/
Trukhin,A.N.Plaudis,A.E..InvestigationofintrinsicluminescenceofSiOSovP Trukhin,A.N.Plaudis,A.E..InvestigationofintrinsicluminescenceofSiOSovP

Trukhin,A.N.Plaudis,A.E..InvestigationofintrinsicluminescenceofSiOSovP - PDF document

karlyn-bohler
karlyn-bohler . @karlyn-bohler
Follow
366 views
Uploaded On 2015-08-29

Trukhin,A.N.Plaudis,A.E..InvestigationofintrinsicluminescenceofSiOSovP - PPT Presentation

MeiYFFuRKYSiuGGWongKWChuPKWangOngHCNitrogenbindingbehaviourinZnOfilmswithtimeresolvedcathodoluminescenceApplSurfSci8131 ID: 117800

Mei Y.F. R.K.Y. Siu G.G. Wong K.W. Chu P.K. Wang Ong H.C..NitrogenbindingbehaviourinZnOfilmswithtime-resolvedcathodoluminescence.ApplSurfSci 8131

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Trukhin,A.N.Plaudis,A.E..Investigationof..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Trukhin,A.N.Plaudis,A.E..InvestigationofintrinsicluminescenceofSiOSovPhysSolidState,644Ð646.Vernon-Parry,K.D.,Davies,G.Galloway,S..Elec-tronicandstructuralpropertiesofgrainboundariesinelectron-irradiatededge-definedfilm-fedgrowthsilicon.SemicondSciTechnol,171Ð174.Vu,T.A.,Gotze,J.,Burkhardt,J.,Ulbricht,J.Habermann,.Applicationofopticalandspectralcathodolumines-cenceinthestudyofMgOrefractories.IntCeram,164Ð167.Walker,G.,Abumere,O.E.Kamaluddin,B..Lumines-cencespectroscopyofMncentresinrock-formingcarbon-ates.MineralMag,201Ð211.Walker,G.Burley,S.D..Luminescencepetrologyandspectroscopicstudiesindiagenticminerals.InLuminescenceMicroscopy:QualitativeandQuantitativeApplications.SPEMShortCourse25,Barker,C.E.&Kopp,O.C.,pp.83Ð96.Tulsa,OK:SPEMSocietyforSedimentaryGeologyWalker,G.,ElJaer,A.,Sherlock,R.,Glynn,T.J.,Czaja,M.Mazurak,Z..LuminescencespectroscopyofCrinspodumeneLiAlSiJLumin,278Ð280.Walker,G.,Kamaluddin,B.,Glynn,T.J.Sherlock,R.LuminescenceofNicentresinforsteriteMgSiOJLumin,123Ð126.Wang,P.W.,Haglund,R.F.,Kinser,D.L.,Mendenhall,M.H.,Tolk,N.H.Weeks,R.A..LuminescenceinducedbylowenergyelectrondepositioninSuprasilandSpectrosilglasses.JNon-CrystSolids,288Ð294.Xu,S.J.,Chua,S.J.,Liu,B.,Gan,L.M.,Chew,C.H.Xu,G.Q..Luminescencecharacteristicsofimpurities-activatedZnSnanocrystalspreparedinmicroemulsionwithhydrother-maltreatment.ApplPhysLett,478Ð480.Yacobi,B.G.Holt,D.B.CathodoluminescenceMicros-copyofInorganicSolids.NewYork,London:PlenumPress.Yang,X.H.McKeever,S.W.S..Thepredoseeffectincrystallinequartz.JPhysD:ApplPhys,237Ð244.Zorenko,Y.V.,Turchak,R.M.,Voznyak,T.I.Luchechko,A.P..LuminescenceofCsBr:Eufilmsgrownbyliquid-phaseepitaxy.JApplPhys,211Ð215.ColinM.MacRaeandNicholasC.Wilson Mei,Y.F.,Fu,R.K.Y.,Siu,G.G.,Wong,K.W.,Chu,P.K.,Wang,Ong,H.C..NitrogenbindingbehaviourinZnOfilmswithtime-resolvedcathodoluminescence.ApplSurfSci,8131Ð8134.Merano,M.,Sonderegger,S.,Crottini,A.,Collin,S.,Re-nucci,P.,Pelucchi,E.,Malko,A.,Baier,M.H.,Kapon,E.,Deveaud,B.Ganiere,J.D..Probingcarrierdynamicsinnanostructuresbypicosecondcathodoluminescence.Nature,479Ð482.Moore,R.E.Karakus,M..Cathodoluminescencemicros-copy:Atechniqueuniquelysuitedtothesolutionofrefractorywearproblems.IntCeramMono,925Ð940.Munekuni,S.,Yamanaka,T.,Shimogaichi,Y.,Tohmon,R.,Ohki,Y.,Nagasawa,K.Hama,Y..Varioustypesofnonbridgingoxygenholecenterinhigh-puritysilicaglass.ApplPhys,1212Ð1217.Nishikawa,H.,Shiroyama,T.,Nakamura,R.,Ohki,Y.,Na-gasawa,K.Hama,Y..Photoluminescencefromde-fectcentersinhigh-puritysilicaglassesobservedunder7.9-eVexcitation.PhysRevB,586.Odin,I.N.,Chukichev,M.V.,Ivanov,V.A.Rubina,M.E..CathodoluminescenceofCdSiS,CdSiSe,andS-dopedCdS,CdSeandCdTecrystals.InorgMater,445Ð448.Pagel,M.,Barbin,V.,Blanc,P.Ohnestetter,D.CathodoluminescenceinGeosciences.Berlin,NewYork:Springer.Petrov,V.I..Cathodoluminescencemicroscopy.PhysicsÑUspekhi,807Ð818.Ponahlo,J..KathodolumineszenzundKL-spektrenvonedelsteinen.ZDtGemmolGes,101Ð113.Ponahlo,J..Kathodolumineszenz-undabsorptionsspek-trengelbersaphire.ZDt.GemmolGes,225Ð228.Portnov,A.M.Gorobets,B.S..Luminescenceofapatitefromdifferentrocktypes.DokladyAkademiiNaukSSSRPott,G.T.McNicol,B.D..SpectroscopicstudyofthecoordinationandvalenceofFeandMnionsinandonthesurfaceofaluminasandsilicas.DiscFaradaySoc,121Ð131.Randall,J.T..Somerecentexperimentsinluminescence.TransFaradaySoc,2Ð14.Remond,G.,Cesborn,F.,Chapoulie,R.,Ohnenstetter,D.,Roque-Carmes,C.Schvoerer,M..Cathodolumines-cenceappliedtothemicrocharacterizationonmineralmateri-als:Apresentstatusinexperimentationandinterpretation.ScanMicrosc,23Ð68.Remond,G.,Phillips,M.R.Roque-Carmes,C..Impor-tanceofinstrumentalandexperimentalfactorsontheinterpre-tationofcathodoluminescencedatafromwidebandgapmaterials.InCathodoluminescenceinGeosciences,Pagel,M.,Barbin,V.,Blanc,P.&Ohnenstetter,D.,pp.108Ð113.Heidelberg:SpringerVerlag.Richter,D.K.,Gotte,T.,Gotze,J.Neuser,R.D.Progressinapplicationofcathodoluminescenceinsedi-mentarypetrology.MineralPetrol,127Ð166.Roeder,P.L.,MacArthur,D.,Ma,X.,Palmer,G.R.Mariano,.Cathodoluminescenceandmicroprobestudyofrare-earthelementsinapatite.AmMineral,801Ð811.Saparin,G.V.,Mokhov,E.N.,Obyden,S.K.Roenkov,A.D..RealcolorcathodoluminescencescanningelectronmicroscopyÑAneweffectivemethodforstudyofSiCmateri-alsanddevices.,25Ð34.Schulman,J.H.,Evans,L.W.,Ginther,R.J.Murata,K.J..Thesensitizedluminescenceofmanganese-activatedcalcite.JApplPhys,732Ð739.Sigel,G.H.Marrone,M.J..Photoluminescenceinas-drawnandirradiatedsilicaopticalfibers:Anassessmentoftheroleofnon-bridgingoxygendefectcenters.JNon-CrystSolids,235Ð247.Singh,N.,Marwaha,G.L.Mathur,V.K..Lumines-cencecentresandchargecompenstationinCaSphosphors.PhysStatSol(a),761Ð765.Sippel,R.F.Spencer,A.B..Luminescencepetrographyandpropertiesoflunarcrystallinerocksandbreccias.InPro-ceedingsoftheApollo11LunarScienceConference,Levinson,,pp.2413Ð2426.GeochimetCosmochimActa,Suppl.1.Skuja,L.N.,Guttler,B.,Schiel,D.Silin,A.R..Infraredphotoluminescenceofpreexistingorirradiation-inducedinter-stitialoxygenmoleculesinglassySiOandalpha-quartz.PhysRevB,14296Ð14304.Skuja,L.N.,Silin,A.R.Boganov,A.G..Onthenatureofthe1.9eVluminescencecentersinamorphousSiONon-CrystSolids,431Ð436.Skuja,L.N.,Streletsky,A.N.Pakovich,A.B..AnewintrinsicdefectinamorphousSiOÑTwofoldcoordinatedsili-con.SolidStateCommun,1069.Skuja,L.N.Trukhin,A.N..CommentonÒLuminescenceoffusedsilica:ObservationoftheOemissionband.