/
Chapter3Radiatingsystemsinfreespacewavesarealwaysgeneratedbytemporalch Chapter3Radiatingsystemsinfreespacewavesarealwaysgeneratedbytemporalch

Chapter3Radiatingsystemsinfreespacewavesarealwaysgeneratedbytemporalch - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
361 views
Uploaded On 2015-10-02

Chapter3Radiatingsystemsinfreespacewavesarealwaysgeneratedbytemporalch - PPT Presentation

4ZJr0jr 18CHAPTER3RADIATINGSYSTEMSINFREESPACEintothreedi erentregionsnearstaticzonedrintermediateinductionzonedrfarradiationzonedrForthenearzonetheexponentialintheintegraloft ID: 147840

4ZJ(r0;!)jr 18CHAPTER3.RADIATINGSYSTEMSINFREESPACEintothreedi erentregions:near(static)zone:drintermediate(induction)zone:drfar(radiation)zone:drForthenearzonetheexponentialintheintegraloft

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chapter3Radiatingsystemsinfreespacewaves..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chapter3Radiatingsystemsinfreespacewavesarealwaysgeneratedbytemporalchangesofchargeandcurrentdistributions.Thischapterdealswiththeprimary eldsofsuchsources,i.e.therearenoboundariesb 4ZJ(r0;!)jr 18CHAPTER3.RADIATINGSYSTEMSINFREESPACEintothreedi erentregions:near(static)zone:drintermediate(induction)zone:drfar(radiation)zone:drForthenearzonetheexponentialintheintegralofthevectorpotentialcanbereplacedbyunity.Consequently,apartfromtheharmonictimedependence,thespatialbehaviourofthevectorpotentialisidenticaltothestaticcase,andcanbeexpandedintoaseriesofsphericalharmonics:A(r)=Xl;mClmYlm(;)rl+1(3.2)Inthefarzonekr1,sotheexponentialtermintheintegraloscillatesrapidly.Thedistancejrr0jcanbereplacedbyjrr0jrnr0,wheren=r=r.ThevectorpotentialisnowA(r)=0eikr4rZJ(r0;!)eiknr0d3r0(3.3)Ifthesourcedimensionsaresmallcomparedtothewavelengththenitisreasonabletoexpandthisexpressionintoapowerserieswithrespecttok:A(r)=0eikr4r1Xm=0(ik)mm!ZJ(r0)(nr0)md3r0(3.4)SotheleadingbehaviourisAeikr=r.Thisisasphericalwavewithanangulardependentcoecient.Itisanexercisetoshowthatthe eldsaretransversetorandfallo as1=r,correspondingtoradiation elds.Theintermediateregionisdicult,sincetheapproximationsmadeabovearenotpossible.Leavingmathematicaldetailsasanexercise,wegivetheresulteikjrr0j4jrr0j=ik1Xl=0jl(kr)h(1)(kr�)lXm=lYlm(0;0)Ylm(;)(3.5)wherejlandh(1)laresphericalBesselandHankelfunctions,respectively,andr=min(r;r0);r�=max(r;r0).Thentheexpansionofthevectorpotential,validforallroutsidethesource,isA(r)=i0kXl;mh(1)l(kr)Ylm(;)ZJ(r0)jl(kr0)Ylm(0;0)d3r0(3.6)Themathematicalusefulnessofthisexpansionistheexplicitseparationoftheobservationandthesourcepointsinsphericalcoordinates. 3.1.MULTIPOLEEXPANSIONOFTHEVECTORPOTENTIAL193.1.1Electricdipole eldConsiderthe0thtermofEq.3.4:A(r)=0eikr4rZJ(r0)d3r0(3.7)RememberingthecontinuityequationrJ=i!andtakingintoaccountthatJisnon-zeroonlyina nitevolume,weobtainbyintegrationbypartsA(r)=i!0eikr4rZr(r)d3r(3.8)Usingthede nitionoftheelectricdipolemomentfromelectrostatics(p=Rr(r)d3r),thiscanbewrittenasA(r)=i!0eikr4rp(3.9)AninspectionofEq.3.6showsthatthisistheexactformofthe rsttermeverywhereoutsidethesource,notonlyinthefarregion.Anexerciseistocalculatethe