/
ContentsChapter1.TheLanguageofMathematics11.1.PropositionalCalculusand ContentsChapter1.TheLanguageofMathematics11.1.PropositionalCalculusand

ContentsChapter1.TheLanguageofMathematics11.1.PropositionalCalculusand - PDF document

linda
linda . @linda
Follow
342 views
Uploaded On 2021-01-11

ContentsChapter1.TheLanguageofMathematics11.1.PropositionalCalculusand - PPT Presentation

CHAPTER1TheLanguageofMathematics11PropositionalCalculusandLawsofInference111StatementsAsentenceinthegrammaticalsenseforwhichitisinprinciplepossibletodeterminewhetheritistrueorfalsewillbecalle ID: 828674

theorem sketchofproof eld nite sketchofproof theorem nite eld inparticular x0000 deg conversely f0g fag examples ifa hx2 ker kera

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "ContentsChapter1.TheLanguageofMathematic..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

1 ContentsChapter1.TheLanguageofMathematic
ContentsChapter1.TheLanguageofMathematics11.1.PropositionalCalculusandLawsofInference11.2.PredicateLogicandBasicSetTheory41.3.FurtherTopicsinSetTheory81.4.Relations,FunctionsandPartialOrderings101.5.TheSubjectsofAlgebra131.6.TheNumberSystems14Chapter2.Groups232.1.Groups23Chapter3.Rings333.1.GeneralRingTheory333.2.RingHomomorphisms363.3.UniqueFactorization373.4.Polynomials423.5.AlgebraicGeometry49Chapter4.Fields534.1.FieldExtensions534.2.Somemoreconceptsfromgrouptheory574.3.GaloisTheory584.4.RadicalExtensions594.5.TheTheoremofRuniandAbel61Chapter5.VectorSpaces635.1.Fundamentals635.2.LinearTransformations655.3.Finite-dimensionalvectorspaces675.4.EigenvaluesandEigenvectors715.5.SpectralTheoryinFinite-dimensionalComplexVectorSpaces725.6.MultilinearAlgebra775.7.NormedSpacesandInnerproductSpaces79Index85iii CHAPTER1TheLanguageofMathematics1.1.PropositionalCalculusandLawsofInference1.1.1Statements.Asentence(inthegrammaticalsense)forwhichitis(inprinciple)possibletodeterminewhetheritistrueorfals

2 ewillbecalledastatement.Thus\Parisisthec
ewillbecalledastatement.Thus\ParisisthecapitalofFrance."and\Twoplusthreeissix."arestatements.\Howareyou?",\Let'ssee.",and\2+x2=11."arenot.\True",denotedbyT,and\false",denotedbyF,arecalledtruthvalues.1.1.2Connectives.Statementsmaybecombinedtoobtainotherstatements:thecom-binationisachievedusingsocalledconjunctionslike`and',`or',or`but'.Inlogicandmathematicsoneusesthefollowingconjunctionsandcallsthemconnectives:Theconjunction`and';symbol^.Thedisjunction`or'(inthesenseof`porqorboth.');symbol_.Theconditional'if-then';symbol!.Thebiconditional`ifandonlyif';symbol$.Theprecisede nitionsoftheseconnectivesaregiveninthetruthtablebelowbystatingwhatthetruthvalueofsuchacombinedstatementisgiventhetruthvaluesofitsparts.Inthefollowingpandqdenotegivenstatements.p q pandq porq porqbutnotboth Ifpthenq pifandonlyifq T T T T F T TT F F T T F FF T F T T T FF F F F F T TJustasinarithmetictheuseofparenthesesmightbenecessaryinordertoindicateprioritiesinperformingvariousoperationswhenmorecomplic

3 atedstatementsareformedsymbolically.Inst
atedstatementsareformedsymbolically.Insteadofthephrase`Ifpthenq.'oneusesalso`qifp.'and`ponlyifq.".Togetherwiththestatementp!qoneoftenconsidersalsoitsconverseq!panditscontrapositive�q!�p.1.1.3Negation.Anotherwaytomanipulateastatementistoformitsnegation.Thenegationofpiscalled`Notp.'andisdenotedby�p.Thestatement�pistrueifpisfalseandfalseifpistrue.1.1.4Tautologies.Acombinedstatementiscalledatautologyifitisalwaystruenomatterwhatthetruthvaluesofitspartsare.Themostprimitiveexamplesoftautologiesarep_(�p)whichiscalledthelawoftheexcludedmiddleand�(p^�p)whichiscalledthelawofnon-contradiction.Astatementpissaidtoimplyastatementqlogically,ifp!qisatautology.Thisisdenotedbyp)q.Forinstance,p^(p!q))q.Thiscanbeseenfromatruthtable.1 21.THELANGUAGEOFMATHEMATICSTwostatementspandqarecalledlogicallyequivalentifp$qisatautology.Wewritethenp,q.Notethatalogicalequivalenceisalogicalimplicationbothways.Thefollowingexamplesareimportant:p!q,q_�p,p!q,�q!�p,\Eitherporqbutnotboth."

4 ,(p^�q)_(�p^q).Thesecondexample,in
,(p^�q)_(�p^q).Thesecondexample,inparticular,showsthatastatementanditscontrapositivearelogicallyequivalent.Note,however,thatastatementanditsconversearenotlogicallyequivalent.Inmathematics(aswellasinmanyotheraspectsoflife)onewantstodrawconclusionsfromcertainpiecesofinformation.Theinformationisgivenintermsofstatementswhicharetakenforgranted.Theyarecalledpremises.Theconclusionisanotherstatementwhichwewillalwaysacceptprovidedweacceptthepremises.Drawingaconclusionis(byde nition)allowediftheconclusionislogicallyimplied(intheabovesense)bythepremises.Thusthetautologiesareourrulesfordrawingconclusions.Forexample,ifweknow(ortakeforgranted)thetruthsofthestatements\IfitrainsinBirminghamthenVulcanwillgetwet."and\OnMay35itrainedinBirminghamallday."thenwemayconcludethat\OnMay35Vulcangotwet.".1.1.5Lawsoflogic.Inthefollowingwelistthemostimportantlogicalimplicationsandequivalencestogetherwiththeirnamesinlogic.Note,however,thatthelistisnotcompleteandthatanytautologymaybeusedtodrawconclusions.Lawofdet

5 achmentp^(p!q))qModustollens�q^(p!q))
achmentp^(p!q))qModustollens�q^(p!q))�pLawofdisjunctivesyllogism�p^(p_q))qLawofhypotheticalsyllogism(p!q)^(q!r))p!rLawofsimpli cationp^q)pLawofadditionp)p_qLawofabsurdityp!(q^�q))�pLawofconditionalizingq)p!qLawofdoublenegationp,�(�p)Lawofcontrapositionp!q,�q!�pLawofex-andimportation(p^q)!r,p!(q!r)Lawoftheconditionalp!q,q_�pLawofthebiconditionalp$q,(p!q)^(q!p),(p^q)_(�p^�q)DeMorgan'slaws�(p^q),�p_�qand�(p_q),�p^�qCommutativelawsp^q,q^pandp_q,q_pAssociativelaws(p^q)^r,p^(q^r)and(p_q)_r,p_(q_r)Distributivelawsp^(q_r),(p^q)_(p^r)andp_(q^r),(p_q)^(p_r)1.1.6Aschemeforproofs.Wewillnowintroduceaveryformalschemefortheproofofastatementfromanumberofpremises.Whilelateronwewillnotactuallyemploytheschemewewillalwaysemployitsspirit.Aproofaccordingtothisschemeconsistsofalistoflines.Eachlinehasfourentries:anumbertoenumerateit,astatement,alistofpremisesonwhichthestatementdepends,andanexplanation.Linesareaddedtothelistoflinesbyoneofthefollowingrules:Rul

6 eP:Addapremise.(Putthecurrentlinenumberi
eP:Addapremise.(PutthecurrentlinenumberinthelistofpremisesandwritePremiseasexplanation.) 1.1.PROPOSITIONALCALCULUSANDLAWSOFINFERENCE3RuleL:Addastatementwhichislogicallyimpliedbyaprecedingstatement.(Copythelistofpremisesfromthatstatementandstateasexplanationwhichlogicalimplicationwasused.)RuleC:Addtheconjunctionofpreviousstatements.(Forthenewlistofpremisesputtheunionofthelistsofpremisesoftheappropriatepreviousstatements.Asexplanationwritewhichlineshavebeencombined.)RuleCP:IfstatementSisinthelistdependingonthepremisesP1,...,PnandR,thenstatementR!SmaybeaddedasdependingonthepremisesP1,...,Pn.Considerthefollowingexampleinvolvingthestatementsn=\NapoleonexpelsSnowballfromthefarm.",w=\Therewillbeawindmill.",f=\Therewillbeahigherfoodproduction."Supposethefollowingscenario.IfNapoleonexpelsSnowballfromthefarm,thentherewillbenohigherfoodproduction.Resourcesarespentonahigherfoodproductionorawindmill.Wealsoknowforafactthatnowindmillwasbuilt.WewanttoprovethatNapoleondidnotexpelSnowballfromthefarm.Theproofc

7 anbedoneinthefollowingway:(1)n!�ff1gp
anbedoneinthefollowingway:(1)n!�ff1gpremise(2)f_wf2gpremise(3)w_ff2gfrom(2)bycommutativelaw(4)�wf4gpremise(5)�w^(w_f)f2,4gfrom(3)and(4)byRuleC(6)ff2,4gfrom(5)bylawofdisjunctivesyllogism(7)�(�f)f2,4gfrom(6)bylawofdoublenegation(8)�(�f)^(n!�f)f1,2,4gfrom(1)and(7)byRuleC(9)�nf1,2,4gfrom(8)bymodustollensUsingpremises1,2,and4wehavelogicallydeducedthatNapoleondidnotexpelSnowball.Asanotherexamplesupposewewanttodeduces!�mfromthepremises�s_`andm!�`.Wemightproceedinthefollowingway:(1)sf1gpremise(2)�(�s)f1gfrom(1)bylawofdoublenegation(3)�s_`f3gpremise(4)�(�s)^(�s_`)f1,3gfrom(2)and(3)byRuleC(5)`f1,3gfrom(4)bylawofdisjunctivesyllogism(6)�(�`)f1,3gfrom(5)bylawofdoublenegation(7)m!�`f7gpremise(8)�(�`)^(m!�`)f1,3,7gfrom(6)and(7)byRuleC(9)�mf1,3,7gfrom(8)bymodustollens(10)s!�mf3,7gfrom(9)byRuleCP1.1.7Obtaininglogicalimplicationsbyproofs.Supposealineinaproofisoftheform(n)p!sfg...wherepcan,ofcourse,beoftheformp1^:::^pk.Sincethestatem

8 entp!sdoesnotdependonanypremises(asindic
entp!sdoesnotdependonanypremises(asindicatedbyfginthethirdcolumn)itisatautologyandthereforewehaveshownthatsislogicallyimpliedbypor,symbolically,p)s.Forinstancethelawofconditionalizingmaybeprovedusingatruthtablebutalsointhefollowingway:(1)qf1gpremise(2)q_�pf1gfrom(1)bylawofaddition 101.THELANGUAGEOFMATHEMATICS1.3.9Axiomaticsettheory.Thediscussionofsettheoryinthissectioncanbelabeled\Intuitivesettheory".Thepresentation,however,hascertainpitfalls.Inparticular,wehaveconsideredthesetA=fx:P(x)gwhenPwassomeproperty.NowletPbetheproperty\isnotanelementofA"andconsiderwhetherA2A.FirstassumethatA2A.ThenP(A)istrue,i.e.,A62Awhichisacontradiction.HenceassumethatA62A.ThenP(A)mustbefalse,i.e.,A2Aagainacontradiction.Thisparadoxwas rstnoticedbyB.RussellandisknownasRussell'sparadox.In\Axiomaticsettheory"thisproblemisavoidedbyrestrictingtheuseofthewordsetinaproperway(determinedbytheaxioms).Foratreatmentofaxiomaticsettheorysee,forinstance:[1]PaulHalmos,NaiveSetTheory,Springer,NewYork,1973.[2]PatrickSuppes,A