ÓPhysRev,3909.Smith,A.L..Newcomplexsilicatephosphorscontainingcalcium,magnesium,andberyllium.JElectrochemSocSommer,S.E..Cathodoluminescenceofcarbonates,1.Char-acterizationofcathodoluminescencefromcarbonatesolidso-ChemGeol,257Ð273.Stevens-Kalceff,M.A..Electro-irradiation-inducedradio-lyticoxygengenerationandmicrosegregationinsilicondioxidepolymorphs.PhysRevLett,3137Ð3140.Stevens-Kalceff,M.A.Phillips,M.R..Cathodolumi-nescencemicrocharacterizationofthedefectstructureofquartz.PhysRevB,3122Ð3134.Stevens-Kalceff,M.A.,Stesmans,A.Wong,J..Defectsinducedinfusedsilicabyhighfluenceultravioletlaserpulsesat355nm.ApplPhysLett,758Ð760.Sun,X.L.,Goss,S.H.,Brillson,L.J.,Look,D.C.Molnar,R.J..Depth-dependentinvestigationofdefectsandimpuritydopinginGaNsapphireusingscanningelectronmicroscopyandcathodoluminescencespectroscopy.JApplPhys,6729Ð6738.Tarashchan,A.N.LuminescenceofMinerals.Kiev:NaukovaTelfer,D.J.Walker,G..LigandfieldbandsofMnluminescencecentresandtheirsiteoccupancyinplagio-clasefeldpsars.ModGeol,199Ð210.Tiginyanu,I.M.,Langa,S.,Sirbu,L.,Monaico,E.,Stevens-Kalceff,M.A.Foll,H..Cathodoluminescencemicro-analysisofporousGaPandInPstructures.EurPhysJApplPhys,81Ð84.Tohmon,R.,Shimogaichi,Y.,Mizuno,H.,Ohki,Y.,Nagasawa,Hama,Y..2.7-eVluminescenceinas-manufacturedhigh-puritysilicaglass.PhysRevLett,1388.Toyama,T.,Adachi,D.Okamoto,H..Electrolumines-centdeviceswithnanostructuredZnS:Mnemissionlayeroper-atedat20VMaterResSocSympProc,Q4.4.1ÐQ4.4.6.LuminescenceDatabase Itoh,C.,Tanimura,K.Itoh,N..Opticalstudiesofself-trappedexcitonsinSiOJPhysC:SolidStatePhysJadwisienczak,W.M.Lozykowski,H.J..Opticalprop-ertiesofYbionsinGaNepilayer.OptMater,175Ð181.Jones,C.E.Embree,D..Correlationsofthe4.77Ð4.28eVluminescencebandinsilicondioxidewiththeoxygenvacancy.JApplPhys,5365Ð5371.Karakus,M..Cathodoluminescencemicroscopyandspec-troscopycharacterisationofrefractoryandadvancedstructuralceramics.InUNITECRÕ05:ProceedingsoftheUnifiedInter-nationalTechnicalConferenceonRefractories:9thBiennialWorld-wideCongressonRefractories,Smith,J.D.,pp.330Ð334.Orlando,FL:AmericanCeramicSociety.Karakus,M.,Crites,M.D.Schlesinger,M.E..Cathod-oluminescencemicroscopycharacterizationofchrome-freere-fractoriesforcoppersmeltingandconvertingfurnaces.JMicroscOxford,50Ð58.Karakus,M.,Hagni,R.D.Spreng,A.C..Cathodolumi-nescencepetrographyandchemistryofthephosphategrainsinthelowerJurassicAalenianironstonesofLorraine,France.InStudiesonOreDeposits,MineralEconomics,andAppliedMiner-alogy:WithEmphasisonMissippiValley-TypeBaseMetalsandCarbonate-RelatedOreDeposits,Hagni,R.D.,pp.335Ð363.Rolla,MO:UniversityofMissouri-RollaPress.Karakus,M.Moore,R.E..CLMÑAnewtechniqueforrefractories.CeramBull,55Ð61.Katona,T.M.,Craven,M.D.,Speck,J.S.DenBarns,S.P..Cathodoluminescencestudyofdeepultravioletquan-tumwellsgrownonmasklesslaterallyepitaxialovergrownApplPhysLett,1350Ð1352.Kempe,U.Gotze,J..Cathodoluminescencebehav-iourandcrystalchemistryfromrare-metaldeposits.MineralMag,151Ð172.Kempe,U.,Plotze,M.,Brachmann,A.Bottcher,R.Stabilisationofdivalentrareearthelementsinnaturalfluorite.MineralPetrol,213Ð234.Kiflawi,I.Lang,A.R..Linearlypolarizedluminescencefromlineardefectsinnaturalandsyntheticdiamond.PhilosMag,219Ð223.Kobayashi,Y.,Sato,S.,Hitomi,A.,Isshiki,T.,Saijo,H.,No-mura,T.Shiojiri,M..Cathodoluminescencescan-ningelectronmicroscopyobservationsofSrBaCaTiOceramicvaristors.JElectronMicrosc,29Ð37.Kominami,H.,Tanka,M.,Hara,K.,Nakanishi,Y.Hatanaka,.SynthesisandluminescencepropertiesofMg-Ti-O:Eured-emittingphosphors.PhysStatSol(c),2758Ð2761.Koyama,H..CathodoluminescencestudyofSiOJApplPhys,2228Ð2235.Laud,K.R.,Gibbons,E.F.,Tien,T.Y.Stadler,H.L.CathodoluminescenceofCeandEuactivatedalkalineearthfeldspars.JElectrochemSoc,918Ð923.Lee,M.R.,Martin,R.W.,Trager-Cowan,C.Edwards,P.R..Imagingofcathodoluminescencezoningincalcitebyscanningelectronmicroscopyandhyperspectralmapping.SedimRes,313Ð322.Leverenz,H.W.AnIntroductiontoLuminescenceofSolidsNewYork:Dover.Lin,C.,Wang,H.,Kong,D.,Yu,M.,Liu,X.,Wang,Z.Lin,J..SilicasupportedsubmicronSiOSiO:EuSiOSiOsphericalparticleswithacore-shellstructure:Sol-gelsynthesisandcharacterisation.EurJInorgChem,3667Ð3675.Lin,Y.,Tang,Z.,Zhang,Z.,Wang,X.Zhang,J..Prepa-rationofanewlongafterglowblue-emittingSrMgSiphotoluminescentphosphor.JMaterSciLett,1505Ð1506.Lin,Y.,Zhang,Z.,Tang,Z.,Wang,X.,Zhang,J.Zheng,Z..LuminescentpropertiesofanewlongafterglowEuandDyactivatedCaMgSiphosphor.JEurCeramSocLoferski,J.J.,Schewchun,J.,Mittleman,S.D.,DeMeo,E.A.,Arnott,R.,Hwang,H.L.,Beaulieu,R.Chapman,G..CathodoluminescencecharacteristicsofCuSfilmspro-ducedbydifferentmethods.SolarEnergyMater,157Ð169.Lozykowski,H.J.,Jadwisienczak,W.M.Brown,I.VisiblecathodoluminescenceofGaNdopedwithDy,Er,andTm.ApplPhysLett,1129