eldsB(r)=k2(np)0ceikr4r(11ikr)(3.10)E(r)=k2(np)neikr40r+(3n(np)p)(1r3ikr2)eikr40wheren=r=r.Atthestaticlimit,themagnetic eldvanishesandtheelec-tric eldtakesitsfamiliarstaticdipoleform.Inthefarzone,theradiation eldsareB(r)=k2(np)0ceikr4rE(r)=cBn(3.11)The eldsaretransversetotheradiusvectorfromthesourcetotheobser-vationpoint,andtheyarealsotransversetoeachother,andjEj=cjBj.TheradiatedpoweriscalculatedusingthePoyntingvector.Themean-ingfulquantityisthetime-average,whichfortheharmonictime-dependenceleadstothepowerpersolidangledPradd\n=120Re(r2nEB)=0c3k4322jnpj2(3.12)ThetotalpowerisPrad=0c3k412jpj2(3.13) 20CHAPTER3.RADIATINGSYSTEMSINFREESPACE3.1.2Magneticdipole eldThenexttermofthemultipoleexpansionisA(r)=0eikr4r(1rik)ZJ(r0)nr0d3r0(3.14)whichisvalideverywhereoutsidethesourceregion.Itisusefultoseparatetheintegrandintosymmetricandantisymmetricpartswithrespecttor0andJ:(nr0)J=12[(nr0)J+(nJ)r0]+12(r0J)n(3.15)AnexerciseistoshowthatA(r)=i0keikr4r(11ikr)nm0ck2eikr8r(11ikr)Zr0(nr0)(r0)d3r0(3.16)wheremisthemagneticdipolemomentofthecurrentsystem:m=12ZrJ(r)d3r(3.17)The rsttermofthevectorpotentialhasthesameformasthemagnetic eldoftheelectricdipole eldintheprevioussubsection.Sothe eldsareobtainedfromthe eldsoftheprevioussubsectionleadingtoE(r)=k2(nm)0ceikr4r(11ikr)B(r)=k2(nm)neikr40cr+(3n(nm)m)(1r3ikr2)eikr40cr(3.18)Thesecondtermofthevectorpotentialismorecomplicated.Sincetheintegralinvolvessecondmomentsofthechargedensity,thistermcorre-spondstoanelectricquadrupole.Wewillnotstudyitfurther,andwealsoneglectallhighermultipolesforwhichthepresenttechniqueiste-dious.Agenerallymorepowerfulmethoddealswithvectormultipole elds(Sect.3.3).3.2ExamplesofradiatingsystemsTheprevioussectionwassomewhatabstractinconsideringthemultipoleexpansionofthevectorpotentialandrelated elds.Nowwepresentsomesimpleconcreteradiatingsystems. 3.2.EXAMPLESOFRADIATINGSYSTEMS21qÐqxyzL/2ÐL/2Figure3.1:Simpledipoleantenna.3.2.1RadiatingdipoleantennaConsideranelectricdipoleconsistingoftwosmallspheresinthezaxisatpointsz=L=2(Fig.3.1).Theyareconnectedbyawirewhosecapacitanceisnegligible.Ifthechargeoftheuppersphereisq(t)thenthechargeoftheloweroneisq(t).ConservationofchargeyieldsthecurrentdensityJ(r;t)=I(t)(x)(y)(L=2z)(z+L=2)ez(3.19)whereI=+dq=dt.ThevectorpotentialhasonlythezcomponentAz(r;t)=04ZL=2L=2I(tjrz0ezj=c)jrz0ezjdz0(3.20)Beforecontinuing,thereadershouldthinkqualitatively,whichcomponentsthe eldhas.Althoughthisisdynamicsystem,impressionsfromelectro-andmagnetostaticsarequiteusefulinthiscase.Atalargedistances(rL)wecanapproximatejrz0ezj=(r22z0ezr+z02)1=2rz0cos(3.21)whereistheanglebetweentheradiusvectorroftheobservationpointandthezaxis.Inthedenominatorofthevectorpotential,z0coscanbeignoredatlargedistances.Intheretardationtermitisnegligibleifz0cos=cissmallcomparedtothetimescaleofthecurrent,forexample,totheperiodTofaharmonicallyvaryingcurrent.Sincez0cosL=2,wecanomitz0cos=conlyifL=2cT=(3.22)IfthisisthecasethenatlargedistancesAz(r;t)=04LrI(tr=c)(3.23) 22CHAPTER3.RADIATINGSYSTEMSINFREESPACEThesimplestwaytodeterminethescalarpotentialistoapplytheLorenzgaugerA+1c2@'@t=0(3.24)yielding@'@t=L40@@z1rI(tr=c)(3.25)=L40zr3I(tr=c)+zr2cI0(tr=c)whereI0referstodi erentiationofIwithrespecttotr=c.OntheotherhandI=+q0,so'(r;t)=L40zr2q(tr=c)r+I(tr=c)c(3.26)Consideraharmonicallyoscillatingdipoleq(tr=c)=q0cos!