/
Vectors and Matrices Appendix Vectors and matrices are notational conveniences for dealing Vectors and Matrices Appendix Vectors and matrices are notational conveniences for dealing

Vectors and Matrices Appendix Vectors and matrices are notational conveniences for dealing - PDF document

kittie-lecroy
kittie-lecroy . @kittie-lecroy
Follow
590 views
Uploaded On 2014-12-13

Vectors and Matrices Appendix Vectors and matrices are notational conveniences for dealing - PPT Presentation

In particular they are useful for compactly representing and discussing the linear programming problem Maximize subject to i j This appendix reviews several properties of vectors and matrices that are especially relevant to this problem We shoul ID: 23411

particular they are

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Vectors and Matrices Appendix Vectors an..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

488VectorsandMatricesA.2Equalityandorderingofvectorsarede nedbycomparingthevectors’individualcomponents.Formally,letyD.y1;y2;:::;yk/andzD.z1;z2;:::;zk/betwok-dimensionalvectors.Wewrite:yDzwhenyjDzj.jD1;2;:::;k/;yzorzywhenyjzj.jD1;2;:::;k/;y�zorzywhenyj&#x]TJ/;ག ;.9;Y T; 12;&#x.294;&#x 0 T; [00;zj.jD1;2;:::;k/;andsay,respectively,thatyequalsz,yisgreaterthanorequaltozandthatyisgreaterthanz.Inthelasttwocases,wealsosaythatzislessthanorequaltoyandlessthany.Itshouldbeemphasizedthatnotallvectorsareordered.Forexample,ifyD.3;1;�2/andxD.1;1;1/,thenthe rsttwocomponentsofyaregreaterthanorequaltothe rsttwocomponentsofxbutthethirdcomponentofyislessthanthecorrespondingcomponentofx.A nalnote:0isusedtodenotethenullvector(0,0,…,0),wherethedimensionofthevectorisunderstoodfromcontext.Thus,ifxisak-dimensionalvector,x0meansthateachcomponentxjofthevectorxisnonnegative.Wealsode nescalarmultiplicationandadditionintermsofthecomponentsofthevectors.De nition.ScalarmultiplicationofavectoryD.y1;y2;:::;yk/andascalar isde nedtobeanewvectorzD.z1;z2;:::;zk/,writtenzD yorzDy ;whosecomponentsaregivenbyzjD yj.De nition.Vectoradditionoftwok-dimensionalvectorsxD.x1;x2;:::;xk/andyD.y1;y2;:::;yk/isde nedasanewvectorzD.z1;z2;:::;zk/,denotedzDxCy,withcomponentsgivenbyzjDxjCyj.Asanexampleofscalarmultiplication,consider4.3;0;�1;8/D.12;0;�4;32/;andforvectoraddition,.3;4;1;�3/C.1;3;�2;5/D.4;7;�1;2/:Usingbothoperations,wecanmakethefollowingtypeofcalculation:.1;0/x1C.0;1/x2C.�3;�8/x3D.x1;0/C.0;x2/C.�3x3;�8x3/D.x1�3x3;x2�8x3/:Itisimportanttonotethatyandzmusthavethesamedimensionsforvectoradditionandvectorcomparisons.Thus.6;2;�1/C.4;0/isnotde ned,and.4;0;�1/D.4;0/makesnosenseatall.A.2MATRICESWecannowextendtheseideastoanyrectangulararrayofnumbers,whichwecallamatrix.De nition.Amatrixisde nedtobearectangulararrayofnumbersAD26664a11a12a1na21a22a2n::::::am1am2amn37775;whosedimensionismbyn.AiscalledsquareifmDn.ThenumbersaijarereferredtoastheelementsofA.Thetableauofalinearprogrammingproblemisanexampleofamatrix.Wede neequalityoftwomatricesintermsoftheirelementsjustasinthecaseofvectors. 