/
ElectronicNotesinTheoreticalComputerScience��URL�http�wwwelsev ElectronicNotesinTheoreticalComputerScience��URL�http�wwwelsev

ElectronicNotesinTheoreticalComputerScienceURLhttpwwwelsev - PDF document

lam
lam . @lam
Follow
342 views
Uploaded On 2020-11-23

ElectronicNotesinTheoreticalComputerScienceURLhttpwwwelsev - PPT Presentation

atedbyamodelforsyntacticcon dtoJohnCReynoldsontheOcasionofhisthBirthday ThisauthorwassupportedbyNSFgrantCCRThisauthorgratefullyac etaltroductionThispaperisacompanionpapertoSyntacticContro ID: 820996

proposition nition niteproductstructure ectivesubcategory nition proposition ectivesubcategory niteproductstructure proof niteproducts kelly ectivesubcategoryof symmetric etal inthissection category infact andr categories

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ElectronicNotesinTheoreticalComputerScie..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

ElectronicNotesinTheoreticalComputerScie
ElectronicNotesinTheoreticalComputerScienceURLhttpwwwelseviernllocateentcsvolumehtmlpagesJFUniversityofPennsylvaniaPhiladelphiaUSA WOHearnacuseUniversityNewYorkUSAAJPatedbyamodelforsyntacticcondtoJohnCReynoldsontheOcasionofhisthBirthdayThisauthorwassupportedbyNSFgrantCCRThisauthorgratefullyacetaltroductionThispaperisacompanionpapertoSyntacticControlofInterferinthisvInthispaperweintroduceageneralcategoricaltoanalysethepropertiesofthemodeloftheSCIRtypesystemgiveninThispaperispurelycategoricalitcanbereadindependentlyofasacategorytheoreticpaperThebireectivityconcepthashwiderapplicabilitbutthispaperconcentratesonourleadingexampleenfrom althoughwewilldescribeitagainherewewillnotexplainitssignicanceThecentralsurprisingcategorytheoreticfeatureofthemodelofSCIReninistheconceptofa bireective subcategoryywhicemeanasubcategorywithinclusionhavingbothleftandrightadjointwiththosetsequalandsatisfyinganevidentcoherenceconditionrelatingtheunitandcounitIntheoneandonlynontrivialbireectivesubcategoryoftheticcategoryisthesubcategoryofobjectsFormanycategorieshasandthecategoryofcpo sthereisnonontrivialsucsubcategoryandinfactweproethatanellpointedcategoryhasnotrivialsuchsubcategoryInthispaperwharacterizebireectivesubcategoriesofacategoryasequivttosplitidempotentnaturaltransformationsfromtheidenfunctorontoitselfTheconstructionimplicitinthisresultusesalimitinthecategorycalledanSowedescribethenotion

ofidenetheconstructionandproeourresult
ofidenetheconstructionandproeourresultIntheparticularcasethatisapresheafcategoryweproemorethatanybireectivesubcategoryustitselfbeapresheafcategory andwegiveanexplicitdescriptionofaforwhicThesemanticcategoryofisamildvtofapresheafandforourpurposessatisesthesameconditionsSoalthoughwstudypresheafcategoriesinthispaperitisroutinetoverifythatouranalysisallextendstoSpecicallyifisasmallmonoidalcategorythenisthefreemonoidalcocompletionofWithalittlemorestructureonwhicecallstructurewecanconstructanidempotentnaturaltransformationfromidtoitselfandhenceasplitonefromidtoitselfthusyieldingabireectivesubcategoryoforanexampleinthecategoryofworldsisasmallmonoidalcategorywithdiagonalstructureandgeneralizingmildlyfromtothecategoryofdomainsourconstructionyieldsthemonoidalstructureonthesemancategoryofanditsrestrictiontothepassiveobjectseusediagonalstructuretodeduceseveralresultsabouttheinteractionofthebireectivesubcategorybothadjunctionsbeteenthemaremonoidaladjunctions hasniteproductsgivenbytherestrictionofthetensorproductoniscontainedinthecategoryofcommecomonoids andisanexponentialidealofTheseresultsarecentraltotheanalysisoforthispaperwedonotmakeheavyuseofcategoriesbeyondtheiretaldenition astandardreferencetoananalysisofthedenitionisbyKellyandStreetThesemanticcategoryInthissectionwerecallthesemanticdenitionsofDenitionThecategoryofwThecategoryhasasobjectstablesetswithamorphismfRfromenbyafunctionandanequivalencerelationhthat andwithcompos