(tr=c)I(tr=c)=I0sin!(tr=c)=!q0sin!(tr=c)(3.27)InsphericalcoordinatesAr=04I0Lrcossin!(tr=c)A=04I0Lrsinsin!(tr=c)(3.28)A=0Themagnetic eldB=rAhasnowonlyacomponentB=04I0Lrsin!ccos!(tr=c)+1rsin!(tr=c)(3.29)Thecomponentsoftheelectric eldE=@A=@tr'areEr=2I0Lcos40sin!(tr=c)r2ccos!(tr=c)!r3E=I0Lsin401!r3!rc2cos!(tr=c)1r2csin!(tr=c)E=0(3.30)ItiseasytoshowthatatlargedistancesE=cBer.TheradialcomponentofthePoyntingvectorexpressesthepowerradi-atedperaunitsolidangle:dPd\n=R2EB=0=120c(I0L!4c)2sin2cos2!(tR=c)(3.31) 3.2.EXAMPLESOFRADIATINGSYSTEMS23Integrationoverasphericalsurfaceyieldsthetotalradiatedpower:P=ISnda=10R2Z0EB2sind(3.32)WhenR!1,onlytheradiation eldsproportionalto1=rcontribute,soPrad=ISnda=(I0L)260!2c3cos2!(tR=c)(3.33)Thisistheinstantaneousradiatedpower.IntegrationovertheperiodT=2=!providestheaveragepower,whichisgenerallyamorerelevantquan-tity:hPavei=L2!260c3I202=23r00L2I202(3.34)ThisisanalogoustotheaveragepowerRI20=2dissipatedinanACcircuitwhoseresistanceisRandcurrentI0cos!t.Soitismeaningfultode netheradiationresistanceRr=23r00L2789L2\n(3.35)Amagneticdipoleisanalysedinthesameway.Itcanbemodelledasacircularloopcarryingatime-harmoniccurrentI0cos!t.Thedipolevectorisperpendiculartotheplaneoftheloop.Becausethecurrenthasonlythecomponent,theonlynon-zerocomponentofthevectorpotentialisA(r;t)=0I0a4Z20cos!(tjrr0j=c)jrr0jcosd(3.36)whereaistheradiusoftheloop.Thedipoleapproximationpresumesthatraand!ac.Therestofthecalculationisleftasanexercise.Adi erencetoanelectricdipoleisthattheelectric eldisnowtangentialtoanysphericalsurfacecenteredatthecurrentloop.3.2.2HalfwavelengthantennaTheresultobtainedintheprevioussectiondoesnotyieldthecorrectradia-tionpowerofatrueradioantenna,becauseanantennaisusuallynotshortcomparedtothewavelength,andthecurrentistypicallyfedintothecentre,nottotheends.Consideranantennawhoselengthisexactlyequaltoahalfwavelength.Thisisarealisticexample,sinceforexample,thewavelengthofa100MHzwaveis3m.Theantennacanbeformallyconstructedofin nitesimaldipoles 24CHAPTER3.RADIATINGSYSTEMSINFREESPACEconsideredintheprevioussection.Assumethattheantennaisinthez-axisin(=4;+=4)andthatitscurrentisI(z0;t)=I0sin!tcos2z0(3.37)Thisiszeroatbothends.Theelementatz0producesaradiationelectric eldwhose-componentisdE=I0sin40Rc2!cos!(tR=c)cos2z0dz0(3.38)HereRisthedistancefromdz0totheobservationpoint,andtermsoftheorderof1=R2areignored.Thecomponentofthemagnetic eldisdB=04I0!Rcsincos!(tR=c)cos2z0dz0(3.39)Togetthetotal eldsEandB,wemustcalculatetheintegralK=Z=2=21Rcos!(tR=c)cosudu(3.40)whereu=2z0=.Again,R=rz0cosandatlargerwecanreplace1=Rby1=r.Thecosinetermrequiresmorecare:K1rZ=2=2cos[!(tr=c)+ucos]cosudu(3.41)ThisisequaltoK=1rRe(ei!(tr=c)Z=2=2eiucoscosudu)yieldingK=2rcos!(tr=c)cos[(=2)cos]sin2(3.42)Substitutingthisgivesthe eldsE=I020rccos!(tr=c)cos[(=2)cos]sin(3.43)B=0I02rcos!