9 xiomaticSetTheory,vanNostrand,Princeton,
xiomaticSetTheory,vanNostrand,Princeton,1960.[3]MartinZuckerman,SetsandTrans niteNumbers,MacmillanPublishingCo.,NewYork,1974.1.4.Relations,FunctionsandPartialOrderings1.4.1OrderedpairsandCartesianproducts.LetAandBbetwosets(notnecessarilydistinct)andassumea2Aandb2B.Thenconsidertheorderedpair(a;b).Theadjective`ordered'emphasizesthat(a;b)and(b;a)aredi erent,ingeneral.Moreprecisely,(a;b)=(c;d)ifandonlyifa=candb=d.Thus(a;b)=(b;a)ifandonlyifa=b.ThesetofallorderedpairswhichcanbeformedfromAandBiscalledtheCartesianproductofAandBandisdenotedbyAB,i.e.,AB=f(a;b):a2A^b2Bg:Onecannextde netheCartesianproductofthreesetsA,B,andCbyABC=(AB)C.Proceedinginthismanneronecanthende netheCartesianproductofany nitenumberofsets.1.4.2Relations.LetXandYbesets.AsetoforderedpairsinXY,i.e.,asubsetofXY,iscalledarelation.If(x;y)2RwesaythatxisinrelationRtoyanddenotethisbyxRy.GivenarelationRwede nethedomainandtheimageofRbydom(R)=fx:9y:(x;y)2Rg;im(R)=fy:9x:(x;y)2Rg:AsetRofo

10 rderedpairscanalwaysbethoughtofasasubset
rderedpairscanalwaysbethoughtofasasubsetoftheCartesianproductdom(R)im(R).Conversely,everysubsetoftheCartesianproductXYisarelation.IfRisasubsetofXYwecallRarelationfromXtoY.IfY=XwecallRarelationinX.LetRbearelationfromXtoYandAasubsetofX.ThenthesetR(A)=fy2Y:9x2A:xRygiscalledtheimageofAundertherelationR.Inparticular,im(R)=R(X).1.4.3Inverseandcompositerelations.GivenarelationRfromXtoYtheinverserelationR�1istherelationfromYtoXde nedbyR�1=f(y;x)2YX:(x;y)2Rg:IfBisasubsetofYthentheimageR�1(B)ofBundertherelationR�1isalsocalledthepreimageofBundertherelationR.Inparticular,R�1(B)=fx2X:9y2B:yR�1xg=fx2X:9y2B:xRyg:GivenarelationR1fromXtoYandarelationR2fromYtoZthecompositerelationR2R1istherelationfromXtoZde nedbyR2R1=f(x;z)2XZ:9y2Y:((x;y)2R1^(y;z)2R2)g: 121.THELANGUAGEOFMATHEMATICSLetfbeafunctionfromXtoYandAasubsetofX.Thenthefunctiong:A!Yde nedbyg(x)=f(x)forallx2AiscalledtherestrictionofftoAandisdenotedbyfjA.Conversely,thefunctionfiscalledanextension

11 ofg.Aparticularbijectivefunctionfromanon
ofg.AparticularbijectivefunctionfromanonemptysetXtoitselfistheidentityfunctionid:x7!x.1.4.7Partialorderings.ArelationRinXiscalledantisymmetricifxRyandyRxtogetherimplythatx=y.Are exive,antisymmetric,transitiverelationinXiscalledapartialorderingofX.WethensaythatXispartiallyorderedbyR.NowletRbeapartialorderingofXandAasubsetofX.Wede neu2XisanupperboundofAifaRuforalla2A,l2XisalowerboundofAiflRaforalla2A,sup(A)2XisaleastupperboundorsupremumofAifitisanupperboundofAandalowerboundofthesetofallupperboundsofA,inf(A)2Xisagreatestlowerboundorin mumofAifitisalowerboundofAandanupperboundofthesetofalllowerboundsofA,sup(A)iscalledamaximumifitisanelementofA,similarly,ifinf(A)2Aitiscalledaminimum,m2AisamaximalelementifmRaimpliesm=awhenevera2A,similarly,ifm2AandifaRmimpliesm=aforalla2Athenmiscalledaminimalelement.Thesupremumandin mumofasetareeachuniqueiftheyexist.Amaximum(orminimum)ofAisalwaysamaximal(orminimal)elementofA.Example:ConsiderthepowersetP(X)ofanonemptysetX.T

12 hentherelation\issubsetof"isapartialorde
hentherelation\issubsetof"isapartialorderingofP(X).NowletX=f1;2;3g,A=ff1g;f2g;f1;2gg,andB=ff1;2g;f2;3gg.Thenmax(A)=f1;2g,inf(A)=fg,sup(B)=f1;2;3g,andinf(B)=f2g.However,BdoesnothaveamaximumandneitherAnorBhaveaminimum.Bothf1gandf2gareminimalelementsofA.1.4.8Totalorderings.ApartialorderingRofXiscalledatotal(orlinear)orderingifxRyoryRxforanytwox;y2X,i.e.,anytwoelementsofXmaybecompared.InthiscasewecallXtotallyorderedbyR.Ifaisamaximal(minimal)elementofAXthenitisequaltomax(A)(min(A)).Inparticular,maximalandminimalelementsareuniqueiftheyexist.Example:Thesetofrealnumbersistotallyorderedbytherelation\issmallerthanorequalto".Oftenatotalorderingwillbedenotedbythesymbol.Wethenintroducealsothesymbols,,and&#x]TJ/;ø 9;&#x.962; Tf;&#x 7.7;I 0;&#x Td ;&#x[000;inthefollowingway:xyifandonlyifyx,xyifandonlyifxybutx6=y,andx&#x-278;yifandonlyifyx.1.4.9Wellorderings.AtotalorderingRofXiscalledawellorderingifeverynonemptysubsetofXcontainsaminimum.Inthiscaseweca

13 llXwell-orderedbyR.In1.6.4wewillshowthat
llXwell-orderedbyR.In1.6.4wewillshowthatthesetofnaturalnumbersiswell-orderedbytherelation\issmallerthanorequalto".1.4.10Theaxiomofchoiceandsomeofitsequivalents.IfthetwosetsXandYarenotemptythenXcontainsanelementxandYcontainsanelementy.Therefore,theCartesianproductXYcontainsatleasttheelement(x;y)andhenceisnotempty.Inanaxiomaticapproachtosettheoryitispossibletogeneralizethisresulttocollectionsof nitelymanysetsbutnottoarbitrarycollectionsofsetswithoutaddinganotheraxiom.ThisaxiomiscalledtheAxiomofChoice. 1.6.THENUMBERSYSTEMS19Euclid'salgorithmmaybeusedtocomputethegreatestcommondivisoroftwointegersa1;b1.Itworksbyrecursion:LetX=Z2andx1=(a1;b1)wherewemayassume,withoutlossofgenerality,thata1�0.De nef:Z2!Z2byf((a;b))=((r(b;a);a)ifa6=0(0;0)ifa=0wherer(b;a)2f0;:::;jaj�1gistheremainderofbafterdivisionbyaasde nedaccordingtothedivisiontheorem.BytheRecursionTheoremthereisauniquefunctionu:N!Z2suchthatu(1)=(a1;b1)andu(n+1)=f(u(n))=(an+1;bn+1).Nownotethatan0and,ifan�0,that

14 an+1=r(bn;an)an.LetM=fk2N:ak&#x-335;0g.T
an+1=r(bn;an)an.LetM=fk2N:ak&#x-335;0g.ThenMisa nitesetandwedenotemax(M)bym.Thereforeum+1=(0;am).Since,bytheaboveremark,gcd(ak+1;bk+1)=gcd(ak;bk)ifak6=0weobtaingcd(a1;b1)=gcd(a2;b2)=:::=gcd(0;am)=am:1.6.11TheGCDidentity.Giventwointegersa;bwherea6=0considerthesetS=fax+by:x;y2Zg\N:Sisnotemptyandhencecontainsasmallestelementwhichwillbedenotedbyd.Thusthereexistx0;y02Zsuchthatd=ax0+by0andq;r2Zsuchthata=qd+rand0rd.Thereforer=a�qd=a(1�qx0)+b(�qy0)isinS[f0g.SincercannotbeinSwegetthatr=0andhencethatddividesa.Similarlyoneshowsthatddividesb,i.e.,disacommondivisorofaandb.Nowsupposethatc&#x-277;disalsoacommondivisorofaandb.Thenthereexistintegersn;msuchthata=ncandb=mc.Henced=c=nx0+my0isapositiveintegerstrictlysmallerthanonewhichisimpossible.Henced=gcd(a;b).WehaveprovenTheorem.Ifa;b2Zanda6=0thenthereexistx;y2Zsuchthatgcd(a;b)=ax+by.ThenumbersxandycanbecomputedbyrunningEuclid'salgorithmbackwards.1.6.12Primeandirreduciblenumbers.Anintegerpforwhichjpj&#x-277;1iscalledprimeoraprimenumberif,wh

15 eneverpdividesab,thenpdividesaorb.Aninte
eneverpdividesab,thenpdividesaorb.Anintegerpforwhichjpj&#x-277;1iscalledirreducibleifp=abimpliesthatjaj=1orjbj=1.Inotherwordspisirreducibleifitsonlydivisorsare1;�1;p,and�p.Theorem.Anintegerisprimeifandonlyifitisirreducible.Sketchofproof:Supposepisprimeandp=ab.Then(withoutlossofgenerality)pdividesa,i.e.,thereexistsn2Zsuchthata=np.Hencep=npb,i.e.,nb=1whichshowsthatpisirreducible.Nextsupposepisirreducibleandthatpdividesab.Ifpdividesanothingistobeprovenandweassumethereforethatpdoesnotdividea.Sincepisirreducibleitsonlypositivedivisorsare1andjpj.Sincepdoesnotdivideawegetthatgcd(p;a)=1.BytheGCDidentitythereexistintegersx;ysuchthat1=ax+pyandhenceb=abx+pby.Thisshowsthatpdividesb.1.6.13Uniquefactorizationtheoremforintegers.Thefollowingwell-knowntheoremisalsocalledtheFundamentalTheoremofArithmetic.Theorem.Everyintegerxotherthan0and1iseitheranirreducibleoraproductofirreducibles.Moreover,thisproductisessentiallyuniqueinthesensethat,whenx=a1:::an=b1:::bmwherea1;:::;bmareirreducibles,thenn=ma

16 ndthebjmayberearrangedsothatai=bifor
ndthebjmayberearrangedsothatai=bifori=1;:::;n. 1.6.THENUMBERSYSTEMS21AtotalorderingonRisde nedthrough:L1L2ifandonlyifL1L2.ArealnumberLiscalledpositiveifLcontainsapositiverationalnumberandnegativeifLccontainsanegativerationalnumber.Therealnumberfq2Q:q0giscalledzeroandisalsodenotedby0.Everynonzerorealnumberiseitherpositiveornegativebutnotboth.Zeroisneitherpositivenornegative.Additionofrealnumbersisde nedasfollows:L1+L2=fx1+x2:x12L1;x22L2g:Itisassociativeandcommutative.Therealnumberzeroisanadditiveidentity.EveryrealnumberLhasanadditiveinverse�L=fx2Q:(9y2Lc:x+y0)g:IfLisnegativethen�Lispositiveandviceversa.TofacilitatenotationweintroducethesetQ�0ofnonpositiverationalnumbers.Also,L+denotesthesetofpositiveelementsofL.Multiplicationoftwopositiverealnumbersisde nedbyL1L2=Q�0[fx1x2:x12L+1;x22L+2g:Nextonede nesproductsofarbitraryrealnumbersbyL1L2=�((�L1)L2)ifL10andL2&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;0,L1L

17 2=�(L1(�L2))ifL1&#x]TJ/;ø
2=�(L1(�L2))ifL1&#x]TJ/;ø 9;&#x.962; Tf;&#x 10.;Ԗ ;� Td;&#x [00;0andL20,L1L2=(�L1)(�L2)ifL10andL20,andL1L2=0ifL1=0orL2=0.Multiplicationisassociativeandcommutative.Alsoitisdistributiveoveraddition.Thenumber1=fq2Q:q1gisthemultiplicativeidentity.EverynonzerorealnumberLhasamultiplicativeinverseL�1.IfL&#x]TJ/;ø 9;&#x.962; Tf;&#x 18.;ˆ ;� Td;&#x [00;0thenL�1=fx2Q:(9y2Lc:xy1)g.IfL0thenL�1=�(�L)�1.Combiningthesefactswearriveatthefollowingtheorem.Theorem.(R;+;)isa eld.NotethatLdoesnotcontainamaximalelement.Thusifsup(L)existsthenitisinLc,infactitistheminimumofLc,andhencearationalnumber.Wenowembed(Q;;+;)into(R;;+;)byidentifyingtherationalnumbersup(L),ifthisexists,withtherealnumberL.Ifsup(L)doesnotexistwecallLanirrationalnumber.Examples:LetL=fq2Q:q3=4g.ThentherealnumberLisidenti edwiththerationalnumber3=4.LetL=fq2Q:(q0_q22)g.ThenLisarealnumberbutnotarationalnumbersincesup(L)doesnotexist.Ofcourse,L