Ð1131.Luff,B.J.Townsend,P.D..Cathodoluminescenceofsyntheticquartz.JPhysCondensMatter,8089Ð8097.MacRae,C.M.Miller,P.R..Electronmicroscopyinmin-eralprocessing.InIndustrialApplicationsofElectronMicroscopyZhigang,R.L.,pp.187Ð212.NewYork:MarcelDekker.MacRae,C.M.,Wilson,N.C.,Johnson,S.A.,Phillips,P.L.Otsuki,M..HyperspectralmappingÑcombiningcathod-oluminescenceandX-raycollectioninanelectronmicroprobe.MicroscResTech,271Ð277.MacRae,C.M.,Wilson,N.C.Otsuki,M..Holisticmappinginanelectronmicroprobe.InMicroscopyandMicro-analysis,Vol.7,Suppl.2,Bailey,G.W.,pp.146Ð147.NewYork:Springer.Manfredotti,C.,Cossio,R.,LoGiudice,A.,Vittone,E.Fizzotti,F..Vibronicspectrumofc-BNwithcathodolu-minescence.PhysRevB,1Ð7.Marfunin,A.S.Spectroscopy,LuminescenceandRadia-tionCentersinMinerals.Berlin,Heidelberg,NewYork:Springer-Verlag.Marfunin,A.S.AdvancedMineralogy.Berlin:Springer-Verlag.Mariano,A.N..Theapplicationofcathodoluminescenceforcarbonatiteexplorationandcharacterization.InInter-nationalSymposiumonCarbonatites,1sted.,PocosdeCaldas,MinasGerais,Brazil,Braga,C.J.,pp.39Ð57.Mariano,A.N.,Ito,J.Ring,P.J..Cathodoluminescenceofplagioclasefeldspars.InGeologicalSocietyofAmerica,Vol.5,p.726.Boulder,CO:GeologicalSocietyofAmerica.Mariano,A.N.Ring,P.J..Europium-activatedcathodolu-minescenceinminerals.GeochimCosmochimActa,649Ð660.Marshall,D.J.CathodoluminescenceofGeologicalMateri-.London,UK:UnwinHymanLtd.Martin,R.W.,Edwards,P.R.,O’Donnell,K.P.,Mackay,E.G.Watson,I.M..MicrocompositionandluminescenceofInGaNemitters.PhysStatusSolidiA,117Ð123.Mason,R.,Clouter,M.Goulding,R..Thelumines-cencedecay-timeofMnactivatedcalcite.PhysChemMiner,451Ð459.McKnight,S.W.Palik,E.D..CathodoluminescenceofSiOJNon-CrystSolids,595Ð603.Medlin,W.L..Emissioncentersinthermoluminescentcalcite,dolomite,magnesite,aragonite,andanhydrite.JOptSoc,1276Ð1285.Medlin,W.L..Trappingcentersinthermoluminescentcal-cite.PhysRev,1770Ð1779.ColinM.MacRaeandNicholasC.Wilson Edgington,J.A.Blair,I.M..Luminescenceandthermo-luminescenceinducedbybombardmentwithprotonsof159millionelectronvolts.Science,715Ð717.Edwards,P.R.,Martin,R.W.,O’Donnell,K.P.Watson,I.M..SimultaneouscompositionmappingandhyperspectralcathodoluminescenceimagingofInGaNepilayers.PhysicaSta-tusSolidi,2474Ð2477.Eremenko,G.Khrenov,A..Luminescenceofbaddeley-ite.MineralZh,93Ð95.Fernandez,I.Llopis,J..ReducingeffectsontheCLredemissionofMgOdopedcrystals.PhysStatSol(a)Finch,A.A.,Garcia-Guinea,J.,Hole,D.E.,Townsend,P.D.Hanchar,J.M..Ionoluminescenceofzircon:Rareearthemissionsandradiationdamage.JPhysD:ApplPhysFinch,A.A.Klein,J..Thecausesandpetrologicalsignificanceofcathodoluminescenceemissionsfromalkalifeld-ContribMineralPetrol,234Ð243.Friebele,E.J.,Griscom,D.L.Marrone,M.J..Theopticalabsorptionandluminescencebandsnear2eVinirradi-atedanddrawnsyntheticsilica.JNon-CrystSolids,133Ð144.Gaft,M.,Reisfeld,R.Panczer,G.LuminescenceSpec-troscopyofMineralsandMaterials.BerlinHeidelberg:Springer.Gaft,M.,Reisfeld,R.,Panczer,G.,Blank,P.Boulon,G..Laser-inducedtime-resolvedluminescenceofminerals.SpectrochimActaPartA,2163Ð2175.Garcia,J.A.,Remon,A.Piqueras,J..RedluminescencefromquenchedMgOcrystals.SolidStateCommun,555Ð558.Geake,J.E.,Walker,G.,Mills,A.A.Garlick,G.F.J..Lu-minescenceofApollolunarsamples.InProceedingsoftheSecondLunarConference,Levinson,A.A.GeochimicaetCosmo-chimicaActa,Suppl.2,pp.2265Ð2275.CambridgeMA:MIT.Godlewski,M.,Guziewicz,E.,Kopalko,K.,Lusakowska,E.,Dynowska,E.,Godlewski,M.M.,Goldys,E.M..OriginofwhitecolorlightemissioninALE-grownZnSe.JLumin,455Ð459.Gorbunov,S.V.,Zatsepin,A.F.,Pustovarov,V.A.,Cholakh,S.O.Yakovlev,V.Y..ElectronicexcitationsanddefectsinnanostructuralAlPhysSolidState,733Ð737.Gorton,N.T.,Walker,G.Burley,S.D..Experimentalanalysisofthecompositebluecathodoluminescenceemissioninquartz.JLumin,669Ð671.Gorz,H.,Bhalla,R.J.R.S.B.White,E.W..Detailedcathodoluminescencecharacterisationofcommonsilicates.Pro-ceedingofaWorkshoponSolidStateLuminescentPhenomenapp.1Ð12.Gotze,J..Materialscharacterisationbycathodolumines-cencemicroscopyandspectroscopy.InProceedingsoftheSixthInternationalCongressonAppliedMineralogyinResearch,Econ-omy,Technology,EcologyandCulture,pp.783Ð786.Gottingen,Germany:Balkema,Rotterdam.Gotze,J..Potentialofcathodoluminescencemicros-copyandspectroscopyfortheanalysisofmineralsandmateri-AnalBioanalChem,703Ð708.Gotze,J.,Habermann,D.,Neuser,R.D.Richter,D.K.High-resolutionspectrometricanalysisofrareearthelementsÑActivatedcathodoluminescenceinfeldsparminerals.ChemGeol,81Ð91.Gotze,J.,Plotze,M.,Gotte,T.,Neuser,R.D.Richter,D.K..Cathodoluminescenceandelectronparamagneticresonancestudiesofclayminerals.MineralPetrolGrant,P.R.White,S.H..Cathodoluminescenceandmicrostructureofquartzovergrowthsonquartz.ScanElectrMicrosc,789Ð794.Griscom,D.L..Defectstructureofglasses:Someoutstand-ingquestionsinregardtovitreoussilica.JNon-CrystSolidsGritsenko,B.P.Lisitsyn,V.M.SovPhysSolidStateGruber,J.B.,Zandi,B.,Lozykowski,H.J.Jadwisienczak,W.M..SpectraandenergylevelsofTbinGaN.JApplPhys,5127Ð5132.Guo,Q.X.,Hachiya,Y.,Tanaka,T.,Nishio,M.Ogawa,H..CathodoluminescencestudyofanodicnanochannelJLumin,253Ð257.Gurumurugan,K.,Hong,C.,Harp,G.R.,Jadwisienczak,W.M.Lozykowski,H.J..VisiblecathodoluminescenceofEr-dopedamorphousAlNthinfilms.ApplPhysLettGuzzi,M.,Martini,M.,Mattaini,M.,Pio,F.Spinolo,G..Luminescenceoffusedsilica:ObservationoftheOemissionband.PhysRevB,9407.Habermann,D..Quantitativecathodoluminescencespectroscopyofminerals:Possibilitiesandlimitations.MineralPetrol,247Ð259.Habermann,D.,Meijer,J.,Neuser,R.D.,Richter,D.K.,Rolfs,Stephan,A..Micro-PIXEandquantitativecathod-oluminescencespectroscopy:Combinedhighresolutiontraceelementanalysesinminerals.NuclInstrumMethodsPhysRes,SectB,470Ð477.Habermann,D.,Niklas,J.R.,Meijer,J.,Stephan,A.Gotte,T..StructuralpointdefectsinÒIcelandsparÓcalcite.NuclInstrumMethodsPhysRes,SectB,563Ð569.Hagni,R..Cathodoluminescencemicroscopyappliedtomineralexplorationandbeneficiation.InSecondInternationalCongressonAppliedMineralogy,Park,W.C.,Hausen,D.M.