(tr=c)cos[(=2)cos]sin(3.44)Anexerciseistocalculatethetime-averagedradiatedpower:hPi=14r00I20Z0cos2[(=2)cos]sin2sind(3.45)Theintegralisapproximately1,219,sotheradiatingpowerofahalf-wave-lengthantennaishPi73\nI202(3.46) 3.2.EXAMPLESOFRADIATINGSYSTEMS253.2.3Centre-fedlinearantennaThethirdexampleisathinlinearantennaoflengthdexcitedbyacoaxialcableacrossasmallgapatitsmidpoint.ThecurrentdensityisJ(r)=Isin(kd=2kjzj)(jzjd=2)(x)(y)ez(3.47)andthetime-dependenceisagainharmonic.Thevectorpotentialinthefarzone(kr1)isaccordingtoEq.3.3A(r)=0Ieikr4rZd=2d=2sin(kd=2kjzj)eikzcosdzez(3.48)resultinginA(r)=0Ieikr2krcos(kd2cos)cos(kd2)sin2ez(3.49)Anexerciseistocalculatethetime-averagedradiationpowerperunitsolidangle:dPd\n=I2820cjcos(kd2cos)cos(kd2)sinj2(3.50)3.2.4RadiationduetoamovingchargedparticleTheelectromagnetic eldduetoamovingchargedparticleisfamiliarfromthecourseofelectrodynamics.Wegiveashortoverviewoftheresultshere.Thechargeandcurrentdensitiesofachargedparticleare(r;t)=q(rrq(t))(3.51)J(r;t)=q_rq(t)(rrq(t))(3.52)AstraightforwardwayistosolvetheinhomogeneouswaveequationsofthevectorandscalarpotentialsintheLorenzgaugeusingthemethodofGreen'sfunctions.Thepotentialsare'(r;t)=q401(1n )Rret=q401RR ret(3.53)A(r;t)=q40c (1n )Rret=q40c RR ret(3.54)whereR=rrq,n=R=Rand =v=c.Thesubscriptretreferstotheevaluationoftheexpressionsattheretardedtimet0de nedbyt0+jrrq(t0)j=c=t(3.55) 26CHAPTER3.RADIATINGSYSTEMSINFREESPACETheobservermeasuresthe eldsatrattimet.Atediousdi erentiationyieldstheelectric eldE(r;t)=q40"(1 2)(RR )+R((RR )_ )=c(R R)3#ret(3.56)andthemagnetic eldB(r;t)=1cRRretE(r;t)(3.57)Theelectric eldisbasicallyasumofaCoulomb eldanda eldduetoaccelerationoftheparticle.Theformerisofnofurtherinteresthere,sinceitsPoynting\ruxvanishesatin nity.Thelattertermistheradiation eldvanishingas1=R.SothecorrespondingPoynting\ruxremains niteatin nity.Inotherwords,radiationcarriesthe eldenergy(andmomentumandangularmomentum)awayfromtheparticle.Theradiation eldsofaslowlymovingparticle( 1)areErad(r;t)=q40c2n(n_v)=R(3.58)Brad(r;t)=1cRRE=q40c3_vn=R(3.59)Poynting'svectorisS=10EradBrad=q21620c3jR_vj2R5R(3.60)Thisbehavesas1=R2,sothePoynting\ruxdoesnotvanish.Theradiationpowerperunitsolidangled\nisdPd\n=q2_v21620c3sin2(3.61)whereistheanglebetween_vandn.Integrationyieldsthetotalpower(Larmor'sformula)P=q2_v260c3(3.62)Forparticlesmovingathighvelocities,thedi erencebetweentandt0issigni cant.Theradiatedenergyduringtheintervalt1=t0+R(t01)=c:::t2=t02+R(t02)=cisW=Zt2t1[Sn]retdt=Zt0t01Sndtdt0dt0(3.63) 3.2.EXAMPLESOFRADIATINGSYSTEMS27Itismeaningfultode nethepowerradiatedperunitareaintermsofthecharge'sowntime:Sndt=dt0=Sn(1n ).ThepowerradiatedperunitsolidangleisthenobtainedinastraightforwardmannerusingPoynting'svectorresultingindP(t0)d\n=q21620c n((n )_ ) 2(1n )5(3.64)Tointerpretthis,wemayimaginethattheparticleisacceleratedonlyforashortintervalduringwhichthevelocityandaccelerationvectorsremainnearlyconstant.IfwearefarawaysothatnandRdonotpracticallychangeduringtheaccelerationintervalthenthisformulagivestheangulardistributionoftheradiatedpower.If !1thee ectofthedenominatorofdP=d\nincreasesandtheradiatedenergy\ruxconcentratesmoreparalleltothevelocity.ThetotalradiatedpowerisP=q260c\r6(_ 2( _ )2)(3.65)Thisresultcanbeobtainedintwoways,byadirectintegration,orbyusingtherelativisticformulation.However,weignorethedetailedcalculationhere.RadiationduetoasystemofmovingchargedparticlesConsiderasetofslowlymovingchargesvcwhichareassumedtobefarawayfromtheobservationpoint.Moreexplicitly,allchargesarewithinavolumeV1forthetimewhenthewavereachestheobserver.Further,thescalesofV1areassumedsmallcomparedtothewavelengthandtothedistancetotheobserver.LettheoriginbeinsideV1,denotecoordinatesofthechargesbyr0,oftheobservationpointbyr,andde neR=rr0.NowR=jrr0jrrr0r(3.66)andtheretardedscalarpotentialis'(r;t)=140ZV1(r0;tR=c)RdV0140ZV1(r0;tr=c+rr0=cr)r(rr0)=rdV0(3.67)Useofthebinomialseries(rrr0=r)1=r1+r2(rr0=r)+:::(3.68) 28CHAPTER3.RADIATINGSYSTEMSINFREESPACEandtheTaylorexpansionr0;trc+rr0cr=r0;trc+rr0cr@@t r0;tr=c+:::(3.69)gives'(r;t)=140rZV1r0;trcdV0+140r3rZV1r0r0;trcdV0+140r2crddtZV1r0r0;trcdV0+:::Thisisthefamiliarmultipoleexpansion:'(r;t)=140Qr+rp(tr=c)r3+r_p(tr=c)cr2(3.70)TheretardedvectorpotentialisA(r;t)=04ZV1J(r0;tr=c+rr0=cr)r(rr0)=rdV0=04rZV1Jr0;trcdV0+:::(3.71)Itisanexercisetoshowthatfora nitevolumeVRVJdV=dp=dt,soA(r;t)=04r_p(tr=c)(3.72)Nextweonlyconsiderradiation eldswiththespatialdependencer1.Because_pisafunctionof(tr=c),then@_p=@r=(1=c)p,andE(r;t)=04rp(tr=c)+140rp(tr=c)c2r3r(3.73)Anexerciseistoshowthatthemagneticradiation eldisB(r;t)=rA(r;t)=04cr2rp(3.74)andthatE(r;t)=crrB(r;t)(3.75)Allderivativesareevaluatedattheretardedtimetr=c,whichcanbeassumedidenticaltoallparticlesinV1.Theradiation eldisatransverseelectromagneticwave,whosePoyntingvectorS=cB20rr=11620c3r5(rp)2r(3.76) 3.2.EXAMPLESOFRADIATINGSYSTEMS29Settingz-axisparalleltopyieldsS=p2sin21620c3r2rr(3.77)Themaximumintensityisobtainedintheperpendiculardirectiontop.TodeterminetheradiatedpowerPrad,considerasphericalsurfaceatalargedistance:Prad=I@VSnda=160p2c3(3.78)Thisresultshowsthatasetofchargedparticlesradiatesiftherelateddipolemomenthas"acceleration".Itmayalsohappenthatthedipolemomentisindependentoftime,althoughparticleshaveacceleration.Insuchacase,itwouldbenecessarytoconsiderhighertermsinthemultipoleexpansion.3.2.6AuroralkilometricradiationAuroralkilometricradiation(AKR)isemittedbyelectronsintheauroralaccelerationregionatheights2000-20000km1.ThefrequencyisequaltotheLarmorfrequencyofelectrons(30-600kHz)anditswavelengthisafewkilometres.Themaximumradiationpowerduringmagneticstormsisabout1GW,whichisabout1%ofthepowerofparticleprecipitationintotheionosphere.ThesolarradiationpowerincidentattheEarthisinturnabout108GW.ThisisofthesameorderofmagnitudeastheinfraredradiationemittedbytheEarth.SoAKRisnotsigni cantfromtheenergyviewpoint.However,thenumberofphotonsperunittimecanbelargerforAKRthanforinfraredradiation.Thisisremarkable,sincethephoton\ruxde-termineshowdistantobjectsitispossibletoobserve,assumingthatthedetectortechnologyissophisticated.ItmightbepossibletoobserveAKRemitteduptoadistanceofabout100lightyears(numericalargumentationisanexercise).Inotherwords,ifthereareanyearth-likeexoplanetswithinthedistanceof100lytheycouldbeobservedduetotheirAKRemission.Thereareafewproblemsinsuchanobservation.First,thedetectorshouldbeinspace,becauseAKRisdissipatedintheionosphereduetoitslowfrequency.Itisevidentlypossibletoconstructsuchaspaceinstrumentwiththepresenttechnology.AnotherproblemisthattheSunisamorein-tenseradiationsourceatAKRfrequenciesthantheEarth,atleastmostofthetime.Concerningexoplanets,theirhoststarscoulddisturbtheobserva-tionofplanetaryAKR.Asolutionisinterferometry:signalmustbereceivedattwositessimultaneously.Anexerciseistoshowthatthismeasurementcouldbepossibletoperforminoursolarsystem.Thethirddicultymaybescintillationduetointerplanetaryplasmas.Finally,thereadershould1AKRsectionanditsexercisesarebasedonideaspresentedbyPekkaJanhunen(FMI). 