PDF-L.VandenbergheEE236C(Spring2013-14)Ellipsoidmethodellipsoidmethodcon
Author : liane-varnes | Published Date : 2016-12-02
EllipsoidmethodhistorydevelopedbyShorNemirovskiYudinin1970susedin1979byKhachiantoshowpolynomialsolvabilityofLPspropertieseachsteprequirescuttingplaneorsubgradientevaluationmodeststorageOn2
Presentation Embed Code
Download Presentation
Download Presentation The PPT/PDF document "L.VandenbergheEE236C(Spring2013-14)Ellip..." is the property of its rightful owner. Permission is granted to download and print the materials on this website for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
L.VandenbergheEE236C(Spring2013-14)Ellipsoidmethodellipsoidmethodcon: Transcript
EllipsoidmethodhistorydevelopedbyShorNemirovskiYudinin1970susedin1979byKhachiantoshowpolynomialsolvabilityofLPspropertieseachsteprequirescuttingplaneorsubgradientevaluationmodeststorageOn2. LetAbeasquarematrixofsizenn.Thenthefollowingstatementsareequivalent.1.Aisinvertible.2.Aisrowequivalenttotheidentitymatrix.3.Ahasnpivotpositions.4.TheequationAhasonlythetrivialsolution.5.ThecolumnsofA Proximalmappingprox(x)=argminuf(u)+1 2ku xk22iffisclosedandconvexthenprox(x)existsandisuniqueforallxexistence:f(u)+(1=2)ku xk22isclosedwithboundedsublevelsetsuniqueness:f(u)+(1=2)ku xk22isstrictly Proximalmappingtheproximalmapping(prox-operator)ofaconvexfunctionhisdenedasproxh(x)=argminuh(u)+1 2ku xk22examplesh(x)=0:proxh(x)=xh(x)=IC(x)(indicatorfunctionofC):proxhisprojectiononCproxh(x)=ar First-orderconvexoptimizationmethodscomplexityofnding-suboptimalpointoffsubgradientmethod:fnondierentiablewithLipschitzconstantGO (G=)2iterationsproximalgradientmethod:f=g+h,ha`simple'nondiere AssistantAdjunctProfessor,ColumbiaUniversityCOMSW3136EssentialDataStructuresinC/C++,Spring2013,Enrollment:59COMSW3157AdvancedProgramming,Spring2013,Enrollment:136COMSW3157AdvancedProgramming,Fall2012, Self-concordantfunctionsafunctionf:Rm!Risself-concordantifdomfisanopenconvexsetfisthreetimescontinuouslydierentiableandr2f(x)0ondomffisclosed,i.e.,f(x)!1asx!bddomftheHessianoffsatisestheinequal Generalized(conic)inequalitiesconicinequality:aconstraintx2KwhereKisaconvexconeinRmwewillrequirethattheconeKisproper:closedpointed:K\( K)=f0gwithnonemptyinterior:intK=;;equivalently,K+( K)=Rmnotati Proximalpointmethoda`conceptual'algorithmforminimizingaclosedconvexfunctionf:x(k)=proxtkf(x(k 1))=argminuf(u)+1 2tkku x(k 1)k22canbeviewedasproximalgradientmethod(page6-3)withg(x)=0ofinterestifpro
Download Document
Here is the link to download the presentation.
"L.VandenbergheEE236C(Spring2013-14)Ellipsoidmethodellipsoidmethodcon"The content belongs to its owner. You may download and print it for personal use, without modification, and keep all copyright notices. By downloading, you agree to these terms.
Related Documents