490VectorsandMatricesA.2ofmatrixmultiplicationissometimesreferredtoasaninnerproduct.Itcanbevisualizedbyplacingtheelementsofnexttothoseofqandadding,asfollows:1q1D1q1;2q2D2q2;::::::mqmDmqm: qDmXiD1iqi:Intheseterms,theelementscijofmatrixCDABarefoundbytakingtheinnerproductofAi(theithrowofA)withBj(thejthcolumnofB);thatis,cijDAiBj.Thefollowingpropertiesofmatricescanbeseeneasilybywritingouttheappropriateexpressionsineachinstanceandrearrangingtheterms:ACBDBCA(Commutativelaw)AC.BCC/D.ACB/CC(Associativelaw)A.BC/D.AB/C(Associativelaw)A.BCC/DABCAC(Distributivelaw)Asaresult,ACBCCorABCiswellde ned,sincetheevaluationscanbeperformedinanyorder.Thereareafewspecialmatricesthatwillbeusefulinourdiscussion,sowede nethemhere.De nition.Theidentitymatrixoforderm,writtenIm(orsimplyI,whennoconfusionarises)isasquarem-by-mmatrixwithonesalongthediagonalandzeroselsewhere.Forexample,I3D2410001000135:Itisimportanttonotethatforanym-by-mmatrixB,BImDImBDB.Inparticular,ImImDImorIIDI.De nition.ThetransposeofamatrixA,denotedAt,isformedbyinterchangingtherowsandcolumnsofA;thatis,atijDaji.IfAD24�1�304;thenthetransposeofAisgivenby:AtD242�340�1435:Wecanshowthat.AB/tDBtAtsincetheijthelementofbothsidesoftheequalityisPkajkbki.De nition.Anelementarymatrixisasquarematrixwithonearbitrarycolumn,butotherwiseonesalongthediagonalandzeroselsewhere(i.e.,anidentifymatrixwiththeexceptionofonecolumn). 492VectorsandMatricesA.4LettingytD26664y1y2:::yn37775beacolumnvector,sincethedualvariablesareassociatedwiththeconstraintsoftheprimalproblem,wecanwritetheduallinearprogramincompactformasfollows:Minimizebtyt;subjectto:Atytct;yt0:Wecanalsowritethedualintermsoftheuntransposedvectorsasfollows:Minimizeyb,subjectto:yAc;y0:InthisformitiseasytowritetheproblemintermsoftherowvectorsAiofthematrixA,as:Minimizey1b1Cy2b2CCymbm,subjectto:y1A1Cy2A2CCymAmc;yi0.iD1;2;:::;m/:Finally,wecanwritetheprimalanddualproblemsinequalityform.Intheprimal,wemerelyde neanm-dimensionalcolumnvectorsmeasuringtheamountofslackineachconstraint,andwrite:Maximizecx,subjectto:AxCIsDb;x0;s0:Inthedual,wede neann-dimensionalrowvectorumeasuringtheamountofsurplusineachdualconstraintandwrite:Minimizeyb,subjectto:yA�uIDc;y0;u0:A.4THEINVERSEOFAMATRIXDe nition.Givenasquarem-by-mmatrixB,ifthereisanm-by-mmatrixDsuchthatDBDBDDI;thenDiscalledtheinverseofBandisdenotedB�1:NotethatB�1doesnotmean1=BorI=B,sincedivisionisnotde nedformatrices.ThesymbolB�1isjustaconvenientwaytoemphasizetherelationshipbetweentheinversematrixDandtheoriginalmatrixB.Thereareanumberofsimplepropertiesofinversesthataresometimeshelpfultoknow. 494VectorsandMatricesA.4Ifb11D0,wemerelychoosesomeothervariabletoisolateinthe rstequation.Inmatrixform,thenewmatricesofthexandycoef cientsaregivenrespectivelybyE1BandE1I,whereE1isanelementarymatrixoftheform:E1D2666664k1000k2100k3010::::::km0013777775;k1D1 b11;:::kiD�bi1 b11.iD2;3;:::;m/:Further,sinceb11ischosentobenonzero,E1hasaninversegivenby:E�11D26666641=k1000�k2100�k3010::::::�km0013777775:Thusbyproperty(iii)above,ifBhasaninverse,thenE1Bhasaninverseandtheproceduremayberepeated.Somexjcoef cientinthesecondrowoftheupdatedsystemmustbenonzero,ornovariablecanbeisolatedinthesecondrow,implyingthattheinversedoesnotexist.Theproceduremayberepeatedbyeliminatingthisxjfromtheotherequations.Thus,anewelementarymatrixE2isde ned,andthenewsystem.E2E1B/xD.E2E1/yhasx1isolatedinequation1andx2inequation2.Repeatingtheprocedure