30CHAPTER3.RADIATINGSYSTEMSINFREESPACEuseher/hisimaginationtothinkofwhatwecouldinferfromanobservationofAKRfromanEarth-likeexoplanet.3.3Vectormultipole eldsThesphericalharmonicexpansionisusefulinelectro-andmagnetostaticproblemshavingsomesymmetrywithrespecttotheoriginofthecoordi-natesystem.Fortime-varying eldsthescalarsphericalharmonicexpansioncanbegeneralisedtoavectorform.Thisisalsomorepowerfulthantheap-proachbasedontheexpansionofthevectorpotential(Sect.3.1).Thevectormultipoleapproachisusefulinboundaryvalueproblemswithasphericalsymmetryandinstudiesofradiationfromalocalisedsource.3.3.1BasicsphericalwavesolutionsWestartwiththescalarwaveequationr2 (r;t)1c2@2 (r;t)@t2=0(3.79)FouriertransformwithrespecttotimeleadstotheHelmholtzequationr2 (r;!)+k2 (r;!)=0(3.80)Separationinsphericalcoordinatesleadstothefamiliarexpansion (r;!)=Xl;mfl(r)Ylm(;)(3.81)whereYlmaresphericalharmonics.Thereadermay(should)showthatthegeneralsolutioncanbewrittenas (r;!)=Xl;m(A(1)mh(1)l(kr)+A(2)lmh(2)l(kr))Ylm(;)(3.82)Hereh(1;2)listhesphericalHankelfunctionde nedbyh(1;2)l(x)=(2x)1=2(Jl+1=2(x)iNl+1=2(x))=jl(x)inl(x)(3.83)whereJandNaretheBesselandNeumannfunctions,andjandnarethesphericalBesselandNeumannfunctions,respectively.Theirexplicitexpressionsareeasilycomputedfromjl(x)=(x)l(1xddx)lsinxxnl(x)=(x)l(1xddx)lcosxx(3.84) 3.3.VECTORMULTIPOLEFIELDS31Forotherusefulformulas,seeJacksonorArfkenandWeber,forexample.Nextweconsidermorecloselythesphericalharmonics,whichsatisfytheequation(1sin@@(sin@@)+1sin2@2@2)Ylm=l(l+1)Ylm(3.85)Itisconvenienttode neanoperatorL=1irr(3.86)Readersfamiliarwithquantummechanicsmayrecognizethatthisisba-sicallytheorbitalangularmomentumoperator.ItscomponentscanbewrittenasL+=Lx+iLy=ei(@@+icot@@)L=LxiLy=ei(@@+icot@@)Lz=i@@(3.87)TheoperatorLa ectsonlyangularvariablesandisindependentofr.AstraightforwardcalculationshowsthatLL=L2=L2+L2y+L2zistheoperatoronthelefthandsideofEq.3.85:L2Ylm=l(l+1)Ylm(3.88)Theproofofthefollowingresultsisanexercise:rL=0L+Ylm=q(lm)(l+m+1)Yl;m+1LYlm=q(l+m)(lm+1)Yl;m1LzYlm=mYlmL2L=LL2LL=iLLjr2=r2Ljr2=1r@2@r2rL2r2irL=rr2r(1+r@@r)LF=ir(rF)L(rF)=ir2(rF)ir@@r(r2rF)(3.89) 32CHAPTER3.RADIATINGSYSTEMSINFREESPACE3.3.2Multipoleexpansionoftheelectromagnetic eldsNextweconsidertheelectromagnetic eldinasource-freeregion.Assumingtime-harmonic elds(ei!t)anddenotingk=!=c,themagnetic eldsati estheHelmholtzequationandthedivergence-freecondition,andtheelectric eldisobtainedfromthemagnetic eld:(r2+k2)B=0rB=0E=ickrB(3.90)Alternatively,(r2+k2)E=0rE=0B=ikcrE(3.91)Thegoalistorepresentthe eldsasmultipoleexpansionswithexplicitlyseparatedradialandangulardependences.Onepossibilityisto rstnotethatforanywell-behavedvectorfunctionF,r2(rF)=r(r2F)+2rF(3.92)Consequently,outsideofthesourceregionthescalarfunctionsrBandrEsatisfytheHelmholtzequation(r2+k2)(rB)=0;(r2+k2)(rE)=0(3.93)ThegeneralsolutionforthesescalarfunctionsisgivenbyEq.3.82.Nowwede