18 isusuallydenotedbyp 2.1.6.16Theleastuppe
isusuallydenotedbyp 2.1.6.16TheleastupperboundpropertyofR.EverysubsetofRwhichhasanupperboundhasinfactaleastupperbound.Thisfactaccountsfortheimportanceoftherealnumbersandsetsthemapartfromtherationalnumbers,whichdonothavealeastupperboundproperty.Sketchofproof:Letfg6=Randsupposehasanupperbound.De neS=SL2L.ThenS2Rand,forallL2wehaveLS,i.e.,Sisanupperboundof.NowassumeTSisalsoanupperboundof.Thenthereisarationalnumberq2S�TbutalsoanL2suchthatq2L.Thisisimpossible.1.6.17Roots.DenotethesetofpositiverealnumbersbyR+.Theorem.Letnbeanaturalnumber.Theneverypositiverealnumberhasauniquen-thpositiveroot,i.e.,ify2R+thenthereisauniquex2R+suchthatxn=y. 221.THELANGUAGEOFMATHEMATICSSketchofproof:ConsiderthesetS=fs2R:s�0^snyg.BytheleastupperboundpropertyofRthenumberx=sup(S)exists.Onemayshowthatxn=y.Uniquenessfollowsfromthefactthatxn1�xn2=(x1�x2)(xn�11+xn�21x2+:::+xn�22).1.6.18Thecomplexnumbers.ThesetRRiscalledthesetofcomplexnumbers.Acomplexnum

19 berz=(x;y)isusuallydenotedbyz=x+iywherex
berz=(x;y)isusuallydenotedbyz=x+iywherexandyarerealnumbers.x=Re(z)isthencalledtherealpartandy=Im(z)theimaginarypartofthecomplexnumberz=x+iy.Wede neadditionandmultiplication:(a+ib)+(c+id)=(a+c)+i(b+d);(a+ib)(c+id)=(ac�bd)+i(bc+ad):Thesetofcomplexnumbersisnotequippedwithanordering.However,byidentifyingtherealnumberawiththecomplexnumbera+i0weembed(R;+;)into(C;+;),i.e.,additionandmultiplicationinRtransferinthenaturalwaytoC.Justasa+i0isabbreviatedbyatheexpression0+ibisabbreviatedbyiband0+i1byi.Sinceib=(0+i1)(b+i0)=0+ib=ibwe ndthatibmaybeconsideredtobeaproduct.(Itiscustomary,infact,toleaveo thedotinalltheproductswehavediscussed,i.e.,ab=ab.)Moreover,sincealsoi2=(0+i1)(0+i1)=�1+i0=�1thede nitionsofadditionandmultiplicationfollowformallyfromtherulesofadditionandmultiplicationofrealnumbers.Thenumbers0=0+i0and1=1+i0aretheadditiveandmultiplicativeidentity,respectively.Everycomplexnumbera+ibhasanadditiveinverse�(a+ib)=�a+i(�b)andev

20 erynonzerocomplexnumberhasamultiplicativ
erynonzerocomplexnumberhasamultiplicativeinverse(a+ib)�1=(a�ib)(a2+b2)�1.Toeverycomplexnumberz=x+iy,x;y2Roneassignsarealnumber,calledtheabsolutevalueofzanddenotedbyjzj,throughjzj=p x2+y2andanothercomplexnumber,calledthecomplexconjugateofzanddenotedby z,through z=x�iy.Inparticular,then,z�1= zjzj�1=2.Anytwocomplexnumbersuandv(andhencealsotworealnumbers,tworationalnumbersetc.)satisfythefollowinginequalities,calledtriangleinequalities:ju+vjjuj+jvj;ju+vjjuj�jvj:For2Rletexp(i)=cos()+isin().Fromthisoneprovesthatexp(0)=1andexp(i )exp(i )=exp(i( + )).(Thereexistsadeeprelationshipbetweentheexponentialfunctionandthetrigonometricfunctionswhichisstudiedinacourseoncomplexanalysis.)SinceCisidenti edwithRRwemayrepresentcomplexnumbersbypointsinatwo-dimensionalplane.Everycomplexnumberhasthenaso-calledpolarrepresentation:z=x+iy=rexp(i)whererdenotesthedistanceofthepoint(x;y)fromtheoriginandistheorientedanglebetweentherealaxisan

21 dthelinethrough(x;y)andtheorigin.Inparti
dthelinethrough(x;y)andtheorigin.Inparticular,x=rcos(),y=rsin(),andr=p x2+y2.1.6.19References.Forfurtherstudythefollowingbooksaresuggested:[1]PaulHalmos,NaiveSetTheory,Springer,NewYork,1973.[2]StevenG.Krantz,TheElementsofAdvancedMathematics,CRCPress,BocaRaton,1995.[3]MartinZuckerman,SetsandTrans niteNumbers,MacmillanPublishingCo.,NewYork,1974. CHAPTER2Groups2.1.Groups2.1.1Groups.LetGbeasetandabinaryoperationonG.Then(G;)iscalledagroupiftheoperationisassociative,ifGcontainsaleftidentityandeveryelementofGpossessesaleftinverse.Moreexplicitly,(G;)iscalledagroupif(1)a(bc)=(ab)cforalla;b;c2G,(2)thereexistsanelement12Gsuchthat1a=aforalla2G,and(3)foreverya2Gthereexistsb2Gsuchthatba=1.Thedotisusuallyomitted,i.e.,abissimplywrittenasab.WewillalsosaythatGisagroupundertheoperationor,ifnoconfusioncanarisejustthatGisagroup.Agroupiscalledcommutativeorabelianifitsbinaryoperationiscommutative,i.e.,ifab=baforalla;b2G.2.1.2Basicproperties.LetGbegroupw

22 ithleftidentity1.1.Anyleftinverseofaisal
ithleftidentity1.1.Anyleftinverseofaisalsoarightinverseofa.Proof:Supposeba=1andcb=1.Thenb=(ba)bandhenceab=(cb)(ab)=c(ba)b=cb=1.2.1istheuniqueidentityinG.Proof:Becauseof1.5.2weonlyhavetoshowthat1isarightidentity.Nowleta2Gandsupposeba=ab=1.Thena=(ab)a=a(ba)=a1.3.Everyelementa2Ghasauniqueinverse,denotedbya�1.Inparticular,(a�1)�1=a.Proof:Supposeba=1andb0a=1.Thenb0=b0(ab)=(b0a)b=b.4.Theinverseoftheproductabis(ab)�1=b�1a�1.5.Cancellation:Ifca=cborac=bcthena=b.6.Foreverya;b2Gtheequationsax=bandya=bhaveunique(possibledi erent)solutions,i.e.,thereexistsoneandonlyonex2Gsuchthatax=bandoneandonlyoney2Gsuchthatya=b.2.1.3Examplesofabeliangroups.Alotoffamiliarexamplesofgroupsareabeliangroups:1.(Z;+),(Q;+),(R;+),(C;+),2.(Q+;),(R+;),whereQ+andR+denotedthepositiverationalandreal,respectively,3.(Q�f0g;),(R�f0g;),(C�f0g;),4.(f1g;),(f0g;+),(f1;�1g;),5.(fexp(i):2Rg;).2.1.4Notation.IfthegroupGhasonly nitelymanyelementsthenwedenotethenu

23 mberofitselementsbyjGj.Thisnumberisalsoc
mberofitselementsbyjGj.Thisnumberisalsocalledtheorderofthegroup.IfGhasin nitelymanyelementswesaythatGisofin niteorder.Nonabeliangroupsareusuallywrittenmultiplicatively,i.e.,usingorjuxtapositiontodenotethebinaryoperation.Abeliangroups,however,areusuallywrittenadditively,i.e.,23 242.GROUPSusing+todenotethebinaryoperation.Thisa ectsthenalsovariousothernotationalconventions.multiplicative additive 1 0a�1 �aQnj=1aj=a1a2:::an Pnj=1aj=a1+a2:::+anan=Qnj=1a na=Pnj=1aa0=1 0a=0a�n=Qnj=1a�1 �na=Pnj=1(�a)Ifn;m2Zanda2Gthenna+ma=(n+m)aandm(na)=(nm)aforaadditivelywrittengroupanam=an+mand(an)m=anmforamultiplicativelywrittengroup.2.1.5Groupsofbijections.LetXbeasetandconsiderthesetofallbijectionsf:X!X.Compositionisanassociativebinaryoperationinthisset.Themappingx7!x,calledtheidentitymap,isanidentity(withrespecttocomposition).Givenanybijectionf:X!Xthenthef�1isalsoabijectionfromXtoXanditistheinverseelementoff(withrespecttocomposition).Bijectiongroupsneednotbeabelian.Forexampl

24 e,letX=Randconsiderthebijectionsx7!f(x)=
e,letX=Randconsiderthebijectionsx7!f(x)=2xandx7!g(x)=x+1.Then(fg)(x)=2x+26=2x+1=(gf)(x).2.1.6Symmetrygroups.Arigidmotionisabijectionofthetwo-dimensionalplane(orthree-dimensionalspace)toitselfsuchthatdistancesbetweenpointsarepreserved.Rigidmotionsformagroupundercomposition.ArigidmotionwhichmapssomesubsetAoftheplaneontoitselfiscalledasymmetryofA.ThesetofsymmetriesofasubsetAoftheplaneisagainagroupundercomposition.Symmetrygroupsneednotbeabelian.Thisisseeninthefollowingexample.Considertheequilateraltriangletwoofwhoseverticeslieonthex-axiswhilethethirdliesonthepositivey-axis.Denotetheclockwiseandcounterclockwiserotationthrough120aboutthecenterofthetriangleby�and+,respectively.Also,denotethere ectionacrossthemedianfromtheuppervertexbyu,there ectionacrossthemedianfromthelowerleftvertexbyl,andthere ectionacrossthemedianfromthelowerrightvertexbyr.Alltheseoperationsaresymmetriesofthetriangle.Finally,denotetheidentityby.Allpossiblecompositionsofthesesymmet

25 riesaregivenbythefollowingmultiplication
riesaregivenbythefollowingmultiplicationtablewherethe rstfactorofaproductistakenfromtheleftandthesecondfromthetop: �+lru  �+lru� �+rul+ +�ulrl lur+�r rlu�+u url+�Thistableshowsthatcompositionsofthesixsymmetriesofanequilateraltriangleintroducedabovedonotyieldanynewsymmetries.Arethereanyothersymmetriesoftheequilateraltriangle?Let beanysymmetry.Then mapsverticestovertices.Let betherestrictionof tothesetofvertices,i.e., = jf1;2;3g.Eachsuchfunction isabijectionfromf1;2;3gtoitself.Sincetherearesixsuchbijectionsthereareatmostsixsymmetries.HenceD3=f;�;+;l;r;ug 2.1.GROUPS25isthesetofallsymmetriesofanequilateraltriangle.Moregenerally,Dnisthesymmetrygroupofaregularn-gon.2.1.7Perm

26 utationsandsymmetricgroups.Consideragain
utationsandsymmetricgroups.Consideragainthebijections of2.1.6.Any justrearrangesorpermutesthe\letters"1,2,and3.Therefore iscalledapermuta-tion.Moregenerally,letM=f1;2;:::;ngandSn=fs:M!M:sisabijection)g.ThenSnisagroupundercomposition.(Sn;)(orjustSn)iscalledthegroupofpermutationsofnletters(symbols)orthesymmetricgroupofnletters.AnyelementofSniscalledapermutation.Oneusuallyusesjuxtapositiontodenotethegroupoperation,i.e.,  isabbreviatedby .NotethatSnhasn!elementssincethenumberofbijectionsbetweentwosetsofnelementsisn!.Aconvenientnotationforapermutation 2Snis =12:::n (1) (2)::: (n).If 2Snwecallthesetfk: (k)6=kgthesupportof denotedbysupp( ).Twopermutationsarecalleddisjointiftheirsupportsaredisjoint.Notethat (supp( ))=supp( ).Supposethat and aredisjointpermutations.Ifkisnotinthesupportof then (k)isalsonotinthesupportof andhence( )(k)= (k)=( )(k).Asimilarargumentap

27 plieswhenkisnotinthesupportof .Hence
plieswhenkisnotinthesupportof .Hencewehaveshownthattwodisjointpermutationsarecommutative.2.1.8Cycles.Apermutation 2Sniscalledacycleoflengthkiftherearedistinctintegersa1;:::;ak2f1;:::ngsuchthat (a1)=a2, (a2)=a3,..., (ak)=a1,andsuchthat leavesallothern�kelementsoff1;:::;ng xed.Suchacyclewillbedenotedby(a1;a2;:::;ak).Forexamplethepermutation1234535241isacycleoflength4andcanalsobedenotedby(1;3;2;5).Theorem.Everypermutation,excepttheidentity,iseitheracycleorcanbewrittenasacomposition(product)ofdisjointcycles.Thisfactorizationisuniqueuptotheorderofthecycles.Sketchofproof:FixnandconsiderSn.LetC=f 2Sn: istheidentity,acycle,oracompositionofdisjointcyclesg:andX=fk2N:8 2Sn:#supp( )=k! 2Cg:Then12Xsincethesupportofanypermutationdi erentfromtheidentityhasatleasttwoelements.Supposef1;:::;kgX.Ifknthenk+12Xsincethesupportofanypermutationhasatmostnelements.Ifknconsiderapermutation whosesupporthask+1elementsandhenceisnotempty.Picka1