nallygives:.EmEm�1E2E1B/xD.EmEm�1E2E1/ywithonevariableisolatedineachequation.Ifvariablexjisisolatedinequationj,the nalsystemreads:x1D 11y1C 12y2CC 1mym;x2D 21y1C 22y2CC 2mym;::::::xmD m1y1C m2y2CC mmym;andB�1D26664 11 12 1m 21 22 2m:::::: m1 m2 mm37775:Equivalently,B�1DEmEm�1E2E1isexpressedinproductformasthematrixproductofelementarymatrices.If,atanystageintheprocedure,itisnotpossibletoisolateavariableintherowunderconsideration,thentheinverseoftheoriginalmatrixdoesnotexist.Ifxjhasnotbeenisolatedinthejthequation,theequationsmayhavetobepermutedtodetermineB�1.Thispointisillustratedbythefollowingexample: 496VectorsandMatricesA.5multiplicationoftwopartitionedmatricesAD24A11A12A21A22A31A3235;andBDB11B12B21B22resultsinABD24A11B11CA12B21A11B12CA12B22A21B11CA22B21A21B12CA22B22A31B11CA32B21A31B12CA32B2235;assumingtheindicatedproductsarede ned;i.e.,thematricesAijandBjkhavetheappropriatedimensions.Toillustratethatpartitionedmatricesmaybehelpfulincomputinginverses,considerthefollowingexample.LetMDIQ0R;where0denotesamatrixwithallzeroentries.ThenM�1DABCDsatis esMM�1DIorIQ0RABCDDI00I;whichimpliesthefollowingmatrixequations:ACQCDI;BCQDD0;RCD0;RDDI:SolvingthesesimultaneousequationsgivesCD0;ADI;DDR�1;andBD�QR�1Ior,equivalently,M�1DI�QR�10R�1:NotethatweneedonlycomputeR�1inordertodetermineM�1easily.Thistypeofuseofpartitionedmatricesistheessenceofmanyschemesforhandlinglarge-scalelinearprogramswithspecialstructures.A.5BASESANDREPRESENTATIONSInChapters2,3,and4,theconceptofabasisplaysanimportantroleindevelopingthecomputationalproceduresandfundamentalpropertiesoflinearprogramming.Inthissection,wepresentthealgebraicfoundationsofthisconcept.De nition.m-dimensionalrealspaceRmisde nedasthecollectionofallm-dimensionalvectorsyD.y1;y2;:::;ym/.De nition.Asetofm-dimensionalvectorsA1;A2;:::;Akislinearlydependentifthereexistrealnumbers 1; 2;:::; k,notallzero,suchthat 1A1C 2A2CC kAkD0:(1)Iftheonlysetof j’sforwhich(1)holdsis 1D 2DD kD0,thenthem-vectorsA1;A2;:::;Akaresaidtobelinearlyindependent. 498VectorsandMatricesA.5sothatArisdependentuponA1;A2;:::;Ar�1.Then,settingrD�1,wehaver�1XjD1jAj�rArD0;whichshowsthatA1;A2;:::;Ararelinearlydependent.Next,ifthesetofvectorsisdependent,thenrXjD1 jAjD0;withatleastone j6D0;say r6D0.Then,ArDr�1XjD1jAj;wherejD� j r;andArdependsuponA1;A2;:::;Ar�1:Property2.TherepresentationofanyvectorQintermsofbasisvectorsA1;A2;:::;Amisunique.Proof.SupposethatQisrepresentedasbothQDmXjD1jAjandQDmXjD10jAj:EliminatingQgives0DPmjD1.j�0j/Aj.SinceA1;A2;:::;Amconstituteabasis,theyarelinearlyindependentandeach.j�0j/D0:Thatis,jD0j,sothattherepresentationmustbeunique.ThispropositionactuallyshowsthatifQcanberepresentedintermsofthelinearlyindependentvectorsA1;A2;:::;Am,whetherabasisornot,thentherepresentationisunique.IfA1;A2;:::;Amisabasis,thentherepresentationisalwayspossiblebecauseofthede nitionofabasis.Severalmathematical-programmingalgorithms,includingthesimplexmethodforlinearprogramming,movefromonebasistoanotherbyintroducingavectorintothebasisinplaceofonealreadythere.Property3.LetA1;A2;:::;AmbeabasisforRm;letQ6D0beanym-dimensionalvector;andlet.1;2;:::;m/betherepresentationofQintermsofthisbasis;thatis,QDmXjD1jAj:(2)Then,ifQreplacesanyvectorArinthebasiswithr6D0;thenewsetofvectorsisabasisforRm. 