neamagneticmultipole eldoforder(l;m)byrB(M)lm=l(l+1)kcgl(kr)Ylm(;)rE(M)lm=0(3.94)wheregl(kr)=A(1)h(1)l(kr)+A(2)lh(2)l(kr)(3.95)Themagneticandelectric eldsarerelatedbykcrB=1ir(rE)=1i(rr)E=LE(3.96)Theelectric eldofthemagneticmultipolemustthensatisfytheequationLE(M)lm(r;;)=l(l+1)gl(kr)Ylm(;)(3.97) 3.3.VECTORMULTIPOLEFIELDS33andrE(M)lm=0.BecausetheoperatorLactsonlyontheangularvariables,theradialdependenceofE(M)lmisgivenbygl(kr).Asshownintheprevioussubsection,thee ectofLonYlmistoraiseorlowerm,butnottomodifylatall.RememberingthatL2Ylm=l(l+1)Ylm,weseerathereasilythattheelectric eldmustbeE(M)lm(r;;)=gl(kr)LYlm(;)(3.98)SinceB(M)lm=ikcrE(M)lm(3.99)the eldsofamagneticmultipoleoforder(l;m)arenowspeci edapartfromthecoecientsA(1;2)l.Inthesameway,wede neanelectricmultipoleoforder(l;m)byrE(E)lm=l(l+1)ckfl(kr)Ylm(;)rB(E)lm=0(3.100)Theelectricmultipole eldsareB(E)lm(r;;)=fl(kr)LYlm(;)E(E)lm=ickrB(E)lm(3.101)Theradialfunctionfl(kr)hasasimilarexpressiontogl(kr).WearenowreadytowritethegeneralsolutionoftheMaxwellequa-tionsinthesource-freeregion.Formoreconvenientnotations,wede neanormalizedformofthevectorsphericalharmonic:Xlm(;)=1pl(l+1)LYlm(;)(3.102)Ithasthefollowingorthogonalityproperties:ZX0m0Xlmd\n=ll0mm0ZXl0m0(rXlm)d\n=0(3.103)Consequently,the eldsareB=XlmaE(l;m)fl(kr)XlmikcaM(l;m)r(gl(kr)Xlm)E=XlmickaE(l;m)r(fl(kr)Xlm)+aM(l;m)gl(kr)Xlm(3.104) 34CHAPTER3.RADIATINGSYSTEMSINFREESPACETheunknowncoecientsareobtainedfromaM(l;m)gl(kr)=kpl(l+1)ZYlmrBd\naE(l;m)fl(kr)=kpl(l+1)ZYlmrEd\n(3.105)Thus,weonlyhavetoknowrBandrEattwodi erentradiir1andr2inthesource-freeregionforacompletesolution,includingtherelativemagnitudesofA(1;2)l.3.3.3Nearandfarzonemultipole eldsTostudythenearzone elds(kr1),wenotethattheradialdependenceisgivenbyh(1;2)l(kr)=jl(kr)inl(kr).Withasmallkr,thesphericalHankelfunctionbehaveslike(kr)(l+1),andthemagnetic eldforanelectricmultipole(l;m)isB(E)lmklLYlmrl+1(3.106)wherethespeci cproportionalitycoecientischosenforconvenience.Theelectric eldisE(E)lm=ickrB(E)lmilrL(Ylmrl+1)(3.107)Usinganoperatoridentity,theelectric eldtakestheformE(E)lm(rr2r(1+r@@r))Ylmlrl+1(3.108)The rsttermvanishes,sinceYlm=rl+1isasolutionoftheLaplaceequation.ItfollowsthatE(E)lmr(Ylmrl+1)(3.109)Fromthebasiccourseofelectrodynamicswerememberthatthisisexactlytheelectrostaticmultipole eld.Themagneticmultipole eldsaretreatedinthesamewayjustbyinterchangingE(E)!B(M);B(E)!E(M).Forthefarzone(kr1),weinvestigateoutgoingwavesfromalocal-izedsource,correspondingtotheradialdependencegivenbyh(1)(kr).Itsasymptoticbehaviourimpliesthatthemagnetic eldofanelectricmultipoleisB(E)lm(i)l+1eikrkrLYlm(3.110)andtheelectric eldisE(E)lm(i)lck2(r(eikrr)LYlm+eikrrrLYlm)(3.111) 3.3.VECTORMULTIPOLEFIELDS35Keepingonlytheleadingtermsandusingthesameoperatoridentityasforthenearzonecalculation,thisbecomesE(E)lm(i)l+1ceikrkr(nLYlm1k(rr2r)Ylm)(3.112)wheren=r=r.Thesecondtermisclearlysomeangularfunctiontimes1=r,soitisignorable.Notsurprisingly,theradiationzone eldshaveanexactrelationshipE(E)lm=cB(E)lmn(3.113)Again,themagneticmultipole