28 2supp( )andde nerecursivelyaj+1=
2supp( )andde nerecursivelyaj+1= (aj)= j(a1).LetJ=fj:9mj:am=ajg.SinceJisnotemptyitcontainsasmallestelement`+1.Sincea`+1= (a`)=a1oneobtainsthat(a1;::::;a`)isacyclewhichwedenoteby .If`=k+1then = isacycle.If`klet = �1 .Thepermutations and aredisjointandsupp( )hasnomorethankelements.Hence,byinductionhypothesis, isinCandsois .Altogetherwehavek+12XandthesecondinductionprinciplegivesnowthateveryelementofSnexcepttheidentityisacycleoraproductofdisjointcycles. 2.1.GROUPS27hasaninversee�12G.Hencee=e�1e2=e�1e=1when1istheidentityofG.Leta;b2A.Thenb�1,theinverseofbinGisalsotheinverseinAandhenceanelementofA.Thereforeab�1isinA,too.Suciency:SinceAisnotemptythereisanelementa2A.Then1=aa�12A.Also,foreveryb2Awehavethatb�1=1b�12A.Finally,ab=a(b�1)�12Awhenevera;b2A.HenceisanassociativebinaryoperationonA.Examples:ForanygroupGwithidentity1thesetsf1gandGarebothsubgroupsofG.Theformeriscalledthetrivials

29 ubgroupofG.IfknthenSkisasubgroupofS
ubgroupofG.IfknthenSkisasubgroupofSn.Thegroupofintegers,(Z;+),isasubgroupof(Q;+).RigidmotionsoftheplaneformasubgroupofthegroupofallbijectionsfromR2toR2.Thesubsetsf;�;+gandf;kg,k=1;2;3,ofD3inSection2.1.6aresubgroupsofD3.ThealternatinggroupAnisasubgroupofSn.IfU1andU2aresubgroupsofagroupGthenU1\U2isalsoasubgroupofG,or,moregenerally,ifCisanynonemptycollectionofsubgroupsofGthenTU2CUisalsoasubgroupofG.2.1.12Subgroupsgeneratedbysubsetsofagroup.LetMbeanonemptysubsetofagroupGandCthecollectionofallsubgroupsofGwhichincludeM.ThenhMi=TU2CUiscalledthegroupgeneratedbyM.ThegroupgeneratedbyMistheminimumofCwhenthesetofallsubgroupsofGispartiallyorderedbyinclusion.ItisthereforealsocalledthesmallestsubgroupofGincludingM.Theorem.LetGbeagroupandManonemptysubsetofG.ThenhMi=fNYj=1anjj:N2N,aj2M,nj2Zforj=1;:::;Ng:Sketchofproof:LetAbethesetontherighthandside.Thenfg6=MA.Supposea;b2A.Thenab�12A,too.HenceAisasubgroupofGwhichincludesM,i.e.,hMiA.Nowleta2A,i.e.,a=QNj=1anjjwhereaj

30 2Mandnj2Z.Thenaj2hMiandthereforea2hMi,to
2Mandnj2Z.Thenaj2hMiandthereforea2hMi,too.2.1.13Centralizerandcenter.Let(G;)beagroupandMasubsetofG.Thende neC(M)=fg2G:gm=mgforeverym2Mg;thecentralizerofM.ThecentralizerC(G)ofthegroupitselfisalsocalledthecenterofG.(C(M);)isasubgroupof(G;)and(C(G);)isabelian.2.1.14Orderofagroupelement.Theorderordaofanelementa2Gisde nedtobethesmallestnaturalnumberksuchthatak=1ifthisexists.Otherwiseaissaidtohavein niteorder(orda=1).2.1.15Cyclicgroups.Leta2G.Thenhai=fan:n2ZgiscalledthecyclicsubgroupofGgeneratedbya.AgroupGsuchthathai=Gforsomea2Giscalledacyclicgroup.Acyclicgroupisalwaysabelian.Ifahasin niteorderthentheelementsanofhaiarealldistinct.Ifahasorderkthenhai=f1;a;a2;:::;ak�1g.Examples:(Z;+)iscyclic,infactZ=h1i.Thesubgroupf;�;+gofD3equalsh+i=h�iandhenceiscyclic.fexp(in):n2Zgandfexp(2in=k):n2f1;:::;kggarecyclicgroupsundermultiplicationoforderin nityandk,respectively.Theorem.Thefollowingstatementshold:1.Allsubgroupsofacyclicgroupar

31 ecyclic.2.Foranin nitecyclicgroupall
ecyclic.2.Foranin nitecyclicgroupallsubgroupsbutthetrivialonehavein nitelymanyelements. 2.1.GROUPS292.1.20Quotientgroups.Thefollowingtheoremistrue.Theorem.IfNisanormalsubgroupofGthenG=Nisagroupunderthebinaryoperationgivenbythesubsetproduct.Sketchofproof:LetaN;bN2G=N.Then(aN)(bN)=fanbm:n;m2Ng.SinceNisnormalwe ndthatforalln2Nthereexistsn02Nsuchthatnb=bn0.Hence(aN)(bN)=fabn0m:n0;m2Ng=(ab)NisaleftcosetofN.Choosingdi erentrepresentativesfromaNandbNwillyieldthesameproductsetsothatmultiplicationofcosetsiswellde ned.HencesubsetmultiplicationisanassociativebinaryoperationonG/N.Also,NistheidentityelementinG=Nanda�1NtheinverseelementofaN.ThegroupG=NofleftcosetsofanormalsubgroupNofGiscalledaquotientgrouporfactorgroup.IfGis nite,thenwehavejG=Nj=jGj=jNj.IfGisin niteandNis nite,thenG=Nisin nite.2.1.21Residueclasses.Letmbeaninteger.ThenthesetmZ=fmk:k2Zgisasubgroupof(Z;+).ThecosetsofmZarecalledresidueclassesmodm.Fora+(mZ)=(mZ)+awewillwriteam.Theresidueclassesmodmare

32 explicitlygivenbyam=fa+km:k2Zg:Since(mZ;
explicitlygivenbyam=fa+km:k2Zg:Since(mZ;+)isanormalsubgroupof(Z;+)wegetthatZm=Z=(mZ)isagroup(undersubsetaddition).2.1.22Directproducts.LetGandHbegroups.ThenintroduceabinaryoperationonGHby(g1;h1)(g2;h2)=(g1g2;h1h2).UnderthisbinaryoperationGHisagroupcalledthedirectproductofGandH.2.1.23Homomorphisms.LetGandHbegroups.Amapping:G!Hiscalleda(group)homomorphismif(ab)=(a)(b)foralla;b2G.Examples:TheidentitymapfromGtoGisahomomorphism.ThemapG!feg:g7!e,whereeistheidentityofanygroup,isahomomorphism.Form2NthemapZ!mZ,k7!mk,isahomomorphism.Forahomomorphism:G!Hwede nethekernelkeroftobethesetker=fg2G:(g)=1Hg.RecallthattheimageofGunderistheset(G)=f(g):g2Gg.Let:G!Hand:H!Kbegrouphomomorphisms.Thenthefollowingbasicfactshold:1.(1G)=1H.2.(a�1)=(a)�1.3.Ifg2Ghas niteorderthentheorderof(g)2Hdividestheorderofg.4.:G!Kisahomomorphism.Theorem.Foranyhomomorphism:G!Htheset(G)isasubgroupofHw

33 hichisabelianifGisabelian.Thesetker
hichisabelianifGisabelian.ThesetkerisanormalsubgroupofG.Ahomomorphism:G!Hisinjectiveifandonlyifker=f1Gg.Sketchofproof:1H=(1G)2(G).Suppose(x);(y)2(G).Then(x)(y)�1=(xy�1)2(G).IfGisabelianthen(x)(y)=(xy)=(yx)=(y)(x).1G2ker.Ifx;y2kerthen(xy�1)=(x)(y)�1=1Handhencexy�12ker.LetabeanyelementinGandxanyelementinker.Thenaxa�12ker,too.Henceker/G.Supposeker=f1Ggand(g)=(g0).Then(g�1g0)=1Handhenceg=g0.2.1.24Canonicalhomomorphisms.LetN/G.ThenthemappingG!G=N:a7!aNisahomomorphismwhichiscalledthecanonicalhomomorphismfromGtoG=N. CHAPTER3Rings3.1.GeneralRingTheory3.1.1Rings.LetRbeaset.Supposetherearetwobinaryoperations+andonRsuchthatthefollowingpropertiesaresatis ed:(a)(R;+)isanabelian(commutative)groupand(b)isassociativeand(leftandright)distributiveover+.Then(R;+;)iscalledaring.Theringiscalledcommutativeifmultiplicatio

34 niscommutative.Theidentityelementof(R;+)
niscommutative.Theidentityelementof(R;+)isdenotedby0.Examples:Z,Q,R,andCarecommutativerings.LetRbearingandXanonemptyset,thenthesetofallR-valuedfunctionsonformsaring,whichiscommutativeifRis.Thesetofallnnmatricesisanon-commutativering.Thesetf0gcanbeconsideredaring,thezeroring.3.1.2Elementaryproperties.Let(R;+;)bearing.Theadditiveidentityisdenotedby0andtheadditiveinverseofa2Risdenotedby�a.Thefollowingpropertiesholdtheninanyring:1.0a=a0=0foralla2R,2.(�a)b=�(ab)=a(�b).3.1.3Identity.A(multiplicative)identityorunityinaringisanonzeroelement1suchthat1a=a1=aforallelementsainthering.Ifthereissuchanelementtheringiscalledaringwithidentity(orringwithunity).Anidentity,ifitexists,isunique,for1e=1=eifboth1andeareidentities.3.1.4Directproducts.LetRandSberings.WeintroducetwobinaryoperationsonRSby(r1;s1)+(r2;s2)=(r1+r2;s1+s2)and(r1;s1)(r2;s2)=(r1r2;s1s2).UnderthesebinaryoperationRSisaringcalledthedirectproductofRandS.ItiscommutativeifandonlyifRandSarecommutative.3.1.5Inte

35 gralDomains.Ifa=0orb=0thenab=0.Ifa;b6=0b
gralDomains.Ifa=0orb=0thenab=0.Ifa;b6=0butab=0thenaiscalledaleftzerodivisorandbarightzerodivisor.Examples:Everynilpotentmatrixisazerodivisorintheringofmatrices.Intheringofreal-valuedfunctionsonXanyfunctionwhichvanishesonsomenonemptysubsetofXbutnotonallofXisazerodivisor.Acommutativeringwithidentitybutwithoutzerodivisorsiscalledan(integral)do-main.Henceifab=0inanintegraldomainthena=0orb=0.Inanintegraldomainthesocalledcancellationlawholds.Thislawassertsthatab=acanda6=0implyb=c.Example:Zisanintegraldomain:givena;b2Z�f0gandab=0wemayassume(bymultiplying,perhaps,by�1)thata;b2NwhichisimpossiblesincemultiplicationisabinaryoperationinN.33 363.RINGSTheorem.AcommutativeringRwithidentityisa eldifandonlyifitsonlyidealsarethezeroandtheimproperideal.Inparticular,every eldisaprincipalidealdomain.Sketchofproof:SupposeRisa eld.LetJbeanyidealotherthanthezeroideal.ThenJcontainsanonzeroelementaand,sinceaisaunit,R=haiJR,i.e.,J=R.NextsupposetheonlyidealsofRarethezeroandtheimproperideal.C

36 onsideranonzeroelementrinR.Thenhri=Randh
onsideranonzeroelementrinR.Thenhri=Randhence1=rsforsomes2R,i.e.,risaunit.HenceallnonzeroelementsofRareunits,i.e.,Risa eld.3.1.13Residueclassrings.LetSbeasubringoftheringR.Then(S;+)isasubgroupof(R;+).Recallthatthecosetsa+S=fa+s:s2Sg=S+aofSformapartitionofR.ThesetofallcosetsofSisdenotedbyR=S.Since(R;+)isabelian(S;+)isanormalsubgroupof(R;+).HenceR=Sisanabeliangroupwithrespecttosubsetaddition(i.e.,M+N=fm+n:m2M;n2NgforanyM;NR).Theorem.LetSbeanidealinthecommutativeringR.De neadditionandmultiplicationofcosetsby(a+S)+(b+S)=(a+b)+Sand(a+S)(b+S)=ab+S.Then(R=S;+;)isacommutativeringcalledthequotientringorresidueclassringofRmoduloS.Sketchofproof:Sinceadditionofcosetscoincideswithsubsetadditionweget(asexplainedabove)that(R=S;+)isanabeliangroup.Nextweprovethatmultiplicationiswellde ned.Ifa+S=c+Sandb+S=d+Sthena�c;b�d2S.Henceab�cd=a(b�d)+(a�c)d2SsinceSisanideal.Thereforeab+S=cd+S,i.e.,multiplicationofcosetsiswellde ned.Thevalidityoftheassociative,commutativeanddist