&Hagni,R.D.,pp.41Ð66.NewYork:AmericanInstituteofMining,MetallurgicalandPetroleumEngineers,Inc.Hagni,R.Karakus,M..Cathodoluminescencemicros-copy:Avaluabletechniqueforstudyingceramicmaterials.MaterialsResearchSocietyBulletin,54Ð59.Hanusiak,W.M.White,E.W..SEMcathodolumines-cenceforcharacterizationofdamagedandundamagedalpha-quartzinrespirabledusts.In8thAnnualScanningElectronMicroscopeSymposium,Johari,O.&Corvin,I.,pp.125Ð132.Chicago:IITResearchInstitute.Hashimoto,T.,Sakaue,S.,Aoki,H.Ichino,M..Depen-denceofTL-propertychangesofnaturalquartzesonalumin-iumcontentsaccompaniedbythermalannealingtreatment.RadiatMeas,293Ð299.Hichou,A.E.,Addou,M.,Bubendorff,J.L.,Ebothe,J.,Idrissi,B.E.Troyon,M..Microstructureandcathodolumines-cencestudyofsprayedAlandSndopedZnSthinfilms.SemicondSciTechnol,230Ð235.Hirata,G.,Perea,N.,Tejeda,M.,Gonzalez-Ortega,J.A.McKittrick,J..LuminescencestudyinEu-dopedalu-miniumoxidephosphors.OptMater,1311Ð1315.Holness,M.B.Watt,G.R..Quartzrecrystallisationandfluidflowduringcontactmetamorphism:Acathodolumines-cencestudy.Geofluids,215Ð218.LuminescenceDatabase chemistryandcrystalinformationwhentryingtodeter-minetheactivatorpresentbyobservingtheluminescenceemissionspectra. Theanalysisofluminescencespectraofionicspeciesinmineralsandmaterialscanbeenhancedbytheabilitytoinspectmajorandminorlinesintheluminescencedata-base.Understandingofthefactorsthatcontrollumines-cenceactivationandquenchinginmineralsandmaterialsisalsopossiblebystudyingshiftsinpeakpositionandinten-sitywithstructuralvariation.Thisisimportantwherenewmineralsormaterialsarebeinganalyzed.Continuingdevel-opmentsintheunderstandingoftheoriginoflinesandspectralfeatureswillaidinthequantificationoflumines-cencespectroscopy.Throughtheuseoftheluminescencedatabase,additionalinsightintothechemistrycanbegainedandbycombiningwithothertraditionalX-raymeasure-mentscollectedonthesameregion,willresultinfasterunderstandingofmineralsandmaterials.Thewealthofinformationpresentedinthisluminescencedatabaseindi-catesthatalargenumberofresearchgroupsroutinelyemployluminescenceanalysisasakeymacro-andmicro-characterizationtechniqueinthestudyofmineralsandmaterials.AsubsequentarticlewilldescribesoftwaretoolsandWebaccesstothedatabase.ItistheauthorÕsintentiontomakethedatabaseeasilyaccessibleandprovideaprocedureforexternaluserstoaddnewlinesandspectrafromminer-alsandmaterials. TheauthorswishtothankMarkPowncebyandGrahamSparrowfortheirinternalreviewingofthemanuscript.EFERENCES Anicete-Santos,M.,Orhan,E.,deMaurera,M.A.M.A.,Si-moes,L.G.P.,Souza,A.G.,Pizani,P.S.,Leite,E.R.,Varela,J.A.,Juan,A.,Beltran,A.Longo,E..Contributionofstructuralorder-disordertothegreenphotoluminescenceofPbWOPhysRevB,165105.Awazu,K.Kawazoe,H.moleculesdissolvedinsyntheticsilicaglassesandtheirphotochemicalreactionsin-ducedbyArFexcimerlaserradiation.JApplPhys,3584Ð3591.Balberg,I.Pankove,J.I..Cathodoluminescenceofmag-netite.PhysRevLett,1371Ð1374.Barbarand,J.Pagel,M..Cathodoluminescencestudyofapatitecrystals.AmMineral,473Ð484.Benstock,E.J.,Buseck,P.R.Steele,I.M..Cathodolumi-nescenceofmeteoriticandsyntheticforsteriteat296and77KusingTEM.AmMineral,310Ð315.Bhagwat,U.A.,Sastry,M.Kulkarni,S.K..Greenluminescencefromcopperdopedzincsulphidequantumparti-ApplPhysLett,2702Ð2704.Bhalla,R.J.R.S.B.White,E.W..Polarizedcathodolumi-nescenceemissionfromWillemiteSiOsinglecrys-JApplPhys,2267Ð2268.Bhalla,R.J.R.S.B.White,E.W..CathodoluminescencecharacteristicsofMn-activatedwillemiteSiOsinglecrystals.JElectrochemSoc,740Ð743.Bol,A.A.,Ferwerda,J.,Bergwerff,J.A.Meijerink,A.LuminescenceofnanocrystallineZnS:CuJLumin,325Ð334.Bulanyi,M.F.,Klimenko,V.I.,Kovalenko,A.V.Polezhaev,B.A..DefectstructureandluminescencebehaviourofZnS:Mncrystals.InorgMater,436Ð439.Burns,G.,Geiss,E.A.,Jenkins,B.A.Nathan,M.I.fluorescenceingarnetsandothercrystals.PhysRevCan,N.,Townsend,P.D.,Hole,D.E.,Snelling,H.V.,Balle-steros,J.M.Afonso,C.N..Enhancementoflumines-cencebypulselaserannealingofion-implantedeuropiuminsapphireandsilica.JApplPhys,6737Ð6744.Cesborn,F.,Blanc,P.,Ohnenstetter,D.Remond,G.Cathodoluminescenceofrareearthdopedzircons.I.Theirpossibleuseasreferencematerials.ScanningMicroscSupplChandrasekhar,B.K.White,W.B..Polarizedlumines-cencespectraofkunzite.PhysChemMiner,433Ð440.Chapoulie,R.,Bechtel,F.,Borschneck,D.,Schvoerer,M.Remond,G..Cathodoluminescenceofsomesyntheticcalcitecrystals.Investigationoftheroleplayedbycerium.ScanningMicroscSuppl,225Ð232.Chen,W.,Su,F.H.,Li,G.H.,Joly,A.G.,Malm,J.O.Bovin,J.O..TemperatureandpressuredependenciesoftheMnanddonor-acceptoremissionsinZnS:Mnnanoparticles.JApplPhys,1950Ð1955.Choi,H.W.,Jeon,C.W.,Dawson,M.D.,Edwards,P.R.,Martin,R.W.Tripathy,S..MechanismofenhancedlightoutputefficiencyinInGaN-basedmicrolightemittingdiodes.JApplPhys,5978Ð5982.Choi,S.H.,Park,C.O.,Park,H.S.,Park,S.H.K.Yunc,S.J..Cathodoluminescenceandphotoluminescenceproper-tiesofCaSthinfilmcodopedwithPbandCu.JElectrochemSoc,H184ÐH187.Crabtree,D.F..Cathodoluminescenceoftinoxidedopedwithterbium.JPhysD:ApplPhys,22Ð26.D’Almeida,T..Cathodoluminescencedesionsdeterrasraresdanslesfluoruresalcalinoterreux:utilisationcommesondelocaledetemperatureetapplications.ThesededoctoratdelÕUniversitedeReimsChampagne-Ardenne.Unpublished.Derham,C.J.,Geake,J.E.Walker,G..Luminescenceofenstatiteachondritemeteorites.Nature,134Ð136.Díaz-Guerra,C.,Piqueras,J.Cavallini,A..Time-resolvedcathodoluminescenceassessmentofdeep-leveltransi-tionsinhydride-vapor-phase-epitaxyGaN.ApplPhysLettDorenbos,P..AnomalousluminescenceofEuininorganiccompounds.JPhysCondensMatterColinM.MacRaeandNicholasC.Wilson