itiongSfRgivenbythefunctionandtherel
itiongSfRgivenbythefunctionandtherelationwherexTyfxSfyPropositionFiniteprductofsetsgivesasymmetricmonoidalstructurwithunittheterminalobjeProoforfRandgSthetensorfRgSisgivenbgRwherexyySyThecanonicalisomorphismsaregivenbythoseofniteproductswithtotalrelationsThesingletonsetisterminalinwiththeuniqueenbytheuniquefunctionandtheequalityrelationDenitiondenethestatechangecytheidenyfunctionandtheidenyonNotethatisanidempotentnaturaltransformationonidewriteandsimilarlyforInthetypetheorySCIRismodelledinthesemanticcisthecategoryofpossiblybottomlesscompleteposetsandconuousfunctionsDenitioneobjectsiscalledidThefullsubcategoryofisgivythepassiveobjectsThefullinclusioniswrittenDenitionDeneamonoidalstructureonasfollowsFfgthetensorproductisgivenbabwherefXgYandforabagTheunitistheterminalobjectofThroughthecourseofthispaperweproethefollowingpropertiesofthecategoryofpassiveobjectsusedinetalPropositionThefullsubisbothrctiveandcctiveinthesemanticcmorover therctorandcctorcPropositionThechasniteprProposition ThesymmetricmonoidalstructureonestrictstothecartesianstructureonPropositionBoththeinclusionandtherctorctorarestrsymmetricmonoidalfunctors ie theypreservethemonoidalstructurProposition Pisanexponentialidealof ie given theexponentialobjeAPliesinOfcourseonecouldproetheseresultsdirectlyratherthanbyappealtotheabstracttheorywedevelophereeritseemslikelythatothermodelsofsyntacticcontrolofinterferencewillbedevelo

pedinfuturesoratherthanhavingtoproesuch
pedinfuturesoratherthanhavingtoproesuchresultseverytimeonediscoersanewmodelitseemsusefultohaeageneralresultfromwhichonecandeducethemMoreoerourgeneralresultsprovidenecessaryandsucienconditionsforthenaturallevelofgeneralityoftheargumentssotheysetparameterstothesearchformodelsthatsatisfythepropertieswestudyRemarkRobinCocettandRobertSeelyhaepointedoutpersonalunicationthatasecondtensorcanbedenedonthecategoryorldsonobjectsityieldsthedisjointunionofthesetsandonmorphismsyieldsthesumofthefunctionpartsandthe join oftheequivpartsThesecondtensoralsoliftstothesemanticcategorywhictogetherwiththebireectivesubcategoryprovidesanexampleofawemodelofnegationfreelinearlogicwithandbothgivythebireectorThisconstructioncannotbenontriviallygeneralizedtomodelfulllinearlogicforifthesemanticcategorywautonomoustheesubcategorywhichisboththecategoryofalgebrasforandthecategoryofcoalgebrasforwouldbebothcartesianclosedandcocartesianclosedandhencedegenerateInthissectionwedenethenotionofbireectivesubcategoryandcizebireectivesubcategoriesinagivencategoryAftergivingafewexampleseusethischaracterizationtoshowthatanybireectivesubcategoryofapresheafcategoryisitselfapresheafcategorySoinparticularthecategoryofpassiveobjectsoftheprevioussectionisapresheafcategoryInfactitwsfromouranalysisthatitisthetrivialbireectivesubcategoryofDenitionsubcategoryofacategoryisasubcategorywithinclusionthathasleftandrightadjointsequalsaetalwithJSAJSAutingwhereistheunitofadjunctionisthecounito