37 ributivelawsfollowsnowinastraightforward
ributivelawsfollowsnowinastraightforwardmanner.3.1.14Modulararithmetic.ForanynaturalnumbermthesetmZisanidealinZ.HenceZm=Z=mZistheresidueclassringofZmodulomZ.Wewilldenotetheelementofa+mZ2Zmbyamandcallittheresidueclassmodmofa.Ifam=bmwesaythataandbarecongruentmodulom.Thishappensifandonlyifa�bisanintegermultipleofm.Notethat0mand1maretheadditiveandmultiplicativeidentity,respectively,andthat(�a)mistheadditiveinverseofam.Theorem.Zmisa eldifandonlyifmisaprimenumber.Sketchofproof:Ifmisnotprimeleta;b2f2;:::;m�1gbesuchthatab=m.Thenambm=mm=0m,i.e.,Zmhaszerodivisorsandhenceisnota eld.Ifmisprimeconsiderx2f1;:::;m�1g,i.e.,xm6=0inZm.Thengcd(x;m)=1andthusthereexistintegersk;jsuchthat1=kx+jm.Nowkmxm=(kx)m=(1�jm)m=1m,i.e.,x�1m=km.HenceeverynonzeroelementinZmisaunit,i.e.,Zmisa eld.3.1.15Primeideals.AnidealJinacommutativeringRwithidentityiscalledaprimeidealifab2Jimpliesa2Jorb2J.Theorem.JisaprimeidealinRifandonlyifR=Jisanintegraldomain.TheimproperidealRisalwaysprime,andthezer

38 oidealisprimeifandonlyRitselfisanintegra
oidealisprimeifandonlyRitselfisanintegraldomain.Propermaximalidealsareprime.InthiscaseR=Jisinfacta eld.3.2.RingHomomorphisms3.2.1Ringhomomorphisms.LetR1andR2berings.Amappingf:R1!R2iscalleda(ring)homomorphismiff(a+b)=f(a)+f(b)andf(ab)=f(a)f(b)foralla;b2R1.Itiscalleda(ring)isomorphismifitisabijectivehomomorphismanda(ring)automorphismifitisaringisomorphismfromR1toitself.Examples:f:Z!Zm,a7![a]misaringhomomorphism.Thefunctionf:R1!R2,a7!0foralla2R1isahomomorphism,calledthezerohomomorphism. 383.RINGSofaandbthensoisanyassociateofdandanytwogreatestcommondivisorofaandbareassociates.Thenotationgcd(a;b)isusedtodenoteanygreatestcommondivisorofaandb.3.3.4PrimeandirreducibleElements.Anonzeroelementpofanintegraldomainiscalledprimeifitisnotaunitandifpdividesaorbwheneverpdividesab.Anonzeroelementpofanintegraldomainiscalledirreducibleifitisnotaunitandhasonlyimproperdivisors.Inotherwordsanirreducibleelementpallowsonly\trivial"factorizationsp=up0whereuisaunit.Theorem.Aprimeelementisirreducible.Sketchofproof:

39 Assumethatp=abisprime.Thenpdividesaorb,s
Assumethatp=abisprime.Thenpdividesaorb,saya,i.e.,a=pc.Hencep=ab=pcbwhichimpliescb=1sincecancellationisallowedinanintegraldomain.Thusbisaunitandhencepisirreducible.3.3.5Divisibilityandideals.Divisibilityisstronglyrelatedtocontainmentofideals:Theorem.LetRbeanintegraldomainanda;b2R,b6=0.Then1.hai=Rifandonlyifaisaunit.2.haihbiifandonlyifbisadivisorofa.Alsohai=hbiifandonlyifbisanimproperdivisorofa,i.e.,ifandonlyifaandbareassociates.3.aisirreducibleifandonlyifhai6=f0gismaximalamongallproperprincipalideals,i.e.,thereisnoprincipalidealbutRandhaiitselfwhichcontainshai.LetJ1andJ2beidealsintheintegraldomainR.OnecallsanidealJ1amultipleofJ2orJ2afactorordivisorofJ1ifJ1J2.ThegreatestcommondivisorofJ1andJ2,denotedbygcd(J1;J2),istheidealgeneratedbyJ1[J2.TheleastcommonmultipleofJ1andJ2istheidealJ1\J2.3.3.6Uniquefactorizationdomains.LetRbeanintegraldomainandaanonzeroelementofRwhichisnotaunit.Twofactorizationsa=a1:::an=b1:::bmintoirreduciblesa1;:::;bmarecalledequivalentifn=mandifthereisapermutatio

40 n2Snsuchthatajisassociatedwithb
n2Snsuchthatajisassociatedwithbjforj=1;:::;n.Ifallfactorizationsofaintoirreduciblesareequivalentonesaysthatthefactorizationofaisessentiallyunique.AnintegraldomainRiscalledauniquefactorizationdomain(UFD)ifitsatis esthefollowingconditions:1.everynonzeroelementwhichisnotaunitisa niteproductofirreducibles,2.foreverynonzeroelementwhichisnotaunitallfactorizationsintoirreduciblesareessentiallyunique.AnytwoelementsinaUFDwhicharenotbothequaltozerohaveagreatestcommondivisor.3.3.7Primalityandirreducibility.InTheorem3.3.4wehaveshownthataprimeelementisalwaysirreducible.Iftheconverseisalsotruethenfactorizationsareessentiallyunique.AmoreprecisestatementisthefollowingTheorem.LetRbeanintegraldomaininwhicheverynonzeronon-unithasafactorizationinto nitelymanyirreducibles.Thenthesefactorizationsareessentiallyunique(i.e.,Risauniquefactorizationdomain)ifandonlyifeveryirreducibleelementisprime.Sketchofproof:AssumethatRisauniquefactorizationdomain.Letp2Rbeirreducibleandassumepdividesab,i.e.,ab=

41 pc.Firstconsiderthecasethatoneofa;b,sayb
pc.Firstconsiderthecasethatoneofa;b,saybisaunit.Thena=pcb�1andhencepdividesa.Henceassumethatneitheranorbisaunit.Thenleta1:::amandb1:::bnbeafactorizationsofaandb,respectively,intoirreducibles.Sincepc=abtheproducta1:::amb1:::bnis(anessentiallyunique)factorization 3.3.UNIQUEFACTORIZATION41Sketchofproof:Assumethecontraryweretrue.Thenthereexistsanonzeronon-unita1whichisnotirreduciblenorcanitbefactoredintoaproductof nitelymanyirreducibles.Sincea1isnotirreduciblea1=a2b2whereneithera2norb2isaunit.Atleastoneofthese,saya2,isnotirreduciblenorcanitbefactoredintoaproductof nitelymanyirreduciblessinceotherwisea1couldbefactoredinthismanner.Thus(2)a1=a2b2;a2=a3b3;a3=a4b4;:::whereallaj;bjarenonzeronon-unitsandnoneoftheajisirreducibleorcanbefactoredintoaproductof nitelymanyirreducibles.Equations(2)showthatha1iha2i:::.ByTheorem3.3.10thischainterminates,i.e.,haNi=haN+1iforsomeN.ThereforeaN+1=caN=cbN+1aN+1.SinceanintegraldomainallowscancellationwehavethatcbN+1=1,i.e.,thatbN+1isaunit,thed

42 esiredcontradiction.3.3.13EveryPIDis
esiredcontradiction.3.3.13EveryPIDisaUFD.SinceaPIDisNoetherianfactorizationofnonzerononunitsisalwayspossible.Weshownowthatitisessentiallyunique.SupposepisanirreducibleelementinthePIDRandthatpdividestheproductab.Ifpdoesnotdivideathena62hpi.Sincehpiismaximalamongallproperprincipalidealsandhenceamongallproperidealsweobtainthatha;pi=R.Hence12ha;pi,i.e.,thereexistx;y2Rsuchthat1=ax+pyandb=abx+pbywhichshowsthatpdividesb.Thisimpliesthatpisprime,i.e.,inaPIDeveryirreducibleelementisprimeandhencewehavetheTheorem.EveryPIDisaUFD.3.3.14Euclideandomains.AnintegraldomainRiscalledaEuclideandomainifthereexistsafunctionN:R!N0withthefollowingproperties:1.N(r)=0ifandonlyifr=0.2.N(rs)=N(r)N(s)forallr;s2R.3.Ifa;b2Randa6=0thenthereexistqandrinRsuchthatb=aq+randN(r)N(a).NotethatN(1)=N(1)2=1.LetubeaunitintheEuclideandomainR.Then1=N(uu�1)=N(u)N(u�1)andhenceN(u)=1.Conversely,ifN(u)=1thenthereexistsaq2Rsuchthat1=qu,i.e.,qisaunit.Example:ZisaEuclideandomainwhereN(n)=jnj.Every eldisaEuclideandomainwhenonede&

43 #12;nesN(r)=1forallr6=0.Imitatingtheproo
#12;nesN(r)=1forallr6=0.ImitatingtheproofforZyieldsthefollowingTheorem.AEuclideandomainisaPIDandhenceaUFD.WeknowthatZ[p �5]isnotaUFD.Thereforetheremustidealswhicharenotprincipal.Indeed,letJ=h2;1+p �5i.Thenx+yp �5isinJifandonlyifx�yisaneveninteger.ThereforeJisaproperideal.NowassumeJisprincipalandgeneratedbyanelementr.Thenboth2and1+p �5aremultiplesofr.ThereforeN(r)dividesbothN(2)=4andN(1+p �5)=6.SincerisnotaunitN(r)=2.However,N(z)isdi erentfrom2foreveryz2Z[p �5].ThisgivesacontradictiontotheassumptionthatJisprincipal.3.3.15Gaussianintegers.TheintegraldomainZ[i]=fa+bi:a;b2ZgiscalledthesetofGaussianintegers.Sincei=p �1theGaussianintegersareaquadraticextensionoftheintegers.Itsunitsare1andi.Theorem.TheGaussianintegersformaEuclideandomain.Sketchofproof:LetN:Z[i]!N0,a+ib7!a2+b2.Weonlyhavetoprovethatdivisionwitharemainderispossible.Let ; 2Z[i]andsuppose =a+ib6=0.Thenthecomplexnumber = canbewrittenasm+r+i(n+s)wherem;n2Zand�1=2r;s1=2.T

44 hereforez0= �(m+in) =(r+is)(a
hereforez0= �(m+in) =(r+is)(a+ib)=(ar�bs)+i(rb+as)isaGaussianinteger.ButN(z0)=(a2+b2)(r2+s2)N( )=2N( ). 423.RINGS3.4.Polynomials3.4.1Polynomials.LetRbearingandP=ff:N0!R:(9N:8n�N:f(n)=0)g:Hencef2Pcanberepresentedbyasequence(a0;a1;a2;:::)ofelementsofRwhereonly nitelymanyoftheelementsajaredi erentfromzero.Wede neadditionandmultiplicationinPinthefollowingway:letf;g2Pthen(f+g)(n)=f(n)+g(n);(fg)(n)=Xj+k=nf(j)g(k):Thusadditionandmultiplicationarebinaryoperations.Itiseasytocheckthattheyareassociative.Alsoadditioniscommutativeandmultiplicationisdistributiveoveraddition.Theelement(0;0;:::)isanadditiveidentityandforanyf=(a0;a1;:::)2Ptheelement�f=(�a0;�a1;:::)isanadditiveinverseoff.ThereforePisaringcalledtheringofpolynomialsoverR.AnelementofPiscalledapolynomial(withcoecientsinR).3.4.2Basicpropertiesofpolynomialrings.TheringPofpolynomialsoverRiscommutativeifandonlyifRiscommutative.IfRhasanidentity1,thensodoesPnamelytheelement(1;0;0;:::).Conv