quartzandSiOstudies,arangeoftermssuchasDefect,Non-BridgingOxygenHoleNBOHC,Oxygen,Self-TrappedExciton,andAlOhaveallbeenusedtodescribetheintrinsicluminescenceandarerecordedinthedatabase.Historically,whereamineralhashadsignificantinterestandstudy,suchasdiamond,thenothertermshavebeenintroducedtodescribetheluminescenceorigin.IndiamondtheusualdesignationofcenterintheinfraredspectraislabeledA,whiletheusualdesignationsoftheluminescenceandabsorptioncentersarelabeledH3,S3,andGR1.Thesehaveallbeenrecordedwithinthelumines-cencedatabase.Oneofthekeypointsthatluminescencedatabasedem-onstratesisthatmanyactivatorschangetheiremissionwavelengthorenergydependinguponthestructuretype,symmetry,andassociatedatom,thusreflectingthelocalcrystalfieldinformation.Forexample,theactivatorYbhasbeenstudiedinarangeofmaterials,andpeakshiftinghasbeenattributedtolocalcrystalsymmetryDorenbos,.Thisillustratestheimportanceofknowingthelocal Table2.Continued MaterialIdentificationActivationTemperatureMethodSiOonnanoSiORoomUVRoomUVRoomUVZnOÑ387,RoomSEMthinfilmSndopedÑ405RoomSEMthinfilmAldopedRoomSEMDefect430RoomSEMSelf-activatedcenter399RoomSEMÑ600RoomSEMBandgap346RoomPLRoomPLRoomSEMnanocrystalCu460RoomLRoomL4SEMRoomSEMDefect42640PLDefect433275PLDefect520RoomPLEu518RoomLRoomL275PL40PLRoomPLMn-Mnpair700,ZnSeÑ477,ÑSEMÑ459ÑUVGorbunovetal.KarakusGurumuruganetal.Manfredottietal.DorenbosKobayashietal.Linetal.Singhetal.Choietal.Odinetal.PetrovZorenkoetal.Tiginyanuetal.D’az-Guerraetal.Sunetal.Gruberetal.JadwisienczakandLozykowskiLozykowskietal.Choietal.Martinetal.Kominamietal.Anicete-Santosetal.Saparinetal.Guzzietal.SkujaandTrukhinGriscomWangetal.KoyamaSkujaetal.Nishikawaetal.Friebeleetal.Canetal.PottandMcNicolMcKnightandPalikSkujaetal.Stevens-Kalceffetal.Stevens-KalceffTohmonetal.AwazuandKawazoeMunekunietal.Skujaetal.SigelandMarroneLinetal.Linetal.Meietal.Hichouetal.Toyamaetal.Bulanyietal.Xuetal.Bhagwatetal.Boletal.Chenetal.Godlewskietal.LuminescenceDatabase Table2.Continued MaterialIdentificationActivationTemperatureMethodKBrYbRoomÑKIYbRoomÑRoomÑLiSrAlFRoomÑMgTiOOdefect410RoomUVRoomUVTiORoomUVRoomUVPbWOÑ540RoomLRbClYbRoomÑSiC-6HpolytypeAl500RoomSEMB700RoomSEMBe600RoomSEMDefect520RoomSEMSc570RoomSEMSiOIntrinsic460300UVSeealsoTable1,QuartzSirelatedcenter460ÑUVDefect636ÑUVIntrinsic451,ÑOMIntrinsic288,ÑUVIntrinsicLowOHhighOHRoomSEM873ÑGe400293UV873Ñcenter459ÑSEMImpurity415Interstitialoxygen1273,ÑUVInterstitialoxygen1278,290SEMOxygendefect282,290SEMOvacancy459RoomLÑUVNBOHC620,NBOdefect653STE470ÑUVSTE539Ñ400Ð800RoomSEMÑ649ÑSEMÑ558,ÑOMÑ310Ð620,ÑUVSrAlFRoomÑSrBRoomÑClYbRoomÑClYbRoomÑSrClRoomÑSrFRoomÑSrFBrYbRoomÑSrFClYbRoomÑMgSi:Eu,DyEuRoomPLRoomÑClYbRoomÑ-SrRoomÑSrS:CuÑ530RoomOMcontinuedColinM.MacRaeandNicholasC.Wilson Table2.LuminescenceLines,Activators,Temperature,andTechniqueforMaterials MaterialIdentificationActivationTemperatureMethodnanoceramicÑ288,RoomSEMAnionvacancies517RoomSEMRoomSEMRoomSEMAlNErRoomSEMÑ413RoomSEMBaFBrYbRoomÑBaFClYbRoomÑRoomÑRoomÑBaTiOIntrinsic465RoomSEMRoomÑCaFBrYbRoomÑRoomÑMgSiRoomÑClYbRoomÑCaSYbRoomÑCaS:AsÑ615RoomOMCaS:CuÑ475RoomOMCaS:Pb,CuCuRoomOMCaS:Pb,CuCuRoomUVSiSÑ481,LNSEMCdSÑ488,LNSEMSidopedÑ494,LNSEMCdSeÑ685,LNSEMSidopedÑ719,LNSEMCdTeÑ886RoomSEMDefect1033RoomSEMÑ789,LNSEMCdTeSidopedÑ786,LNSEMCsBrEu290OMGaPIntrinsic827RoomSEMhexagonalDonor-acceptorpair365,85SEMExciton355,85SEMNearbandedge365RoomSEM11OMmajorlines11OM11OMÑ420,RoomSEMÑ425,87SEMhexagonal411SEM411SEM411SEMInPIntrinsic886RoomSEMInGaNÑ430Ð490RoomSEMInNInGaNIntrinsic360Ð480RoomSEMcontinuedLuminescenceDatabase Table1.Continued MineralIdentificationActivationTemperatureMethodWollastoniteCrRoomLRoomLRoomLRoomSEMRoomÑZircon300ILZrSiO205SEMRoomÑRoomL205SEM205SEMRoomL300IL205SEM205SEMRoomL300ILIntrinsic230,205SEMIntrinsic590RoomÑIntrinsic590RoomL300IL205SEMSiO300ILSiORoomL205SEM205SEMRoomL205SEMZirconiaTiORoomSEMZoisiteRoomLSiORoomLRoomLRoomLGotzeetal.DorenbosPottandMcNicolGuoetal.TarashchanGaftetal.MarshallMedlinGeakeetal.MooreandKarakusLaudetal.MarianoandRingBarbarandandPagelKempeandGotzeGaftetal.PortnovandGorobetsRoederetal.MarfuninLeverenzKarakusandMooreEremenkoandKhrenovBurnsetal.Chapoulieetal.Habermannetal.WalkerandBurleyLeeetal.Masonetal.MedlinHabermannHabermannetal.Schulmanetal.CrabtreeLoferskietal.Karakusetal.PonahloHanusiakandWhiteYacobiandHoltGotzeetal.SmithDerhametal.FinchandKleinSippelandSpencerKempeetal.DÕAlmeidaBenstocketal.Walkeretal.GotzeWalkeretal.ChandrasekharandWhiteBalbergandPankoveMarianoEdgingtonandBlairTelferandWalkerVuetal.FernandezandLlopisKarakusetal.KarakusGarciaetal.Marianoetal.LuffandTownsendHolnessandWattRichteretal.Stevens-KalceffandPhillipsGrantandWhiteRemondetal.Hashimotoetal.TrukhinandPlaudisYangandMcKeeverJonesandEmbreeMcKnightandPalikItohetal.GritsenkoandLisitsynCanetal.Hirataetal.PonahloHagniWalkeretal.BhallaandWhiteFinchetal.Cesbornetal.ColinM.MacRaeandNicholasC.Wilson