fPropositionnybirctivesubofacisfull c
fPropositionnybirctivesubofacisfull closeundersubctformation andclosedunderquotientformationProofWithnotationasinDenitionforSoforanfJwiththetranspositionoforsubobjectformationletbeamonomorphismeshowthatidThisisequivtto usingthecoherenceconditionmAJwiththetranspositionofClosureunderquotientformationisedduallyInthisandsubsequentsectionsendonaturaltransformationswhosecomponentsareallsplitidempotentsplayacentralroleWecallsuchanaturaltransformationaotentnaturaltrTheoremGivenac togiveabirctivesubgoryoftogiveasplitidempotentnaturaltransformationonInordertoproethisweneedtheconstructionofabireectivesubcategoryfromasplitidempotentnaturaltransformationonidThisisgivenbalimitinthecategorycalledanDenitionbeacategoryandf beacellinitTheistheuniversalcellhthatidSpellingthisouthastopropertiesigivhthatisanidenycellthereexistsauniquehthathXkWkcommetaliigivkkbothidentitiesandthereexistsauniquecellhthattiersarelimitsincategoriesasexplainedinKelly sarticleProof ofTheorem idbeasplitidempotennaturaltransformationtheidentierofandidthesplittingofThenidBytheunivyoftheidenonehasauniquefunctorTheadjunctionisgivenbSABAJBSABwithunitApplyingthesameargumenttooneobtainsorthereversedirectionesthedesiredsplitidempotentItiseasytoverifytheseconstructionsaremutuallyinTheoremallowsonetoreplaceananalysisofbireectivesubcategoriesythatofsplitidempotentnaturaltransformationswhichisofteneasierExampleThecat

egoryofnitesemilatticesisbireectiveint
egoryofnitesemilatticesisbireectiveinthecategoryofnitecommesemigroupsFirstnotethatanyonegeneratorniteesemigrouphasexactlyoneidempotenWiththeadditivnotationletbegeneratedbwithrelationikThereisauniquewithh ksaSinceonehasnkxieisanidempotentForunicitifisalsoanidempotenGivenanitecommesemigroupbetheuniqueidempotentinthenitesubsemigroupofgeneratedbThefunctionisanendomorphismonsincegivxyisanidempotentinandhenceytheuniquenessTheuniquenessalsoimpliesthatisnaturalinsplitswiththeretractwhichisasemilatticewiththeorderSimilarlysemilatticesinthecategoryoftorsioncommesemigroupsformabireectivesubcategoryOnemaalsoreplacesemigroupsbymonoidsExampleThecategoryofsetsandrelationsisbireectiveinSProctheinteractioncategoryofsynchronousprocessesPropositionanobjectSProcisapairofsetswithanonemptprexclosedsubsetof amorphismfromisastrongbisimilarclassoflabeledtransitionsystemswhosetracesareconintheobvioussense thecompositePBisgivenby synchronization atieforacthereisatransitionifandonlyifthereexistswithaanda andnallytheidenetalisgivenbythelabeledtransitionsystemwhosetracesareenanobjectletthesubsetofenbythestringsoflengthatmostThereisatrivialonesteplabeledtransitionsystemwithstart abend abaSAjAbotharebisimilartothetransitionsystem truncated toatmostonestepSoisnaturalinSProcThisalsosplitsgivingtheretractwhereustheemptystringThestatementatthebeginningholdssincethefullsubcategoryofSProcenbythosetheidentra