500VectorsandMatricesA.5Proof.IfQ1;Q2;:::;QkandA1;A2;:::;Araretwobases,thenProperty4impliesthatkr.ByreversingtherolesoftheQjandAi,wealsohaverkandthuskDr,andeverytwobasescontainthesamenumberofvectors.Buttheunitm-dimensionalvectorsu1;u2;:::;umconstituteabasiswithm-dimensionalvectors,andconsequently,everybasisofRmmustcontainmvectors.Property6.EverycollectionQ1;Q2;:::;Qkoflinearlyindependentm-dimensionalvectorsiscon-tainedinabasis.Proof.ApplyProperty4withA1;A2;:::;Amtheunitm-dimensionalvectors.Property7.Everymlinearly-independentvectorsofRmformabasis.Everycollectionof.mC1/ormorevectorsinRmarelinearlydependent.Proof.Immediate,fromProperties5and6.IfamatrixBisconstructedwithmlinearly-independentcolumnvectorsB1;B2;:::;Bm;thepropertiesjustdevelopedforvectorsaredirectlyrelatedtotheconceptofabasisinverseintroducedpreviously.Wewillshowtherelationshipsbyde ningtheconceptofanonsingularmatrixintermsoftheindependenceofitsvectors.Theusualde nitionofanonsingularmatrixisthatthedeterminantofthematrixisnonzero.However,thisde nitionstemshistoricallyfromcalculatinginversesbythemethodofcofactors,whichisoflittlecomputationalinterestforourpurposesandwillnotbepursued.De nition.Anm-by-mmatrixBissaidtobenonsingularifbothitscolumnvectorsB1;B2;:::;BmandrowsvectorsB1;B2;:::;Bmarelinearlyindependent.Althoughwewillnotestablishthepropertyhere,de ningnonsingularityofBmerelyintermsoflinearindependenceofeitheritscolumnvectorsorrowvectorsisequivalenttothisde nition.Thatis,linearindependenceofeitheritscolumnorrowvectorsautomaticallyimplieslinearindependenceoftheothervectors.Property8.Anm-by-mmatrixBhasaninverseifandonlyifitisnonsingular.Proof.First,supposethatBhasaninverseandthatB1 1CB2 2CCBm mD0:Letting Dh 1; 2;:::; mi,inmatrixform,thisexpressionsaysthatB D0:Thus.B�1/.B /DB�1.0/D0or.B�1B/ DI D D0.Thatis, 1D 2DD mD0,sothatvectorsB1;B2;:::;Bmarelinearlyindependent.Similarly, BD0impliesthat D .BB�1/D. B/B�1D0B�1D0;sothattherowsB1;B2;:::;Bmarelinearlyindependent. 502VectorsandMatricesA.6 FigureA.1Proof.Byreindexingifnecessary,wemayassumethatonlythe rstrcomponentsofyarepositive;thatis,y1�0;y2�0;:::;yr�0;yrC1DyrC2DDynD0:WemustshowthatanyvectorysolvingAyDb;y0;isanextremepointifandonlyifthe rstrcolumnA1;A2;:::;ArofAarelinearlyindependent.First,supposethatthesecolumnsarenotlinearlyindependent,sothatA1 1CA2 2CCAr rD0(5)forsomerealnumbers 1; 2;:::; rnotallzero.IfweletxdenotethevectorxD. 1; 2;:::; r;0;:::;0/,thenexpression(5)canbewrittenasAxD0.NowletwDyCxandNwDy�x.Then,aslongasischosensmallenoughtosatisfyj jjyjforeachcomponentjD1;2;:::;r;bothw0andNw0.Butthen,bothwandNwarecontainedinS,sinceA.yCx/DAyCAxDAyC.0/Db;and,similarly,A.y�x/Db.However,sinceyD1 2.wCNw/,weseethatyisnotanextremepointofSinthiscase.Consequently,everyextremepointofSsatis