Table1.Continued MineralIdentificationActivationTemperatureMethodMoORoomLRoomLRoomLRoomOMRoomLRoomLRoomOMRoomLRoomOMRoomLRoomRoomLSellaiteRoomÑSmithsoniteÑ650RoomÑSodaliteRoomLRoomLRoomOMRoomOMÑSEMLiAlSiRoomLRoomXLStrontianiteRoomOMSrCORoomÑRoomOMRoomÑRoomOMRoomÑRoomOMRoomÑRoomOMSylviteKClRoomÑThoriteRoomLThSiORoomLRoomLRoomLTitaniteRoomLCaTiSiORoomLRoomLRoomLRoomLRoomLRoomLTopazRoomLSiORoomLWillemiteSiORoomSEMWitheriteRoomÑcontinuedLuminescenceDatabase Table1.Continued MineralIdentificationActivationTemperatureMethodPyropeSiORoomLPyrophylliteÑ400RoomSEMQuartzDefect380RoomSEMSiODefect470RoomSEMSeealsoTable2,SiONBOHC620Ð650,RoomSEMOxygenVacancyRoomSEMorbital420RoomSEMIntrinsic175,Intrinsic423295SEMIntrinsic477Impurity387center385Nonbridgingoxygen653AssociatedwithAl-O-AlbondsÑTLSTE477ÑUVSTE477,ÑSEMSTE56480OMSTE456,80SEMholetrap468holetrap381center290,center397295SEMExtrinsic504295SEMExtrinsic496Ñ400,ÑSEMÑ450,RoomSEMÑ505,585RoomOMÑ564RhodochrositeMnCORoomLRhodoniteRoomLRorisiteRoomÑRubyRoomLSapphireRoomSEMRoomÑRoomOMRoomSEMF-center340RoomSEMF-center415RoomÑRoomLRoomSEMScheeliteCr420Ð470RoomÑCaWORoomOMRoomLRoomLRoomOMRoomLRoomLcontinuedColinM.MacRaeandNicholasC.Wilson Table1.Continued MineralIdentificationActivationTemperatureMethodIntrinsic475RoomOMRoomOMMuscoviteKAlÑ680RoomFNacriteRoomSEMNeighboriteNaMgFRoomÑOldhamiteCeRoomOMCa,Mg,FeSMnRoomOMOligoclaseMnRoomOMNa,CaSi,AlRoomÑRoomOMOtaviteMn595RoomÑPectoliteMnRoomLNaCaRoomLPegmatiteApatiteOH,F,ClRoomÑPericlaseCrRoomOMMgOCrRoomSEMRoomOMRoomSEMRoomUVIntrinsic526,RoomOMIntrinsic450RoomSEMFcenter520RoomSEMcenter390RoomSEMLatticedefect400Ð500RoomOMRoomOMRoomSEMPhononassisted790,LNSEMZerophonon588RoomOMRoomSEMPlagioclaseCuRoomÑNa,CaRoomOMÑ420RoomÑRoomÑRoomOMRoomXLRoomÑRoomÑPyrochloreDyRoomLCa,NaRoomLPyromorphiteCeRoomLClEuRoomLRoomLRoomLcontinuedLuminescenceDatabase Table1.Continued MineralIdentificationActivationTemperatureMethodÑ410,296TEMÑ693,LNTEMFrancoliteRoomL,COLNLRoomLGarnetRoomLRoomLRoomLHaliteAg249RoomÑNaClCu358RoomÑRoomÑHardystoniteRoomLZnSiRoomLRoomLRoomLRoomLRoomLHiboniteRoomOMCa,CeAl,Ti,MgRoomOMRoomOMHydroxylapatiteIntrinsic420RoomSEMRoomSEMHydrozinciteRoomLRoomLJadeiteAl,FeRoomÑKaoliniteRoomSEMRoomSEMKunziteLiAlSiRoomLKyaniteRoomLSiORoomOMLabradoriteRoomOMCa,NaSi,AlRoomOMRoomOMLeucophaneRoomLNaCaBeFDyRoomLRoomLRoomLRoomLRoomLRoomLMagnesiteIntrinsicRoomOMRoomOMRoomÑMagnetiteIntrinsic387,RoomOMMonticelliteSmRoomOMÑ525RoomÑMulliteCrRoomOMRoomOMcontinuedColinM.MacRaeandNicholasC.Wilson Table1.Continued MineralIdentificationActivationTemperatureMethodIntrinsic430120SEMRoomSEMRoomLIntrinsicRoomSEMRoomLRoomLÑ450,RoomÑFluoriteRoomSEMRoomLRoomSEMRoomLRoomSEMRoomLÑSEMÑSEMRoomSEMRoomLRoomOMSm595RoomLinCasite622RoomLinCasite573,RoomLFe425RoomÑRoomSEMRoomLRoomÑRoomLRoomÑIr405RoomÑMcenter725,RoomLRoomXLRoomLRoomÑRoomÑRoomLRoomSEMRoomLRoomÑSm567,RoomÑRoomLRoomÑRoomLRoomÑRoomÑRoomÑRoomÑÑ407,RoomÑFluoroapatiteEuRoomOMFEuRoomOMRoomÑForsterite296TEMSiOLNTEMLatticedefect428,RoomOMRoomOMRoomTEM20SEMcontinuedLuminescenceDatabase Table1.Continued MineralIdentificationActivationTemperatureMethodCristobaliteIntrinsic450RoomOMSiOIntrinsic445173ÑDanburiteCeRoomLSiORoomXLRoomLRoomLRoomXLDatoliteCeRoomLSiORoomXLRoomLRoomLRoomLRoomÑDiamondBandA443Ð517RoomSEMCDislocation439.7RoomSEMDislocation42589SEMN388.9RoomSEMNeutralvacancy740.2RoomSEMAcenter452RoomLH3center520RoomLIntrinsic380Ð600,RoomLS3center519RoomLGR1center794LNLDiasporeRoomLDickiteRoomSEMDiopsideMn585,RoomÑTi415RoomÑDolomiteMnRoomSEMinCasiteRoomSEMinMgsiteRoomSEMRoomSEMÑ640,RoomÑEnstatiteMnRoomÑMgSiOÑ400,RoomILEsperiteCeRoomLSiORoomLFeldsparAl-O-Al380Ð500RoomSEMK,NaRoomLCo430RoomÑRoomÑRoomÑRoomLRoomLRoomÑRoomLRoomLRoomSEMRoomLRoomSEMRoomÑRoomLcontinuedColinM.MacRaeandNicholasC.Wilson Table1.Continued MineralIdentificationActivationTemperatureMethodBoehmiteRoomLCalciteCeRoomLLNSEMRoomSEMRoomSEMRoomLRoomLinCasite618RoomLinCasite575RoomLRoomSEMRoomSEMRoomLRoomUVRoomXLRoomÑRoomLRoomSEMRoomLIntrinsic400RoomSEMRoomSEMRoomLRoomLDefectcenter520RoomOMIntrinsic420,RoomÑÑ545,RoomSEMÑ580LNSEMÑ578RoomSEMÑ670RoomUVÑ605RoomÑCassiteriteIntrinsic475RoomLSnORoomOMSrSORoomÑChalcociteCd90SEMSIntrinsic90SEMCharoiteCeRoomLNaCaF.3HOEuRoomLChlorapatiteRoomÑCollophaneDyRoomOMOH,F,ClRoomOMRoomOMRoomOMChrysoberylBeAlRoomOMColquiriteRoomÑCorundumCrRoomOMIntrinsic400Ð450,RoomOMcontinuedLuminescenceDatabase Table1.Continued MineralIdentificationActivationTemperatureMethodRoomSEMIntrinsic345,RoomSEMRoomSEMRoomOMRoomLRoomXLRoomÑRoomLinCasite569RoomLinCasite583RoomLRoomLRoomOMRoomLLNLsitesiteRoomLRoomSEMRoomÑRoomLRoomSEMRoomÑinCasitewithDyRoomLinCasite545RoomLRoomLRoomLLNLRoomLApophylliteRoomLKCaF.8HRoomLRoomLAragoniteRoomTLRoomÑBaddeleyiteAnion-vacancy500RoomOMRoomUVLNUVRoomLRoomUVRoomLBariteRoomLRoomLRoomLRoomLRoomLRoomLRoomÑBenitoiteRoomLBaTiSiTiORoomLBerylRoomÑBeAlRoomLRoomÑRoomÑRoomÑRoomLcontinuedColinM.MacRaeandNicholasC.Wilson Table1.LuminescenceLines,Activators,TemperatureandTechniqueforMinerals MineralIdentificationActivationTemperatureMethodAlbiteDyRoomSEMNaAlSiRoomSEMRoomSEMRoomSEMAlforsiteRoomÑ873Ñ873ÑÑ443RoomSEMAmazoniteKAlSiRoomÑAnhydriteRoomLRoomÑRoomLRoomLRoomLRoomLRoomÑRoomLRoomLRoomLRoomÑRoomLRoomLRoomÑAnorthiteRoomÑRoomÑRoomOMRoomOMRoomOMRoomÑRoomÑRoomOMApatiteRoomSEMRoomLRoomÑsite360RoomLsite430RoomSEMRoomLRoomÑRoomSEMRoomLRoomSEMRoomLRoomOMRoomUVRoomÑRoomSEMRoomLinCasite589,RoomLinCasite574,LNLcontinuedLuminescenceDatabase