/
fe-pseudodifferential fe-pseudodifferential

fe-pseudodifferential - PDF document

liane-varnes
liane-varnes . @liane-varnes
Follow
348 views
Uploaded On 2015-07-29

fe-pseudodifferential - PPT Presentation

a a i L a two a space a a a a a a Z a a a finite sketched I a a a dr a TE p ID: 96320

manifolds finite index invariant finite manifolds invariant index dirac lagrangian theorem copies hand boundary finishes constants fix find nun

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "fe-pseudodifferential" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

a a i = L a two a space. a a a a a a = Z a a fe-pseudodifferential a finite sketched I a a a (dr) a T(E pô* ó(d/dr+D) a e a Ã(E) (-å, 0]xM c X -^ M x a P 0. a and its index is ¢(P) — � is the the heat kernel D and ç(D) is the D A a V a a a - d*)ù e T{K - examples a a a a a 0 ë = � := a = the a = - . a a a two = a x x a a a a / = a = I(d/dr / D = 0. a a - = a a / A a è = P P P / = L e e . a = , Lagrangian L) I a - ç(D - ç(D L =: d(D L a a äD) f a{D,äD), ß Ù{D,äD). L a right-hand right D E a / = copies = x a x x Lagrangian right L L := a = m(L Z a a := V / a y) = ® y ® a L = m(l = V a V := x - 1 F = . Moreover, a a a i - is a is an = (kL e K) + m(L right-hand - ç(D - ç(D = the the L the of (V a Z a a a Z . Z = 0 L) Ù{D,äD) = 0. = Z U M Z a L x := L E) D = ç(M) = ç(M a H D_ a P_ e ç(M - ç(M L = m{L - 2I(P . n a a a a a a a a a a a ¾ôDe dr � - dr � 0� � 0� n t) = � t) t) replace ^ t) = t) - R_(s, Þ) - � = ç(D a� Tr(D_e~ � 0 C � finite = E . side a 0 := s - - = + = + B(Þ - + 2K-B- 2K) - a A D t) R t) - R_(0, t) a copies Z . / = 3 , a + 0 + ç(M — Ak—\ i = 3 . / = a / E ç(M) = m{F{L) n - \ - is the L under the F on kerD In - ç(M)] e = a a / = = M U = - ç(M = - Z + + m(L L = = L := M U Z U� a r] x N M r M r Z a � P_) 0 � r a {(P right = finite / = a a L i = a . = . . x N x N. � / = � r = . a an 1 for all + uG, u e [0,1] a � r a an r for all ç(M + . - ç(M � r = a M M IL + m(L IL + m(L i = n iö j an r all� rr IL - m{L IL IL - m(L IL - ç{M IL = m{L IL - IL - ç(M ILJ - m(L IL - ç(M IL IL - m(L IL a . x a F±ÈF~ Moreover, M dX_ a Ã(F±) F F * M i a = M {ø e = = kerB i L = iö i,j = an r for all + - = / = a N N N M / E , M a i = 2 . an r for all r� r - ç(D - m{L = ç(M) - IF(L - m{F{L + - ç(M = m(F(L - m(L - = - A a a a Ã(End(E = a a - D.(s), s, t e a a (t) a e Moreover, e a = = are 'continuous' such that the = t = a a - P - sf{D_(t)} + r� r for and L w 1 for all = sf{D + sf{D - sf{D a a a finished. a a Moreover, finds a a a a a C / and are a e X a C ^ = a 1 g e / a = G = H*(G, G a a G is a compact X such that G measurable, then H*(C = 0. finite a associated a ô = ô a = Ë Ë a a / = 3 . - a ô e = 0. e C = ô S\ a 0 H a find a a a / a fix a = a is a unique ì e C\ (K) / := ms^ô) ô f ô(kl,l K = mds^ô) = = C / = dì ô. ì = a e = ì Ë = '.— a = = = = Q, I(Q) = -P. = (Q, Q) = 0. G = = = = / £ a = = 0 = 1 = m F a ( , ) a / = / a := (Ix Lagrangian / - / Ë . u e K. l A = l, = I) = AA~ e 1 K Ë + = , G = f a a = l = m(l = m(L IL + m(L IL + m{L IL i = i ^ then L) = e K IL) = IL). IL) A = ô(L L L = = L = + + An a M) a &-ç(ëß), is Hirzebruch-Jú? X N) -M dX M dX_ a + 3 - & - S? - ç(M any i = - N and a the M = m e = m nN), (X_, nM -nM a � e L(H) A e a = P P e È � = - - - P are H, then - f is a /� 0 (Q(PQ) P(QP) = 2(Q(PQ) - - PQP) a e 1 e e / = 0 := 1 - a Z 1 0 \— y b, c, d: H -+ H / ¥ / Z Z Z + + = = c*b, b*c = d*a, a*b = = = = = = l a x x N e + is to P_) e L for� N2n. = + / - â + J_ � = J- Ð « + + å + � 0 a = e~ = = ) , = precompact, a � � � = (ä(x),D finite and, ø e V� 0 [D °-D \ éëD � � n/2 y) a all x, y e M a e M c \ë\) c i = x, y e + A t) e- E finite x + = t x x 0 cZuZ¼ = 0 x . x,y) � C Ce~ Ce' Ce~ y) - Ce~ Ce~ y))r(x)\ Ce~ R(s (R(s,t) t, x e the = t)_)l R{s � x x R(s t) t) K(t) Z a (M a L constructions e x x finite are� C for � t0, (x,y)eM WJt,x,y))\ y) -D_ÚV_(t, x, y))\ W_(t,x,y))l(x)\ Ce~ x, y) - D_W_(t, WJt,x,y))\ Ce~ y) -D_W_(t, x, y))\ W_(t,x,y))r(x)\ Ce~ x, y) -D_ÚV_(t, x the (R(s R(s (R(s,t) (s, t, x, y) e x x the t)_) = l(R(0, 0) t)_) = r(R{0, = R(s, t)_) = = x U x v(R(s R(s are uni- (s e x x = finite � ß� 0 - A = R(s . Moreover, + - + 2K(Þ) + - - + = + - - limit - B(Þ - 2K{Þ) + - - the Hence, = + = -2I(P . - B{t) - - B(t) - - first a / a x x = l[P ° - l of P_{t)) is (t e x e~ - e~ / finite l - are (t e x = lP - - - P right-hand - + - l - P find a a 0 ~ P = lP - P a - l a finite = P_(t)] / a = v x x N-i N-i-l 7 Q]v - = P_(t)](Q Q) a a finishes ç(M - ç(M - = G a D — tG (P . A a right a a {pô a := keôD is a V, i.e., L and Ö L ø e u, -P ø) - {ö, Bø) = {Iu, e L a e kerB = x x x Z L = 5 = = a = 0]x N a finishes a� a x r N) x a P_) e := D D_ r U Z . U Z (NU N), a Z , a Z U Z - l)G x right x e domB(u) e x N e {L a a h L L UZ,E be ø with ø(s) e V È V for all s e [-r, r]. Then B(u) h = two copies Z . � � r � � r E e (N_ . � -ìlh ëH L a x(NuN), x(NuN). L e L e = ö ö e = 0 - 1 ^ = ø ø_ + ø Z . ø L := + x - - M � the r� r e ø be a B(u) to the d/2 - ëK(ø)\\ C(\ë\/Vf O . ø two - ëK(ø) 0 first x - 1 = \\ø y/7/2\\ø - x C(l/y/ú)e- x M first a a are constants � 1 all r� r following holds: ø be a D corresponding eigenvalue assume a / = J á - 2/V?. ^ � � ^ — 1 * - � oo,� c r all r� w be a the c a a oo, c� 0, all r� r u e be a an � � e c a 0 1 - å, -r] x N. a = ø x N of e å, -r] y(ø Ø-) C/y/r e x e (-å ,0]xN. e - x N = - + are constants C c� all� rr u e following a normed eigenvector of D(u) corresponding to an eigenvalue ë with c the boundary values on the first component the following c(ë first a / = � all r� r u e be a an Then c� all r� r u e be a the c. the and a = ø + ø Z . N e ã) + = ö ö C{ë e~ C(ë e~ e = a 1 + 0 , = ø + ø Z . + - x + - 1 * G are � 1 for all r� r ø be a D(u) an c. Then - ëA(ø)\\ C(ë O . ø two - ëA(ø) 0 + - + x 0 - x - l N. - ëA(ø)\\ C(ë a fix d/2 � r is an r r for r� r we have equality of the = sf{D(u)}. ë e a a = r e[0, I] e - e a � r c e [u~ e [u~ C � 0 c, a ë/y/r + e e [u~ Ëv) a , u*] finitely - £ e + e-") c ë_ 0 . 0 = sf{B(u) finishes = = B - u) = sf{B & asymmetry and Riemannian & quantum Hall effect and the for , quantum Hall effect and the for & kernels and Dirac & on the families index theorem for manifolds & analysis of & boundary Dirac of the ç-function for an Dirac type, Dirac manifolds , the families of Dirac , theorem and , for manifolds , for the eta-invariant, , the , ç-invariant as a Lagrangian of & , the Maslov index, , the adiabatic approximation and conical & estimates for of the Laplace the manifolds, in & limits of the ç-invariants, the odd- Atiyah-Patodi-Singer problem, theory, the heat equation, and the Atiyah-Singer index theorem, & curvature and the Dirac com- manifolds, & theory for linear & cup & & ç-invariant of value of ç on the boundary condition and a ð & Weil index and theta & the ç-invariant, ç-invariant, , and the ç-invariant, and manifolds Maslov index, the manifolds, of the the additivity of the ç-invariant, manifolds,

Related Contents


Next Show more