaneigenvectorwitheigenvalue4and

Presentation Embed Code

Download Presentation

Download Presentation The PPT/PDF document "Theorem20.3.LetAbeannnmatrix.ThenAisdia..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.

Theorem20.3.LetAbeannnmatrix.ThenAisdiagonalisableifandonlyifwecan nd: Transcript


Example205IsitpossibletodiagonaliseA01216101211AIftheanswerisyesthendiagonaliseAWealreadysawthatv11613isaneigenvectorwitheigenvalue0v2121isaneigenvectorwitheigenvalue4and. Nullspace LetA=(aij)beanmnmatrix.De nition.ThenullspaceofthematrixA,denotedA),isthesetofalln-dimensionalcolumnvectorssuchthat A0. 0BBB@a11a12a13:::a1na21a22a23:::a2n...............am1am2am3:::amn1CCC TheQCQPproblemConsideraquadraticallyconstrainedquadraticprogram:(QCQP)z=minf0(x)s:t:fi(x)di;i=1;:::;qx0;Axb;wherefi(x)=xTQix+cTix,i=0;1;:::;q,eachQiisannnsymmetricmatrix,andAisanmnmatrix.LetF=fx WIGNERENSEMBLEH=(hjk)isahermitianNNmatrix,N1.hjk=1pN(xjk+iyjk);(jk);hjj=s2Nxjjwherexjk;yjk(jk)andxjjareindependentwithdistributionsxjk;yjkd:=eg(x)dx;Normalization:Exjk=0,Ex2jk=12.Example:g(x)=x2i Thm.[B] LetX1;X2;;Xkbeeigenvectorscorrespondingto distinct eigenvalues1;2;;kofA.ThenfX1;X2;;Xkgis linearlyindependent . Proof.AssumethatfX1;X2;&#

Download Document

Here is the link to download the presentation.
"Theorem20.3.LetAbeannnmatrix.ThenAisdiagonalisableifandonlyifwecan nd"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.

Related Documents