nsitionsystemispreciselyExamplebeatop
nsitionsystemispreciselyExamplebeatoposandRelthecategoryofrelationsinieRelhasthesameobjectsasandaRelmorphismisanequivalenceclassofmonicpairswiththecompositiongivenbypullbacksandtheepimonofactorizationLetbeacollectionofobjectsthatincludestheterminalobjectThenRelthefullsubcategoryofRelgivenbytheobjectsinisbireectiveinRelifandonlyifasafullsubcategoryisreectiveinandclosedunderpoerobjectformationThisrequiresanontrivialproofbuttheproofrestsonthefactthatcertainsplitidempotennaturaltransformationsonidarenecessarilyequivalencerelationsFsubcategoriesofatoposclosedunderpoerobjectformationarestudiedindetailbreydwithanapplicationinlogiceplantoprepareasequelgivingfulldetailsoftheseapplicationsandotherharacterizationsofbireectivitenowreturntoourleadingexampleenacategoryacoidentierinisanidentierinrevthecellsinthedenitionForourmainexampleofacoidenExample beacategoryandletididbeanidempotentnaturaltransformationThenthecoidenisgivenbyfactoringythecongruencewhereforfgoseethisrstobservethatisacongruenceonitisobviouslyanalenceoneachhomsetAB itrespectscompositioninbecauseisnaturalwifisidentiedwiththeidenyandthenisidentiedwithwhichisidentiedwithsoidSowemaydescribethecoidenObObABABifandonlyifenanyfunctorbeteensmallcategoriesonehasafunctoriscompleteandcocompletehasleftandrightadjointsgivenbyleftandrightKanextensionIfthecoidentierofanaturaltransformationbeteenfunctorswhosevalueisequalonobjectsitfollowsfromtheuniversalpropertythat

isfullyfaithfulexhibitingasequivtto
isfullyfaithfulexhibitingasequivttoafullsubcategoryofThatetalsubcategoryisgivenbythosehthatidwhereisthenaturaltransformationPropositionGivenaceeveryidempotentsplitsandaalidempidid thefullinclusionasabirctivesubgoryofTheadjointoftothesplittingofProofThisfollowsbyusingtosendcolimitsintolimitshencecoidentierstoidentiersandbyapplyingtheconstructionofTheoremNotethatalwyssplitsDenition Afullyfaithfulfunctorifthe CisfaithfulSpellingthisoutafullsubcategoryifforanyparallelpairofdistinctmapsfgthereexistsanobjectandamaphthataredistinctForexampletheunitcategoryisgeneratinginandinandthearrowcategoryisgeneratingAcategorywithaterminalobjectiswellpiftheinclusionisgeneratingPropositionGivenageneratingfunctor anyendonaturansformationonisuniquelydeterminedbyitsrestrictiontoProofstidimpliesforeacandynaturalitSotherearenomoreendonaturaltransformationsonidthanthereareonCorollaryorawellp thereisnonontrivialidemptentnaturaltransformationonProofTheonlynaturaltransformationontheinclusionofistheidenonRemarkInourcategoryofworldsDenitionisnotageneratorasonecannotdistinguishtomorphismswhichdi!eronlyintheiralencerelationpartsbuttheoneobjectsubcategoryofythetoelementsetisApplyingtheaboepropositionthereareatmostsixnaturaltransformationsonidofwhichfourcanbeidempotenByexaminingeachonecanconcludeidistheonlyidempotennaturaltransformationonidotherthantheidenemayuseRemarktodeducethatoursemanticcategoryhasonlyonenontrivialbiree