excitedtothegroundstate.Somesampleswillshowanincreaseinintensitywithdecreasingtemperature.Whilepeaksshapesarenarroweratlowertemperatures,theycanalsoshiftwithtemperatureLozykowskietal.,1999.Theluminescencedecaytimecanalsoalteratlowtemperatures;forexample,incalcitetheMnpeakhasameasurablyshorterdecaytimeatlowertemperatureMasonetal.,Temperatureisnottheonlymechanismthatcanaffectpositionsandintensitiesofluminescentlines.Somecathod-oluminescencemeasurementsperformedusingintenseelec-tronbeamscancausedisruptionwithinthemineralormaterialbysuchprocessesasheating,sputtering,orionmigration.Thesedisruptionscanleadtomodifiedspectraandsometimestorapiddecreasesinintensitywithtimeofbombardment.Somespectramayhavebeencollectedwithlongdwelltimesleadingtotherecordingofonlytheslowdecayprocessesasthefasteroneshavebeenextinguished.SpectracollectedonbeamsensitivematerialscanbedoneroutinelywithautomatedcollectionsystemsLeeetal.,2005;MacRaeetal.,2005COPEOFTHE Theluminescencedatabaseencompassesanextensiverangeoflinesfrommineralsandmaterialsthathavebeenre-portedintheliterature.Previously,anumberofsmallertableshavebeenconstructedbuttheseusuallyfocusedonspecificmineralsormaterialsMarshall,1988;Yacobi&Holt,1990;Stevens-Kalceff&Phillips,1995;Pageletal.,2000;Gaftetal.,2005.Whilethedatabasepresentedhereisnotexhaustive,itnonethelessprovidesapowerfulresource.Thelinesinthedatabasearelistedasgiveninthecitedpublicationsand,whenreported,thefullwidthathalfmaximumofthepeakhasalsobeenlistedinbracketsaftertheline.Inaddition,forpublicationsthatdidnotreporttheFWHMbutgavespectra,wehavemeasuredandincludeditwherepossible.Effectsnotrecordedinthedatabasebutthatmaymodifytheluminescencespectraincludeluminescentde-cay,polarization,andtemperature.Whiletheseallprovideadditionalinformationaboutthematerial,theyareoutsidethescopeofthedatabase,whichisaimingtoprovideonlyaninitialidentificationoftheline.Ingeneral,thesamplesanalyzedbycathodolumines-cenceinthisdatabasewerecarbon-coatedpolishedsections.Itisworthnotingthatthesecarbonfilmshavetheabilitytochangeintensityofcathodoluminescencepeaks.Further,thetypesofopticalcomponentssuchasmirrors,lenses,fibers,andopticalspectrometersemployedtomeasuremanyoftheluminescencespectrawerenotnecessarilycorrectedfortheiropticalresponse,andthiscanleadtoshiftsinthemaximumintensityofpeaksandtheirshape.ErrorsindetectionofluminescenceforUVemittingmaterialsmayalsohaveariseninsomemeasurementsduetotheuseofglassinmanyolderstylespectrometersystems.GlasshasstrongabsorptionofUV,andemissionlowerthan350nmisdifficulttoobserve. Theluminescencedatabaseisstructuredtoprovidelumi-nescenceinformationonanextensivelistofmineralsTable1andnonmineralsTable2.Informationprovidedincludestheparticularelementalormolecularactivatorioniccharge,experimentaltemperature,techniqueem-ployedtomeasuretheluminescence,andtheassociatedreference.Adeterminationofthelineintensity,wherepossible,hasalsobeenmadetoaidintheinterpretationofluminescencespectra,withmajorlineslistedinbold.WhenavailabletheFWHMofthelinehasbeenincluded;however,ifthelineisnonsymmetric,ameasureofthebandwidthisrecorded.Inallcasesthereferencetothelineorbandisincluded,whichinmostcasescontainsoriginalspectraandfurtherinterpretation.Whereverpossibleanumberoflu-minescencetechniquesphotoluminescence,cathodolumi-nescence,ion-luminescence,thermalluminescence,andprotonluminescencehavebeenincludedforeachmineralandmaterialtoprovidetheresearcherwitharangeoftechniquesofferingdifferingsensitivitiesandresolutions.Thisshouldaidinthedeterminationofcrystalfieldinfor-mationregardingthecoordinationoftheactivatoranditsioniccharge.Thisisparticularlyimportantwherequantita-tivespectroscopicluminescencestudiesarebeingunder-takenHabermann,2002.Inaddition,theinstrumentaltechniqueusedtoexcitetheluminescenceisrecorded,whereknown.Forexample,cathodoluminescencehasbeencategorizedintoscanningelectronmicroscopy,opti-calmicroscope,transmissionelectronmicroscope,whilephotoluminescencehasbeendividedtoUV,laserinduced,photoluminescence.Othermethodsrecordedarethermalluminescence,protonorionluminescence,andX-rayexcitedluminescenceWhereemissionisknowntobecathodoluminescenceinoriginbutunknowninstrumentally,ithasbeenlistedasOMcathodoluminescence;similarlywherethephotolumi-nescenceisunknownindetail,itislistedsimplyasphotoluminescence.Wheresitespecificinformationaboutthelocationoftheionicspeciesisdescribed,ithasbeenincluded.Forexample,berylcanbeactivatedbyCrintwospecificsitesandthesegiverisetodifferentlinesSimilarlyEuincalcitecansitinoneoftwoCasitesreferredtoasCaandCagivingrisetodifferentpeakpositions.Wheretheactivatorisnotsimplyanionicspeciesbutaformofintrinsicexcita-tion,thenadditionalinformationabouttheoriginoftheluminescencehasbeenincludedwhereitiscommonlyemployed,e.g.,quartzactivators.InthewidenumberofColinM.MacRaeandNicholasC.Wilson