45 ersely,if(b0;b1;:::)isanidentityofPthen,
ersely,if(b0;b1;:::)isanidentityofPthen,foranya2Rwehave(a;0;0;:::)(b0;b1;:::)=(ab0;ab1;:::)whichshowsthatb0isanidentityinR(andthatb1=b2=:::=0).Themapping:R!P,a7!(a;0;:::)isanisomorphismbetweenRand(R)P.Thereforewewillsubsequentlyabbreviatetheelement(a;0;:::)byawhennoconfusioncanarise.IfRhasanidentity1letx=(0;1;0;0;:::).Thenx2=(0;0;1;0;:::)and,ifn2N0,xn=(0;:::;0;1;0;:::)where1isinthe(n+1)stslot.Therefore(a0;a1;:::;an;0;:::)=a0+a1x+:::+anxnwhichyieldsthefamiliarexpressionforapolynomial.Itmustbestressed,however,thatapolynomialisnottobeconsideredafunctionfromR!R,i.e.,xisnottobethoughtofasavariableelementofR.Theelementx=(0;1;0;:::)2Piscalledanindeterminateand,fork=0;:::;n,theelementakiscalledacoecient(ofxk).ThesetPwillbedenotedbyR[x]andwillbecalledtheringofpolynomialsinoneindeterminateoverR.3.4.3Polynomialfunctions.LetPbearingwithidentity,letRbeaunitarysubringofP,andf=a0+:::+anxn2R[x]apolynomialoverR.Thenfgivesrisetoafunction^f:P!Pthroughthede nition^f:p7!a0+:::+anpn.Thefun

46 ction^fiscalledapolynomialfunctionoverR(
ction^fiscalledapolynomialfunctionoverR(orP).Thepolynomialfunction^f:R!Rmustnotbeconfusedwiththepolynomialf:N0!Rasthefollowingexampleshows:letR=Z2,f=x2+x+1,andg=x4+x3+x2+x+1.Thenf6=gbut^f=^g.SupposePiscommutativeand xp2P.Thenf7!^f(p)isaringhomomorphismfromR[x]toP.Thereforef7!^fisasurjectiveringhomomorphismfromR[x]tothesetofpolynomialfunctionsoverRonPwhichisthereforearing,too,calledtheringofpolynomialfunctionsoverRonP.3.4.4Thedegreeofapolynomial.Letf6=0beapolynomial.Thendeg(f)=maxfn:f(n)6=0giscalledthedegreeoff.Nodegreeisassignedtothezeropolynomial.Ifdeg(f)=nthenf(n)iscalledtheleadingcoecientoff.Thepolynomialfiscalledmonic 443.RINGS(3)(fg)0=fg0+f0gandDj(fg)=(Djf)g+f(Djg).3.4.8Thedivisionalgorithm.Wenowturntopolynomialdivision.Theorem.LetRbeacommutativeringwithidentityandf;gpolynomialsoverR.Supposethatdeg(g)=nandthataistheleadingcoecientofg.Thenthereexistpolynomialsqandrandanonnegativeintegerksuchthatakf=qg+randr=0ordeg(r)n.Sketchofproof:Iff=0chooseq=r=0.Foranynonzeropolynomialh2

47 R[x]let (h)=maxfdeg(h)�n+1;0g.Thende&
R[x]let (h)=maxfdeg(h)�n+1;0g.Thende neP=ff2R[x]:(9q;r2R[x]:a (f)f=qg+r^(r=0_deg(r)n))gandS=fj2N:deg(f)=j�1)f2Pg:Firstweshowthat12S.Letfhavedegreezero.Ifdeg(g)=0chooser=0,q=f.Ifdeg(g)&#x-278;0chooseq=0andr=f.Hence12S.Nowassumethatf1;:::;j�1gS.Ifjnonemaychooseq=0andr=ftoshowthatj2S.Ifj&#x-278;ndenotetheleadingcoecientf(j�1)offbyb.Thenbxj�1�ngisapolynomialofdegreej�1withleadingcoecientabandhenceh=af�bxj�1�nghasdegreeatmostj�2.Byinductionhypothesish2Pandhencethereexistq;r2R[x]suchthata (h)h=qg+randr=0ordeg(r)n.Since (f)=j�n&#x-278;0and (h)maxfj�n�1;0g=j�n�1we nda (f)f=aj�n�1af=aj�n�1(h+bxj�1�ng)=aj�n�1� (h)(qg+r)+b(ax)j�n�1g=(aj�n�1� (h)q+b(ax)j�n�1)g+aj�n�1� (h)r:Hencef2Pandj2S.Thisprovesthetheorem.Corollary.IfRisa eldthenR[x]isaEuclideandomainandhenceaUFD.Sketchofproof:De neN:R[x]!N0byN(0)=0andN(f)=2deg(f)iff6=0.3.4.9Zerosofpolynomialfunctio

48 ns.LetRbearingwithidentity,fapolynomialo
ns.LetRbearingwithidentity,fapolynomialoverR,and^ftheassociatedpolynomialfunction.Anelement 2Riscalledazeroorrootof^fif^f( )=0.Theorem.LetRbeacommutativeringwithidentity,f2R[x],and^ftheassociatedpolynomialfunction.Then isazeroof^fifandonlyiffisdivisiblebyx� .Moreover,ifRisanintegraldomainthenthenumberofdistinctrootsof^fisatmostequaltothedegreeoff.Sketchofproof:Bythedivisionalgorithmthereexistpolynomialsqandrsuchthatf=q(x� )+randrisaconstant.But0=^f( )=^r( )sinceg7!g( )isahomomorphism.Thisshowsthatr=0.Conversely,iff=q(x� )then^f( )=0.NowsupposethatRisanintegraldomain,thatdeg(f)=n,andthat 1;:::; n+1aredistinctzerosof^f.Then,byinduction,thereexistsapolynomialqsuchthatf=q(x� 1):::(x� n+1).Thisimpliesthatdeg(f)n+1,acontradiction.Azero of^fiscalledazeroofmultiplicitykif(x� )kdividesfbut(x� )k+1doesnot.3.4.10Polynomialsoverintegraldomains.LetRbeanintegraldomain.ThenR[x]andR[x1;:::;xn]areintegraldomains

49 alsosince,if06=f;g2R[x],thendeg(fg)=deg(
alsosince,if06=f;g2R[x],thendeg(fg)=deg(f)+deg(g)exists,i.e.,fg6=0.Thepolynomialf2R[x]isaunitifandonlyiff=ux0anduisaunitofR.Supposef=rx0hasdegreezero.ThenfisirreducibleinR[x]ifandonlyifrisirreducibleinR.Everypolynomialofdegreeoneisirreducible. 3.4.POLYNOMIALS453.4.11PrimitivepolynomialsandGauss'slemma.LetRbeaUFDandf2R[x].Thenfiscalledprimitiveifitscoecientshavenocommondivisorsotherthanunits.LetfbeanynonzeropolynomialinR[x].Thenthereexistsa2Randaprimitivepolynomialgsuchthatf=ax0g.Theelementaisdetermineduptounitmultiples.Theclassofassociatesofa(orsimplya)iscalledthecontentoffandisdenotedbyc(f).Notethatapolynomialisprimitiveifandonlyifitscontentisaunit.Inparticular,everymonicpolynomialisprimitive.TheoremLemmaofGauss.IfRisaUFDandf;g2R[x]thenc(fg)=c(f)c(g).Inparticular,theproductofprimitivepolynomialsisprimitive.Sketchofproof:Itisonlynecessarytoprovethelastassertionofthelemma.Assumethatf;gareprimitivebutthatfgisnot.Letpbeaprimefactorofc(fg).Iff=Pnk=0akxkandg=Pmj=0bjxjletsbesuchthatakisamulti

50 pleofpforksbutthatasisnotamultipleofp.Si
pleofpforksbutthatasisnotamultipleofp.Similarly,lettbethesmallestindexsuchthatbtisnotamultipleofp.Thenthecoecientofxs+tinfgisPj+k=s+takbj.Thiscoecientandeachsummandexceptforasbtisamultipleofp.Thisisimpossible.3.4.12PolynomialsoverUFDs.Theorem.IfRisauniquefactorizationdomainthensoareR[x]andR[x1;:::;xn].Sketchofproof:WeconsideronlyR[x].We rstshowthateverynonzeropolynomialisaunitoraproductofirreducibles.LetP=ff2R[x]:f2R[x]orfisirreducibleoraproductof nitelymanyirreduciblesgandS=fn2N0:deg(f)=n)f2Pg:Letf=ax0beaconstantpolynomialwhichisnotaunitandsupposea=p1:::pkisafactorizationintoirreducibles.Thenf=(p1x0):::(pkx0)isalsoaproductofirreducibles.Thereforef2Pand02S.Nextassumethatn&#x-354;0,thatf0;:::;n�1gS,andthatfisapolynomialofdegreen.Thenf=cf1forsomeconstantpolynomialcandsomeprimitivepolynomialf1.Iff1isirreduciblethenf2P.Henceassumethatf1isnotirreducibleandthatf1=gh.Thenthedegreesofbothgandharepositivebutsmallerthann.Henceg;handthereforefareinPandn2S.Thisshowsthat

51 S=N0andthateverynonzeropolynomialisaunit
S=N0andthateverynonzeropolynomialisaunit,anirreducibleoraproductof nitelymanyirreducibles.NextletJbeanontrivialidealinR[x]andhanelementofsmallestdegreeinJ.If istheleadingcoecientofhandf2Jthenthereexistsanonnegativeintegerksuchthathdivides kf.Leth= ~hwhere 2Rand~hisprimitive.Gauss'slemmathenimpliesthat~hdividesf.Wenowshowthateveryirreducibleisaprime.Henceletpbeirreducibleandsupposethatpdividesfgbutnotf.Ifp=^px0then^pisprimeinRandpmustdivideg.Nextassumethatdeg(p)&#x-354;0.Thenpisprimitive.LetJ=hp;fiandh=af+bp,apolynomialofsmallestdegreeinJ.Supposeh= ~hwhere 2Rand~hisprimitive.Then,accordingtowhatwasjustproved,~hdividesp.Supposep=s~h.Sincepisirreducible~horsisaunit.Ifswereaunitthenpwoulddividefwhichitdoesnot.Hence~hisaunitandthushisconstant.Nowhg=afg+bgpisdividedbyp,i.e.,hg=tp.UsingGauss'slemmaagain,hc(g)=c(t),i.e.,t=h~twhere~tisprimitiveandthisshowsg=~tp,thedesiredconclusion.3.4.13PolynomialsoverNoetheriandomains.LetRbeaPIDandJanidealinR[x].De neLk=fr2R:(9f2J:deg(f)=k;

52 f(k)=r)g[f0g: 463.RINGSThenL0;L1;:::isan
f(k)=r)g[f0g: 463.RINGSThenL0;L1;:::isanascendingchainofidealsinR.ThereforethereexistsanindexqsuchthatLk=Lqforallkq.SinceRisaPIDwehaveLk=hakifork=0;:::;q.Foreachsuchkthereexistsapolynomialfk2Jofdegreekwithleadingcoecientak.LetP=hf0;:::;fqiJandS=fn2N0:(g2J;deg(g)=n))g2Pg:Supposeg= x02J.Then 2L0andhencethereexistsr2Rsuchthat =ra0.Thereforeg=(rx0)f02Pand02S.Nextsupposek�0andf0;:::;k�1gS.LetgbeapolynomialinJandsupposedeg(g)=kandtheleadingcoecientofgis .Then 2Lkandhencethereexistsanr2Rsuchthat =ramwherem=minfk;qg.Thepolynomialh=g�rxk�mfmisanelementofJwithdegreelessthank.Henceh2P.Thisshowsthatg=h+rxk�mfmisinP,too,andhencethatk2SandS=N0.ThuseverynonzeroelementofJisinP,i.e.,J=hf0;:::;fqi.Hence,ifRisaPIDthenR[x]isNoetherian.ThisproofgeneralizestothecasewhereRisNoetherianwithalittlemorenotationale ort.Itisperformed,forinstance,inZariskiandSamuel,CommutativeAlgebra,Vol.I,Springer1979,p.201f.wehavethusTheoremHilbert'sbasistheorem.If

53 RisaNoetheriandomainthensoareR[x]andR[x1
RisaNoetheriandomainthensoareR[x]andR[x1;:::;xn].3.4.14Polynomialswithrationalcoecients.Z[x]isaNoetherianUFD.Itis,how-ever,notaPIDsince,forexample,theidealh2;xiisnotprincipal.Q[x]isaEuclideandomainandhenceaPID.Letf2Z[x]Q[x]andg;h2Q[x]suchthatf=gh.Thenthereexistintegers ; ; ;suchthatg=( = )g1andh=( =)h1whereg1andh1areprimitivepolynomialsinZ[x].Hence f= g1h1holdsinZ[x].Gauss'slemmashowsnowthat c(f)= andhencef=c(f)g1h1,i.e.,wehavethefollowingTheorem.IfapolynomialwithintegercoecientsfactorsinQ[x]thenitfactorsalsoinZ[x].Inotherwords,ifapolynomialisirreducibleinZ[x]thenitisalsoirreducibleinQ[x].However,ifapolynomialf2Z[x]isirreducibleinQ[x]andiff=ghwithg;h2Z[x]thenoneofgandhisaconstant.Consider,forexample,thepolynomial2x.ItisirreducibleasanelementofQ[x]since2isaunitinQ[x].InZ[x],however,neither2norxisaunit.3.4.15Polynomialswithcomplexcoecients.C[x]isaEuclideandomainandhenceaPID.TheoremThefundamentaltheoremofalgebra.Iffisapol