ctivesubcategorywhichisofcoursethesubc
ctivesubcategorywhichisofcoursethesubcategoryofpassiveobjectsInfactweshowastrongerresulttogiveansplitidempotentnaturaltransformationonidistogiveanidempotnaturaltransformationonidThisgivesaconersetoPropositionetalincasethebasecategoryisTheliftingofthisresultfromroutinewegiveitforforeaseofexpositionPropositionorasmallc togiveanidempotentnaturansformationonistogiveoneonProofenanidempotentnaturaltransformationiditextendstoyhommingwgivenanyidempotennaturaltransformationidythefactthatevisacolimitofrepresenisfullydeterminedbitsbehaviouronrepresenuseverysucarisesfromauniqueidExampleenamonoidwithzeroelementforallisbireectiveinthecategoryofsetscorrespondingtotheidempotentonidregardedasaoneobjectcategoryRemarkyseemstobethedistinctivecategoricalpropertthatdi!erentiatesthemodelbasedonthecategoryfromotherextantexamplesoffunctorcategorysemanticsForexampleOlesoriginallyusedafullonobjectssubcategorythemapsfRbeingthosewheretherestrictionoftoanalenceclassisbijectiveClearlythisrulesoutthestatechangeconstraintendomorphismsandsothereisonlyonenaturalidempotentonidnamelytheidenAsaresultthefunctorcategoryusedbyOlespossessesnonontrivialbireectivesubcategoriesDiagonalCategoriesInthissectionwedenestructureonasymmetricmonoidalcategoryAdiagonalstructureconsistsofthedataandsomeoftheaxiomsrequiredtoforcethemonoidalstructuretobeniteproductstructureOfcoursethecategoryofwhasdiagonalstructureasdoesanycategorywithniteproductsromdiagonalstructureonecanobtaina

nidempotentnaturaltransformationthatina
nidempotentnaturaltransformationthatinaprecisesensemeasurestheextenttowhichthediagonalstructurefailstobeniteproductstructureThisidempotentallowsustodeneabireectivesubcategoryofthepresheafcategoryasintheprevioussectionandthediagonalstructurefurtherallowsustodeduceresultssuchasthatthemonoidalstructureonthepresheafcategoryrestrictstoniteproductstructureonthebireectivesubcategoryandthattheadjunctionbecomesamonoidaladjunctionDenitioncategoryisasymmetricmonoidalcategorywhoseunitistheterminalobjectoftogetherwithanaturaltransformationwithcomponencalledthemorphismonsucetal AAAAA A AAAAAA AA A ARAAcAAAB AB A BRABABItisroutinetoverifythatinadiagonalcategorythemapsformanidempotentnaturaltransformationfromidtoidOurleadingexampleofdiagonalstructureisasfolloExampledeneythediagonaltogetherwiththetotalrelationExampleConsiderthesymmetricmonoidalclosedcategorypointedsetsthemonoidalstructurebeingsmashproductAisacategorywithzeromorphismsConsiderancategorywithniteproductsThentheniteproductsdenethesymmetricmonoidalstructureandwemaydenetobethezeromorphismSpecicexamplesofsuchcategoriesarethecategoriesofmonoidsofpointedsetsandofcpo swithbottomandbottompreservingmapsExampleycategorywithniteproductsItiseasytoseethatinExamplesandthestructureisnotthatofniteproductssincethediagram AAAAdoesnotcommuteObservethatinExampleisthestatectidempotenAlsoinExampleandthethreespecicexamplesinistheonlyno

ntrivialidempotentnaturaltransformationo
ntrivialidempotentnaturaltransformationontheidenyfunctorbyPropositionPropositionThedataforadiagonalcgoryformniteprductstrucetaleifandonlyif AAAidRAProofInanycategorywithniteproductsthecompositeofthediagonalwiththeprojectionmustbetheidenGivenAgdenetobe CCCItisroutinetovusingtheequationandtheterminalobjectconditionthattheappropriatetodiagramscommyissimilarusingthethirdofthethreediagonalcommPropositioneadiagonalcgoryThenthefrgoryonthatforesthediagonaldataoftobeniteprducts isgivenbythectierofthenaturaltransformationdeterminedbyProofThisfollowsfromPropositionbecausesendingthediagonaldatatoniteproductstructurenecessitatestheidenticationofwithidandsuchidenticationwiththeadditionofnofurtherobjectsorwsyieldsaniteproductstructureExampleApplyingtheconstructionofPropositiontoExampleyieldsthecategoryofcountablesetsorExampletheconstructionofyieldsacategoryequivttotheunitcategoryTheconstructionoftheofworldsfromthecategoryofcountablesetsgeneralizeseasilytoaconstructiononanysmallcategorywithnitelimitsOnestillacquiresadiagonalcategoryandfollowingthatconstructionbythatofPropositionreturnstheoriginalcategoryoendthissectionwedigressbrieytoobservethatforgeneralreasonsmonoidalstructureongivingrisetoanidempotentnaturaltransformationonidisrestrictedTheargumentgoesasfolloProposition oltzKellyandLairGivenamonoidalcwithunit anyidempextendstoanidempotentnaturaltrmorisinjeProoffortherightidenonehasamonoidhomomorphismII