eldsareobtainedbyasimilarinterchangelikewiththenearzonecase.3.3.4EnergyofmultipoleradiationWestarttheenergyconsiderationbystudyingonlyalinearsuperpositionofelectricmultipoles(l;m)withavaryingmbuta xedl.Thentheoutgoing eldsareBl=XmaE(l;m)Xlmh(1)(kr)El=ickrBl(3.114)Thetime-averagedenergydensityfortime-harmonic eldsisu=04(EE+c2BB)(3.115)IntheradiationzoneE=cBn,sotheenergydUinasphericalshell[r;r+dr]isdU=20c2drk2Xm;m0a(l;m0)aE(l;m)Z(4)Xlm0Xlmd\n(3.116)wheretheasymptoticexpressionofthesphericalHankelfunctionisapplied.Usingtheorthogonalityintegralofvectorsphericalharmonics,thisyieldsdUdr=20c2k2XmjaE(l;m)j2(3.117)ForageneralsuperpositionofelectricandmagneticmultipolestheresultisdUdr=20c2k2Xl;m(jaE(l;m)j2+jaM(l;m)j2)(3.118) 36CHAPTER3.RADIATINGSYSTEMSINFREESPACENextwediscussthepowerofmultipoleradiation.Atthelimitkr1the eldsareB=eikrkrXlm(i)l+1(aE(l;m)Xlm+aM(l;m)nXlm)E=cBn(3.119)TheaveragepowerradiatedperunitsolidangleiscalculatedfromPoynting'svectoryieldingdPd\n=c20k2jXlm(i)l+1(aE(l;m)Xlmn+aM(l;m)Xlm)j2(3.120)Theelectricandmagneticmultipolesofagiven(l;m)havethesameangulardependence,butperpendicularpolarizations.Sothemultipoleordercanbedeterminedbymeasuringtheangulardistributionofradiatedpower.Todistinguishbetweentheelectricandmagneticnatureoftheradiatingsource,polarizationmustbedetected.TheangularpowerdistributionofasinglemultipoleisdP(l;m)d\n=c20k2ja(l;m)Xlmj2(3.121)3.3.5MultipolemomentsThenexttaskistorelatethemultipoleexpressionsdirectlytothesourceterms.Weassumethatthechargedensity(r)ei!tandcurrentdensityJ(r)ei!tareknown.Wecouldalsoconsidertheintrinsicmagnetizationasasourceterm,butweneglectithereforbrevity(seeJacksonforacompletediscussion).Again,westartwiththeMaxwellequationsrE==0rB=0rEikcB=0rB+(ik=c)E=0J(3.122)De ningE0=E+iJ=(!0)andusingtheequationofthecurrentcontinuity,weobtainrE0=0rB=0rE0ikcB=irJ=(!0)rB+(ik=c)E0=0(3.123) 3.3.VECTORMULTIPOLEFIELDS37Ifwehadincludedmagnetization,itscurlwouldappearintherightsideofthelastequation.NotethatE0=Eoutsideofsources.TheinhomogeneousHelmholtzwaveequationsfollowfromthecurlequa-tions:(r2+k2)B=0rJ(r2+k2)E0=ir(rJ)=(0ck)(3.124)Weusethesametrickasearlierandtakethescalarproductwithvectorr,andusethevectoridentityr(rF)=(rr)F=iLF.Thisyieldsscalarequations(r2+k2)rB=i0LJ(r2+k2)rE0=L(rJ)=(0ck)(3.125)TheseequationscanbesolvedusingthemethodofGreen'sfunctions(seethecourseofelectrodynamics).Sinceweareinterestedinoutgoingwaves,thesolutionisrB(r)=i04Zeikjrr0jjrr0jL0J(r0)d3r0rE0(r)=140ckZeikjrr0jjrr0jL0r0J(r0)d3r0(3.126)ThemultipolecoecientsaE;aMareobtainedfromaM(l;m)gl(kr)=kpl(l+1)ZYlmrBd\naE(l;m)fl(kr)=kpl(l+1)ZYlmrE0d\n(3.127)asderivedinSect.3.3.2.Theradialdependencemustbefl(kr)=gl(kr)=h(1)(kr),sincethiscorrespondstooutgoingradiation.Next,weneedEq.3.5:eikjrr0j4jrr0j=ik1Xl=0jl(kr)h(1)(kr�)lXm=lYlm(0;0)Ylm(;)(3.128)wherenowr=r0;r�=r,becausewestudytheregionoutsideofthesource.ItfollowsthatZd\nYlm(;)eikjrr0j4jrr0j=4ikh(1)(kr)jl(kr0)Ylm(0;0)(3.129) 38CHAPTER3.RADIATINGSYSTEMSINFREESPACEConsequently,themultipolecoecientsareaM(l;m)=0k2pl(l+1)Zjl(kr)Ylm(;)LJ(r)d3r(3.130)aE(l;m)=ik0cpl(l+1)Zjl(kr)Ylm(;)LrJ(r)d3rAcentre-fedlinearantenna(Sect.3.2.3)providesanillustratingconcreteexercise.

Related Contents


Next Show more