54 ynomialinC[x]ofdegreenthen^fhasprecisely
ynomialinC[x]ofdegreenthen^fhaspreciselynroots(countingmultiplicities).Despiteitsnamethistheoremisnotapurelyalgebraicinasmuchnopurelyalgebraicproofisknown.Itcanbeprovenwithsomeknowledgeofcomplexanalysis.Corollary.ApolynomialinC[x]isirreducibleifandonlyifithasdegree1.A eldKwiththepropertythattheirreducibleelementsofK[x]arepreciselythepolynomialsofdegree1iscalledalgebraicallycomplete.3.4.16Polynomialswithrealcoecients.R[x]isaEuclideandomainandhenceaPID.Everyconstantpolynomialisaunitandeverypolynomialofdegree1isirreducible.Iff=ghhasdegreetwoandneithergnorhareunitsthenbothgandhhavedegreeone.Sinceapolynomialfunctionofdegree1hasarealroot^fhasrealrootsalso.Hence 3.5.ALGEBRAICGEOMETRY51forsomeh0;h1;:::;hk2R[y].LetN=maxfdeg(h0);:::;deg(hk)g.Thenhj=PNl=0j;lylandgN=kXj=1fjNXl=0j;lgN�l(gy)l+(gy�1)NXl=00;lgN�l(gy)l:ConsiderthisasanidentityinF[y]whereFisthefraction eldofR.Itthenholdsforally2F.Choosey=1=gtoobtaingN=kXj=1fjNXl=0j;lgN�l;i.e.,gN2Jandg2p J.Thisprove

55 sHN)1.NowassumeV(J)=fg.Thenp J=I(V(J))=I
sHN)1.NowassumeV(J)=fg.Thenp J=I(V(J))=I(fg)=RandhenceJ=R.1.)2.:LetJbeamaximalideal.ThenJ=p JandhenceI(V(J))=J.SinceI(fg)=RwehavethatV(J)isnotempty.Supposea2V(J)thenJ=I(V(J))I(fag).SinceI(fag)6=RandsinceJismaximalwegetJ=I(fag).Conversely,assumethatJisaproperidealcontainingI(fag).Thenfg6=V(J)V(I(fag))=fag.HenceJ=I(fag),i.e.,I(fag)ismaximal.2.)HN:LetJbeaproperidealinR.Then,sinceRisNoetherian,thereexistsamaximalidealMwhichcontainsJ.NotethatM=I(fag)forsomea2Cn.Sincefag=V(M)V(J)wehavethatV(J)isnotempty. CHAPTER4FieldsLetPbearingandRaunitarysubringofP.Givenapolynomialf2R[x1;:::;xn]wewilldenote,asbefore,theassociatedpolynomialfunctiononPnby^f.Thequotient eldofR[x1;:::;xn]isdenotedbyR(x1;:::;xn).4.1.FieldExtensions4.1.1Fieldsandsub elds.Acommutativeringwithidentityiscalleda eldifallitsnonzeroelementsareunits.IfFisa eldandKasubsetofFwhichis eldwithrespecttothethebinaryoperationsofF,thenKiscalledasub eldofFandFiscalleda eldextensionoverK.AsubsetKofFisasub

56 eldifandonlyifitcontainsanonzeroele
eldifandonlyifitcontainsanonzeroelementandifa;b2Kandb6=0implythata�bandab�1arealsoinK.4.1.2Prime elds.Aprime eldisa eldwhichdoesnotcontainapropersub eld.Notethattheintersectionofallsub eldsofa eldisasub elditself.Itdoesnotproperlycontainanothersub eld,henceitisaprime eld.Obviouslyagiven eldcontainsauniqueprime eld.Theorem.Ifisaprime eldthenitiseitherisomorphictoQorelseitisisomorphictoZpwherepissomeprimenumber.Sketchofproof:containstheidentityelements0and1and,necessarily,theelementn1whenevernisaninteger.Notethatn1+m1=(n+m)1andthat(n1)(m1)=(nm)1,i.e.,thesetP=fn1:n2ZgisthehomomorphicimageofZunderthemap:n7!n1.BythefundamentalisomorphismtheoremforringsPisisomorphictoZ=ker().Ifker()=f0gthenPisisomorphictoZ.Butthesmallest eldcontainingZisQ.Ifker()isnontrivialthenker()=hpiforsomenaturalnumberp.Wethenhave rstlythatp�1.Secondly,sinceP(asubsetofa eld)doesnotcontainzerodivisorspmustbeprime.Nown

57 otethatZ=hpi=Zpisa eldifpisprime.
otethatZ=hpi=Zpisa eldifpisprime.4.1.3Thecharacteristicof eld.LetFbea eldanditsprime eld.IfisisomorphictoQwesaythatandFhavecharacteristiczero.IfisisomorphictoZpforsomepositiveprimenumberpwesaythatandFhavecharacteristicp.4.1.4Fieldextensions.LetFbea eld,Kasub eldofFandSasubsetofF.ThenwedenotebyK(S)thesmallest eldwhichcontainsK[S,i.e.,theintersectionofallsub eldsofFwhichcontainK[S.WethenhaveK(S)=f^f(s1;:::;sn) ^g(s1;:::;sn):n2N0;s1;:::;sn2S;f;g2K[x1;:::;xn];^g(s1;:::;sn)6=0g:IfShasnelementss1;:::;snwewillwriteK(S)=K(s1;:::;sn)andwewillsaythatK(S)isthe eldgeneratedoverKbys1;:::;snorthe eldobtainedbyadjoiningtoKtheelementss1;:::;sn.53 544.FIELDSIfS0SthenK(S0)isasub eldofK(S).IfSanysubsetofFde neC=fTS:Tis niteg.ThenK(S)=ST2CK(T).4.1.5Fieldextensionsasvectorspaces.IfFisa eldextensionoverKthenFisalsoavectorspaceoverKwherethescalarmultiplicationisregularmultiplicationinF.ThedimensionofFasavectorspaceoverKiscall

58 edthedegreeofFoverK.Itisdenotedby[F:K].I
edthedegreeofFoverK.Itisdenotedby[F:K].If[F:K]is nitethenFiscalleda nite eldextensionoverK.4.1.6K-isomorphisms.LetFandF0betwo eldextensionsovera eldK.Ifthereexistsanisomorphism:F!F0suchthatjKistheidentitywecallaK-isomorphismandwesaythatFandF0areK-isomorphic.ThegroupofK-automorphismsofFisdenotedbyAutK(F).Forexamplethe eldsQ(p 2)andQ(�p 2)areQ-isomorphic.4.1.7Simple eldextensions.LetFbea eldandKasub eldofF.Ifs2Fde neS=f^f(s):f2K[x]g.ThenSisaringwhichisisomorphictoK[x]=JforsomeidealJK[x].SinceK[x]isaPIDwehavethatJ=f0gorthatJ=h'iforsomepolynomial'.Inthe rstcase,whereJ=f0g,theelementsiscalledtranscendentaloverKandK(s)iscalledasimpletranscendentalextensionoverK.InthiscaseK(s)isisomorphictoK(x),thequotient eldofK[x].Ontheotherhand,sinceKcanbeconsideredasub eldofK(x),K(x)itselfisasimpletranscendentalextensionoverK.Inthesecondcase,whereJ=h'i,note rstthat'isuniquelydetermineduptomultiplicationbynonzeroelementsofK.h'iisaprop

59 ermaximalidealsinceSFandhenceK[x]=h
ermaximalidealsinceSFandhenceK[x]=h'idonothavezerodivisors.ThereforeK[x]=h'iisa eldsothatK(s),K[x]=h'i,andSareallisomorphic.Since^'(s)=0thepolynomial'hasthefactorx�sandhenceitsdegreeisatleastequaltoone.WecallsalgebraicoverKandK(s)asimplealgebraicextensionoverK.Thepolynomial'iscalledtheminimalpolynomialofsoverK.Nowsupposea eldKandanirreduciblepolynomial'2K[x]aregiven.Considerthe eldH=K[x]=h'iandthecanonicalhomomorphism :K[x]!H.Thesubset~K=fax0+h'i:a2KgistheisomorphicimageofKandhenceweconsiderKasasubsetofHbyidentifyingKand~K.NotethatH=K(s)wheres= (x)=x+h'iisanalgebraicelementofH,infact^'(s)=0.ThustheexistenceofsimplealgebraicextensionsoverKcanbeobtainedwithoutanaprioriknowledgeofa eldFcontainingtheelements.Example:LetK=Rand'=x2+1thenC=R[x]=hx2+1i=f^f(i):f2R[x]g=R(i)wherei=x+hx2+1i.4.1.8Conjugateelements.Twoelementssands0ofanextensionFoverKarecalledconjugateiftheyarealgebraicoverKandhavethesameminimalpolynomialoverK.4.1.9Thedegreeofasimpleextension.LetKbea

60 eld,'anirreduciblepolynomialinK[x]o
eld,'anirreduciblepolynomialinK[x]ofdegreen,ands=x+h'i.Then[K(s):K]=n,i.e.,thedegreeofthesimplealgebraicextensionK(s)overKisequalton.ThedegreeofasimpletranscendentalextensionoverKisin nite.Sketchofproof:Inthealgebraiccaseoneshows,usingthedivisiontheorem,thatfxj+h'i:j=0;:::;n�1gisabasisofH.Conversely,if[K(s):K]is nitethenK(s)mustbealgebraic.Forexample,ifi=x+hx2+1ithen1andiarelinearlyindependentinR[x]=hx2+1ibuti2+1=0.Hence[R[x]=hx2+1i:R]=2andR[x]=hx2+1i=fa+bi:a;b2Rg. 4.4.RADICALEXTENSIONS594.3.5ThefundamentaltheoremofGaloistheory.IfFisanormal eldextensionoverKthenall eldsEforwhichKEFareclosedandallsubgroupsofAutK(F)areclosedandhencethereisaone-to-onecorrespondencebetweentheintermediate eldsEandthesubgroups.Sketchofproof:LetEbeanintermediate eldandassumetheinclusionEEisstrict.Chooses2E�EanddenotetheminimalpolynomialofsoverEby'.Sinces62Eweknowthatdeg(')�1.SinceFisnormaloverKitisnormaloverEandhenceFcontainsa

61 lltherootsof'.Lettbearootof'di erent
lltherootsof'.Lettbearootof'di erentfroms.Then,byProposition4.1.13,theidentitymapfromEtoEextendstoanisomorphismbetweenE(s)andE(t)andthisisomorphismextendstoanelementofE.Hence(s)=t.However,sinces2Ewealsohave(s)=sandhences=t,acontradiction.HenceE=E.Nowlet=f1;:::;hgbeasubgroupofAutK(F)=Koforderh.Thereisanelementu2FsuchthatF=K(u)andhenceF=(u).Denotetheminimalpolynomialofuoverby'andde nethepolynomialf=(x�1(u)):::(x�h(u))=Phj=0ajxj.Thecoecientsajaresymmetricpolynomialsoftheroots1(u),...,h(u),inparticular,ah=1,ah�1=�Phj=0j(u),anda0=(�1)hQhj=0j(u).Thisimpliesthatk(aj)=ajwhencef2[x].Sinceuisarootoffwehavedeg(')deg(f).SinceFisnormaloverTheorem4.3.1givesthatord()=[F:]=deg(')andhenceord()ord().Thisshows nallythat=.4.3.6TheGaloisgroupofa eldextension.IfFisanormal eldextensionoverKth

62 esetAutK(F)ofallK-automorphismofFiscalle
esetAutK(F)ofallK-automorphismofFiscalledtheGaloisgroupofFoverKanditisdenotedbyGal(F=K).4.3.7Normalextensionandnormalsubgroups.SupposeFisanormal eldextensionoverKandEisanintermediate eld.ThenEisanormalextensionoverKifandonlyifEisanormalsubgroupofK=AutK(F).Moreover,ifEisanormalextensionoverK,thentheGaloisgroupGal(E=K)isisomorphictothequotientgroupK=E.Sketchofproof:AssumethatE=K(u)andletfbetheminimalpolynomialofuoverK.SupposeEisanormalextensionoverK.If 2Kthen (u)isarootoffandhenceinE.Therefore,if2Eands2E,thens=Pn�1j=0kjujwithkj2Kandhence(  �1)(s)=n�1Xj=0kj(  �1)(u)j=n�1Xj=0kjuj=s:Thisshowsthat  �12E,i.e.,thatEisanormalsubgroupofK.NowassumethatEisanormalsubgroupofK.Then( (u))=( )(u)= (u)forall 2Kandall2E.Thisimplies (u)2E=EandhencethatallrootsoffarecontainedinE,i.e.,Ethesplitting eldoff.Finally,de nethehomomorphism:K!Gal(E=K)