esthelinearindependencerequirement.Conversely,supposethatA1;A2;:::Ararelinearlyindependent.IfyDwC.1�/xforsomepointswandxofSandsome01;thenyjDwjC.1�/xj.SinceyjD0forjrC1andwj0;xj0;thennecessarilywjDxjD0forjrC1:Therefore,A1y1CA2y2CCAryrDA1w1CA2w2CCArwrDA1x1CA2x2CCArxrDb:Since,byProperty2inSectionA.5,therepresentationofthevectorbintermsofthelinearlyindependentvectorsA1;A2;:::;Arisunique,thenyjDzjDxj:ThusthetwopointswandxcannotbedistinctandthereforeyisanextremepointofS.IfAcontainsabasis(i.e.,thetowsofAarelinearlyindependent),then,byProperty6,anycollectionA1;A2;:::;AroflinearlyindependentvectorscanbeextendedtoabasisA1;A2;:::;Am.Theextreme-pointtheoremshows,inthiscase,thateveryextremepointycanbeassociatedwithabasicfeasiblesolution,i.e.,withasolutionsatisfyingyjD0fornonbasicvariablesyj,forjDmC1;mC2;:::;n.Chapter2showsthatoptimalsolutionstolinearprogramscanbefoundatbasicfeasiblesolutionsorequivalently,now,atextremepointsofthefeasibleregion.Atthispoint,letususethelinear-algebratools A.6ExtremePointsofLinearPrograms503ofthisappendixtodrivethisresultindependently.Thiswillmotivatethesimplexmethodforsolvinglinearprogramsalgebraically.SupposethatyisafeasiblesolutiontothelinearprogramMaximizecx,subjectto:AxDb;x0;(6)and,byreindexingvariablesifnecessary,thaty1�0;y2�0;:::;yrC1�0andyrC2DyrC3DDynD0:IfthecolumnArC1islinearlydependentuponcolumnsA1;A2;:::;Ar,thenArC1DA1 1CA2 2CCAr r;(7)withatleastoneoftheconstants jnonzeroforjD1;2;:::;r.MultiplyingbothsidesofthisexpressionbygivesArC1DA1. 1/CA2. 2/CCAr. r/;(8)whichstatesthatwemaysimulatetheeffectofsettingxrC1Din(6)bysettingx1;x2;:::;xr,respectively,to. 1/;. 2/;:::;. r/.TakingD1gives:QcrC1D 1c1C 2c2CC rcrastheper-unitpro tfromthesimulatedactivityofusing 1unitsofx1; 2unitsofx2,through runitsofxr,inplaceof1unitofxrC1.LettingNxD.� 1;� 2;:::;� r;C1;0;:::;0/;Eq.(8)isrewrittenasA.x/DANxD0.HereNxisinterpretedassettingxrC1to1anddecreasingthesimulatedactivitytocompensate.Thus,A.yCNx/DAyCANxDAyC0Db;sothatyCNxisfeasibleaslongasyCNx0(thisconditionissatis edifischosensothatj jjyjforeverycomponentjD1;2;:::;r).ThereturnfromyCNxisgivenby:c.yCNx/DcyCcNxDcyC.crC1�QcrC1/:Consequently,ifQcrC1crC1,thesimulatedactivityislesspro tablethanthe.rC1/stactivityitself,andreturnimprovesbyincreasing.IfQcrC1&#x]TJ/;ག ;.9;Y T; 10;&#x.816;&#x 0 T; [00;crC1,returnincreasesbydecreasing(i.e.,decreasingyrC1andincreasingthesimulatedactivity).IfQcrC1DcrC1,returnisunaffectedby.Theseobservationimplythat,iftheobjectivefunctionisboundedfromaboveoverthefeasibleregion,thenbyincreasingthesimulatedactivityanddecreasingactivityyrC1,orviceversa,wecan ndanewfeasiblesolutionwhoseobjectivevalueisatleastaslargeascybutwhichcontainsatleastonemorezerocomponentthany.For,supposethatQcrC1crC1.ThenbydecreasingfromD0;c.yCNx/cyIeventuallyyjCNxjD0forsomecomponentjD1;2;:::;rC1(possiblyyrC1CNxrC1DyrC1CD0/.Ontheotherhand,ifQcrC1crC1;thenc.yCNx/&#x]TJ/;ག ;.9;Y T; 11;&#x.648;&#x 0 T; [00;cyasincreasesfromD0Iifsomecomponentof jfrom(7)ispositive,theneventuallyyjCNxjDyj� jreaches0asincreases.(Ifevery j0,thenwemayincreaseinde nitely,c.yCNx/!C1;andtheobjectivevalueisunboundedovertheconstraints,contrarytoourassumption.)Therefore,ifeitherQcrC1crC1orQcrC1crC1;wecan ndavalueforsuchthatatleastonecomponentofyjCNxjbecomeszeroforjD1;2;:::;rC1.SinceyjD0andNxjD0forj&#x]TJ/;ག ;.9;Y T; 11;&#x.592;&#x 0 T; [00;rC1;yjCNxjremainsat0forj&#x]TJ/;ག ;.9;Y T; 11;&#x.592;&#x 0 T; [00;rC1.Thus,theentirevectoryCNxcontainsatleastonemorepositivecomponentthanyandc.yCNx/cy.Withalittlemoreargument,wecanusethisresulttoshowthattheremustbeanoptimalextreme-pointsolutiontoalinearprogram.