CCidCidCf fCCrCCIfCI
CCidCidCf fCCrCCIfCIwithrightinerseIISoisamonomorphismThiseasilyrestrictstoidempotenSonaturaltransformationsonidlimitthepossiblemonoidalstructuresInparticularetalRemarkorthecategorythereareexactlytoidempotentnaturaltransformationsididRemarkSoforanymonoidalstructureonwhoseunithasanidempotentonittheunitiseithertheterminalobjectortheinitialobjectsinceotherwisetherewouldbemorethantoendomorphismsontheunitInthissectionwetakeasmalldiagonalcategoryconstructthepresheafcategoryonitandapplytheconstructionofPropositiontotheidempotentoobtainabireectivesubcategoryofThepresheafcategoryisthefreemonoidalcocompletionofeusethisfacttogetherwiththediagonalstructureontodeducetherelationshipbeteentheinducedmonoidalstructureonandniteproductsinthebireectivsubcategoryItfollowsthatthelatterisafullsubcategoryofthecategoryofemonoidsoneonlyrefertoasourbasecategoryinthissectionwhereasforourleadingexamplethebaseisthecategoryofdomainsAllourresultshereextendto infacttheyextendtoanycartesianclosedcompleteandcocompletecategoryifwestartwithasmalldiagonalEvsmalldiagonalcategorycanbeseentriviallyasasmalldiagonalsowecandeduceresultsforourleadingexampleimmedieexpressourresultsonlyintermsofandordinarycategoriesmerelyforeaseofexpositionTheorem ImandKelly easmallsymmetricmonoidalgoryThen thefresymmetricmonoidalcompletionofwithsymmetricmonoidalstructuregivenbyleftKanextensionCCYCCopSetCYCYYSpellingthisoutiscocompleteandcolimitsAn

explicitformulaforisXYCXthecoequaliz
explicitformulaforisXYCXthecoequalizerinXYXuXYCXXYCXoftheevidenomapsXYYxywxgywanduvxywxyRemarkThemonoidalstructureonthesemanticcategorygivetalinDenitionagreeswiththemonoidalstructuredeterminedbyPropositionandtheextensionofTheoremtoratherthanwassumeisadiagonalcategoryewritefortheidempotenbethecoidentierdeterminedbExampleConsiderthefollowingdiagramYCChYCSaehaeseenbyPropositionthatisfullyfaithfulwithleftandtadjointequalgivenbysendingtothesplittingofsendsthemonoidalstructureoftoniteproductstructurePropositionThecategoryiscartesianclosedandcocompleteSobytheuniversalpropertyofwehaPropositionGiventhediagramabtoniteductsonPropositionoranyfgProofThefamiliesfgandfgbothformnaturaltransformationsfromtoitselfThesetonaturaltransformationsareequalifandonlyiftheirrestrictionsCCareequal thisisimmediatefromthedenitionofasaleftKanextensionSoitsucestoproethatforeacandforXYthemapsZZXZXandZareequal butthatholdsbyaroutinecalculationusingthethirdcommyinthedenitionofdiagonalcategoryewriteforthefullinclusionPropositionoranyfgProofehaidandidandweshowrstthatliesinid butthisfollowsimmediatelyfromPropositionSoSinceandthetadjoinehaSJfSJgJSJfJSJgJgPuttingthistogetherwehaTheoremThefullinclusionsendsniteprductsinthemonoidalstructureof andhasleftandrightadjointsendingtothesplittingof sendingthesymmetricmonoidalstructuretoniteductsSo bemonoidaladjunctionsetalCorollary