leveldopantsandtheirvalence,thehostlattice,andquench-ingions.Thissensitivityresultsinluminescenceprovidingextremelyusefulcharacterizationinformation,butitsinter-pretationismoredifficultthanthatofcharacteristicX-rays.DopantIonsMineralsandmaterialsoftencontainopticallyactivedop-antsions.Generallythereareconsideredtobethreetypesofdopantionsthatinfluenceanddeterminethenetemissionofaparticularmineral.Theyarereferredtoasactivators,sensitizers,orquenchers.Activatorsproduceemissionbyreleasingtheabsorbedenergyasphotons.Themostcom-monactivatorsaretransitionmetalionssuchasCr,Mn,Sn,Pb,FeGotze,2002,andrareearthMarfunin,1979.Sensitizersareionsthatworkincombinationwithanactivatorbyabsorbingtheenergyandsubsequentlytransferringtheenergytotheactivator.Quench-erstrappartoralloftheabsorbedenergyresultinginnonradiativedecayoftheenergy.Asaresult,quencherstendtoeliminatetheemissionoflightfromminerals.Thepresenceofthequenchercausesnewcloselyspacedenergylevelstobesetup,andtheelectroncaneasilyreturntothegroundstatewiththeemissionofasuccessionoflow-energyphotonsorbylosingenergytothelatticeasheatMarshall,1988.Anexampleofawell-recognizedquencherioninmineralsisFeTypesofEmissionLuminescenceemissionisgenerallygroupedintotwotypes:intrinsicandextrinsic.Intrinsicluminescenceisnativetohostmaterialsandinvolvesband-to-bandrecombinationofelectronandholepairs.Intrinsicluminescenceemissionmayalsobeassociatedwithlatticedefectsanionvacancieswithinthemineralsormaterial.ThistypeofluminescenceisalsoreferredtoasÒdefectcenterÓluminescence.Thesecondtypeofemission,referredtoasextrinsic,isthemostcommonformofluminescence.Extrinsicemissionisattrib-utedtothepresenceoftraceelementimpurities,transitionmetal,andrareearthions.ThistypeofluminescenceisreferredtoasanÒimpuritycenter.ÓTheemissionprocessinvolvesanelectronictransitionfromanexcitedstatetoalowerenergylevelorgroundstate.Whenanelectronbeaminteractswithasurfaceandproduceslight,thisprocessisknownascathodolumi-nescence.Similarly,anionbeaminteractingwithasurfaceandproducinglightisoftenreferredtoasionluminescence.Emissionoccurringwhenaphotonbeaminteractswithasurfaceisreferredtoasphotoluminescence,andforX-raybeamstheprocessisreferredtoasroentgenoluminescence.Cathodo-andphoto-luminescencearethemosteffectivemethodsofobservingtheglowofminerals,roentgenoluminescenceandionluminescenceplay-ingalesserrole.Thecathodoluminescenceacquiresaddi-tionalimportanceinconnectionwiththeuseofX-raymicroanalyzerinwhichanelectronprobeinducestheglowofluminescentmineralsandsyntheticmaterialsPageletal.,2000;MacRae&Miller,2003GenerationofLuminescenceCathodoluminescencecanbeobservedwithavarietyofelectronbeaminstrumentsPetrov,1996.OnesimpletypeofinstrumentistheelectronbeamfloodgunthatmountsdirectlyontotheopticalstageofapetrographicmicroscopeMarshall,1988.Anotherapproachistomountaspectrom-eterontoascanningelectronmicroscope.Thistypicallycollectslightwithamirrorthatisusuallyonaretractablearm,andthelightismeasuredusingagrating-typespec-trometerKatonaetal.,2004;Vernon-Parryetal.,2005morerecentapproachistointegratecathodoluminescencecaptureintoanelectronprobemicroanalyzerusingtheexistingcollectionopticsandtoemployanopticfibercoupledtoaCCDspectrometertomeasurethelumines-cenceMacRaeetal.,2001,2005;Edwardsetal.,2003.Allthesecollectionsystemsmeasurecathodoluminescencewithdifferinglateralandspectroscopicresolutions.Theyeachhavetheirownbenefitsandvirtues.Photoluminescencespectracanbeinducedbymono-chromaticlightinthebandoftheionabsorptionorbymeansofUVradiationwithaspectrumnecessarytoexcitetheionabsorptionbands.Ultravioletradiationisnecessarytoexcitetheionuptoenergylevelslyingabovetheemissionlevel,whichisusuallyinthevisibletonearIRregionMarfunin,1979OtherEffectsLuminescencelifetimeordecaytimecanprovideinforma-tiononthenatureofthecenterandisameasureofthetransitionprobabilityfromtheemittingstate.Thetransi-tionprobabilityisuniqueforeachcenterandthereforecanbeusedtodifferentiatecenters.Time-resolvedluminescencespectrahavebeenstudiedusingpulsedorchoppedelectronorlaser-inducedexcitationandlockinamplifierscoupledtospectrometerstomeasurethedecayspectraGortonetal.,1997;Pageletal.,2000;Edwardsetal.,2003;Meranoetal.,2005Polarizedluminescencehasbeenobservedwithcathod-oluminescence,andthiscanenhancedifferentiationofmineralsandmaterialsandoffersinformationaboutsitesymmetriesoftheluminescencecentersGorzetal.,1970;Chandrasekhar&White,1992.Thedatabasedoesnotindicatewhethermineralsormaterialshavepolarizedemis-sion.Onlyafewstudieshaveconsideredthiseffect;forexample,informationonpolarizationhasbeenstudiedinsilicatesBhalla&White,1970,1972;Gorzetal.,1970;Chandrasekhar&White,1992;Remondetal.,2000,andKiflawi&Lang,1974Theintensityofluminescencevariesasafunctionofsampletemperature.Typically,temperaturequenchingoftheluminescencearisesathightemperaturebecauseoftheincreasedprobabilityofnonradiativetransitionfromtheLuminescenceDatabase ©MICROSCOPYSOCIETYOFAMERICA2008 CharacteristicX-raylinesresultfromcoreleveltransitions,whilethegenerationmechanismforluminescenceismorecomplex.CharacteristicX-raysarelargelyunaffectedbybondingasthecoreorbitalsdonottakepartandthereforeaparticularelementaltransitionisindependentofthehostlattice.However,theluminescenceemissionissensitivetomaterialcompositionandstructureofthehostlattice,be-causeitoriginatesfromeffectssuchasconductiontova- Mineralsandmaterialscanluminescencewhentheyareexposedtoanelectron,X-ray,ion,orphotonbeam.Lumi-nescenceisgenerallyassociatedwithlightintheultraviolettoinfrared LuminescenceDatabaseI—MineralsandMaterialsColinM.MacRae*andNicholasC.WilsonCSIROMinerals,MicrobeamLaboratory,BayviewAvenue,Clayton,Victoria3168,AustraliaAbstract:Aluminescencedatabaseformineralsandmaterialshasbeencompliedfromtheliterature,theaimbeingtocreatearesourcethatwillaidintheanalysisofluminescencespectralofionicspeciesinmineralsandmaterials.Thedatabaseisbasedonarangeofexcitationtechniquesandrecordsbothmajorandminorlines,andtheiractivators.Theluminescencetechniquesincludedinthedatabasearecathodoluminescence,ion

Related Contents


Next Show more