isafullsubgoryofthecgoryofctivecomono
isafullsubgoryofthecgoryofctivecomonoidsinProofrestrictstoniteproductsoneachobjectofpossessesauniquecommecomonoidstructurefaithfulnessisobIntheparticularcaseofExamplecalculationoftheformulaforealsthatispreciselythecategoryofcommecomonoidsinthissectionweaddressclosedstructureNoneofourresultsherestrictlyrequiresthefactthatwehaeabireectivesubcategory infacttheydonotrequirewehaepresheaeseitherHoertheleadingexampleisasthroughthecourseofthepapertheinclusionoftoRecallfromtheprevioussectionthatgivenasmallsymmetricmonoidalcategorythecategoryisthefreesymmetricmonoidalcocompletionofInfactmoreistrueissymmetricmonoidalclosedThatresulttogetherwithallouranalysisoftheprevioussectionextendstosmallsymmetricmonoidalcategoriesproallypresentableasacseeThecategoryofdomainsissuchacategorysoforgeneralreasonsissymmetricmonoidalclosedoproetheresultsofthissectionweconsideramoregeneralsituationPropositionesymmetricmonoidalclosed withafullinclusionwithleftadjointeservingsymmetricmonoidalstructuruptocentisomorphismThenisanexponentialidealofProofItsucestoshowthatforanAJXliesintheimageofoseethatapplyYonedatothefollowingsequenceofnaturalisomorphimsforanAJXAJXFAXFCCJFAXByasimilarcalculationonecanshowthatgivenanyfullcoreectivsubcategoryofasymmetricmonoidalclosedcategoryhthatclosedunderthemonoidalstructureofthenissymmetricmonoidalclosedThisallowsustodeduceTheoremeafullrctiveandcctivesubgoryofsymmetricmonoidalclose andassumeisclosedunderthemonoidalstr

uceofandtheleftadjointpreservesthesymme
uceofandtheleftadjointpreservesthesymmetricmonoidalstructurissymmetricmonoidalclosedandisinfactanexponentialidealofPuttingthistogetherwithearlierresultswemayconcludeetalCorollarynysmalldiagonalcesabirctivesub suchthatisaprafcgory hencartesiancloseandanexponentialidealin withboththeinclusionandadjointprservingthesymmetricmonoidalstructurSAbramskySGaandRNagarajanteractionCategoriesandtheoundationsofTypedConcurrentProgrammingdingsofNAdStudyInstitute InternationalSummerSchoolMarktob RFBluteJRBCocettandRAGSeely and StorageastensorialstrengthToappearinMathematicalStructuresinComputerScienceBDaOnclosedcategoriesoffunctorsInSMacLaneeditorortsoftheMidwestCategorySeminarolumeofeNotesinMathematicspagesSpringerVerlag FFoltzGMKellyandCLairAlgebraiccategorieswithfewmonoidalbiclosedstructuresornoneJournalofPureandApplie PreydTheaxiomofcJournalofPureandApplie GBImandGMKellyAuniversalpropertyoftheconolutionmonoidalJournalofPureandApplie  GMKellyStructuresdenedbynitelimitsintheenrichedcontextICahiersdeTopetGeomDi  GMKellyElementaryobservationsoncategoricallimitsBulletinofthealianMathematicalSo GMKellyandRStreetReviewoftheelementsofcategoriesInADoldandBEckmanneditorsgorySeminarSydney  olume ofeNotesinMathematicspagesSpringerVerlag PWOHearnAJPerMTamaandRTtSyntacticConofInterferenceRevisitedI