63 :7!jE.Thishomomor-phismissurje
:7!jE.Thishomomor-phismissurjectivebyTheorem4.1.13anditskernelisE.Thelaststatementofthetheoremfollowsnowfromthefundamentalisomorphismtheoremforcommutativerings.4.4.RadicalExtensions4.4.1Primitiverootsofunity.LetKbea eldandletnbeanaturalnumberwhichisnotamultipleofthecharacteristicpofK(anynaturalnumberifKhascharacteristiczero).Letfbethepolynomialxn�1inK[x].If^fhasaroot2Ktheniscalledann-throotofunity.Notethat^fhasatmostnrootsandletFbethesplitting eldoff.Thederivativeoffisnxn�1andisdi erentfromzero.Inthiscase^fhasthereforendistinct 604.FIELDSn-throotsofunityinF.Thesetofalln-throotsofunityformsanabeliangroupundermultiplication.Onecaninfactshowthatthisgroupiscyclic,i.e.,itisgeneratedbyoneofitselements.Anysuchelementiscalledaprimitiven-throotofunity.4.4.2Radicalextension.Asimple eldextensionK(s)overKiscalledasimpleradicalextensionoverKifthereexistsanaturalnumbern�1suchthatsninK,or,inotherwords,iftheminimalpolynomialofsoverKisxn�rforsomer2K

64 .TheadjunctionofstoKisthencalledradical.
.TheadjunctionofstoKisthencalledradical.A eldextensionFoverKiscalledaradicalextensionoverKifthereexistelementst1,...,tminFsuchthatF=K(t1)(t2):::(tm)andeachofthesuccessiveadjunctionsisradical.Theorem.ForanyradicalextensionEoverKthereisanextensionFoverEandanascendingtowerof eldsK=F0F1:::Fk=Fwiththefollowingproperties:(1)Foreachj2f1;:::;kgthereexistsaprimenumberpjandanelementsj2Fjsuchthatrj=spjj2Fj�1andFj=Fj�1(sj).(2)FjisanormalextensionoverFj�1.Sketchofproof:Bythede nitionofaradicalextensionwehaveatowerofradicalextension eldsK=F0F1:::Fk=EwhereFj=Fj�1(sj).Ifsnj2Fj�1andnhastheprimefactorizationn=p1:::plettj;`=sn=(p1:::p`)j.ThenreplacethestringFj�1Fjintheabovetowerof eldsbyFj�1Fj�1(tj;1):::Fj�1(tj;1):::(tj;)=Fj:Doingthisforalljweobtainatowerofradicalextensionshavingthe rstoftheaboveproperties(withF=E).SupposeFj�1isanormalextensionoverK.IfFj�1containsj,aprimitivepj-throotofunit

65 y,thenFjisanormalextensionoverFj�1and
y,thenFjisanormalextensionoverFj�1andhenceanormalextensionoverK.IfFj�1doesnotcontainj,aprimitivepj-throotofunity,replacethestringFj�1FjinthetowerbyFj�1Fj�1(j)Fj.ThenFj�1(j)isthesplitting eldofthepolynomialxpj�1andhencenormal.AlsoFjcontains,togetherwithsj,allotherrootssjkj,k=1;:::;pjofthepolynomialxpj�rjandhenceisasplitting eld.Repeatingthisforalljresultsinatowerhavingbothoftherequiredproperties.NotethatatstepjtherootjmaynotbeanelementofEsothattheresulting eldFmaybeanextensionofE.Example:LetK=QandE=Q(3p 2).ThenF1=Q(!)where!=(�1+ip 3)=2isathirdrootofunity.AlsoF=F2=Q(!;3p 2)isthesplitting eldofx3�2.4.4.3Radicalextensionandsolvability.IfFisanormalradicalextensionKthentheGaloisgroupofFoverKissolvable.Sketchofproof:Thereexistsatowerof eldsK=F0F1:::Fk=FwiththepropertiesofTheorem4.4.2.BythefundamentaltheoremofGaloistheorythereisatowerofsubgroupsfg=FFk�1:::F1

66 K=Gal(F=K):ByTheorem4.3.7wehave
K=Gal(F=K):ByTheorem4.3.7wehavethatFjisanormalsubgroupofFj�1.ThesubgroupFjismaximalamongthenormalsubgroupsofFj�1sinceitsindexinFj�1equals[Fj:Fj�1]=pj 4.5.THETHEOREMOFRUFFINIANDABEL61whichisprime.HenceFjisamaximalnormalsubgroupofFj�1andourtheoremisprovedonceweshowthatFj�1=Fj=Gal(Fj=Fj�1)isabelian.Suppose1;22Fj�1.SinceFj=Fj�1(sj)wehavethat1and2areuniquelydeterminedrespectivelybythevalues1(sj)=k1jsjand2(sj)=k2jsjwherejisaprimitivepj-throotofunityandk1andk2areappropriateintegers.Hence(12)(sj)=1(k2jsj)=1(j)k2k1jsjand(21)(sj)=2(k1jsj)=2(j)k1k2jsj:Ifspjj=1wemayassumesj=jwhence(12)(sj)=s(k1+1)k2+k1+1j=(21)(sj):Ifspjj6=1wehavej2Fj�1andhence1(j)=2(j)=j.Thus(12)(sj)=k1+k2jsj=(21)(sj):4.5.TheTheoremof

67 RuniandAbel4.5.1Historicalfacts.The
RuniandAbel4.5.1Historicalfacts.Thequadraticformulawasknown(inasense)totheBabyloniansperhaps5000yearsago.Thecubicequationandthequarticequationweresolvedbyradicalsinthe1500sbytheItalianmathematiciansdelFerro,TartagliaandCardanandFerrari.By1799over250yearshadpassedwithoutanyonebeingabletosolvethequinticequa-tionbyradicalseventhoughattemptshadebeenmadebymanymathematiciansincludingveryfamouspeoplelikeEuler,Bezout,Vandermonde,andLagrange.Thenin1799Runiproved(perhapsnotentirelycorrectly)thatthistaskwasinfactimpossiblebuthisassertiondidnotentertheconsciousnessofthemathematicalcommunityofthetime.Thereasonwasperhapsthatnobodyreallybelievedthatitwasimpossible.AquartercenturylaterAbelgaveanotherproofofthisfactandthistimethemessagestuck.4.5.2Thegeneralpolynomialequationofdegreen.Letkbea eldandu0,...,un�1indeterminates.Thenf=xn+un�1xn�1+:::+u0isapolynomialoverthe eldK=k(u0;:::;un�1).Theequation^f(z)=0iscalledthegeneralpolynomialequationofdegreen.4.5.3Theconceptofsolvabi

68 litybyradicals.Tosolveapolynomialequatio
litybyradicals.Tosolveapolynomialequationbyradicalsmeans ndingaformulaforitsrootsintermsofthecoecientssothattheformulaonlyinvolvestheoperationsofaddition,subtraction,multiplication,divisionandtakingroots,eacha nitenumberoftimes.De nition.Letf2K[x].Thepolynomialequation^f(z)=0iscalledsolvablebyradicalsifthesplitting eldoffisaradicalextensionoverK.Forinstance,thegeneralquadraticequationinK=C(u0;u1)isz2+u1z+u0=0andthecorrespondingequationissolvedbytheformulaz1;2=�u1 21 2q u21�4u0intheextension eldK(p )where=u21�4u0.Thepurposeoftheformulais,ofcourse,thatz1;2aretherootsofz2+u1z+u0(inK(p ))foranychoiceofu1andu0inCorevenK. 624.FIELDSHowever,ifK=C,i.e.,f2C[x],thenthesplitting eldoffisalsoCandaradicalextensionofitself.So,byourde nition,^f(z)=0issolvable,butthisdoesnotmeantherearee ectivemeanstoactuallydoit.Forthisreasonweconsideru0,...,un�1asindeterminates.4.5.4ThetheoremofRuniandAbel.LetKbea eldofcharacteristiczeroandletf=xn+u

69 n�1xn�1+:::+u0beapolynomialinK(u0;
n�1xn�1+:::+u0beapolynomialinK(u0;:::;un�1)[x].Then^f(z)=0isnotsolvablebyradicalsifn�4.Sketchofproof:Letx1;:::;xnbenindeterminatesandletv0,...,vn�1betheelementarysymmetricpolynomialsoftheseindeterminates,i.e.,v0=(�1)nx1:::xn...vn�1=�x1�:::�xn:ThenK(x1;:::;xn)isthesplitting eldofg=xn+vn�1xn�1:::+v0overK(v0;:::;vn�1).TheGaloisgroupofK(x1;:::;xn)overK(v0;:::;vn�1)isthegroupofpermutationsoftheindeterminatesx1,...,xn.Nowsupposethat^f(z)=0issolvablebyradicalsandletFbethesplitting eldoffwhich,byassumption,isaradicalextensionofK(u0;:::;un�1).OnemayshowthattheringsK[u0;:::;un�1]andK[v0;:::;vn�1]areisomorphicandthisisomorphismextendstoanisomorphismbetweenthefraction eldsK(u0;:::;un�1)andK(v0;:::;vn�1)and,byTheorem4.1.13,toanisomorphismbetweenFandK(x1;:::;xn)andthereforetheGaloisgroupofFoverK(u0;:::;un�1)isisomorphictothepermutationgrouponnletterswhichisnotsolvablebyTheorem4.2.3. 5.2.LINEARTRANSFORMATIONS65by(v1;w1)+(v2;w2)

70 =(v1+v2;w1+w2)and:K(VW)!V&#
=(v1+v2;w1+w2)and:K(VW)!VWisde nedby(r;(v;w))7!r(v;w)=(rv;rw).Theorem.Thedimensionofadirectsumsatis esdim(VW)=dimV+dimW.Sketchofproof:LetB1beabasisofVandB2abasisofW.De neA1=f(v;0):v2B1g,A2=f(0;w):w2B2gandB=A1[A2.ThenBisabasisofVW.Example:LetV=f(a;a):a2RgandW=f(a;b):a;b2Rg.ThenVW=f((a;a);(b;c)):a;b;c2Rg.Abasisisf((1;1);(0;0));((0;0);(1;0));((0;0);(0;1))g.5.1.9Internalsumsandinternaldirectsums.LetXandYbetwosubspacesofavectorspaceV.TheunionofXandYisnotnecessarilyasubspaceofV.Wede nethesumofXandYtobethesubspacegeneratedbytheirunion,i.e.,X+Y=hX[Yi.ItturnsoutthatX+Y=fx+y:x2X;y2Yg.ThedimensionofX+Yisin niteifatleastoneofXandYhasin nitedimension.Otherwiseitisgivenbydim(X+Y)=dimX+dimY�dim(X\Y):IfX\Y=f0gwedenoteX+YbyXYandcallittheinternaldirectsumofXandY.1Theorem.LetXbeasubspaceofavectorspaceV.ThenthereexistsasubspaceYsuchthatX\Y=f0gandXY=V.Sketchofproof:LetAbeabasisofX.ByTheorem5.1.7thereisabasisCofVsuchthatAC.De neB=C�Aa

71 ndY=hBi.ThenYisasubspaceofV.Assumex2X\Y.
ndY=hBi.ThenYisasubspaceofV.Assumex2X\Y.ThenxcanbewrittenasalinearcombinationofelementsofAandasalinearcombinationofelementsofB.SubtractingthesetwoexpressionsgivesthatalinearcombinationofelementsofCequalszero.Henceallcoecientsarezeroandxisequaltozero.ThusX\Y=f0g.SinceA[BspansVwegetthatX+Y=V.5.2.LinearTransformations5.2.1Lineartransformations.LetVandWbetwovectorspacesoverthesame eldK.Afunctionf:V!Wiscalledalineartransformationoravectorspacehomomorphismiff( x+ y)= f(x)+ f(y)forall ; 2Kandallx;y2V.AbijectivelineartransformationfromVtoWiscalleda(vectorspace)isomorphism.IfW=Vitiscalleda(vectorspace)automorphism.TwovectorspacesVandWarecalledisomorphicifthereexistsanisomorphismfromVtoW.Thefollowingpropertiesholdforlineartransformationsf:V!W:|f(0)=0,f(�x)=�f(x),sincealineartransformationisagrouphomomorphismfrom(V;+)to(W;+).|Thecompositionoflineartransformationsisalineartransformation.|Therelation\isisomorphicto"isanequivalencerelationonthesetofallvectorspace

72 soverK.|f(V)isasubspaceofW.|kerf=fx2V:f(
soverK.|f(V)isasubspaceofW.|kerf=fx2V:f(x)=0gisasubspaceofV.|fisinjectiveifandonlyifkerf=f0g. 1TheinternaldirectsumofXandYisisomorphic(see5.2.1)totheir(external)directsum.Thisjusti esusingthesamenotation. 5.3.FINITE-DIMENSIONALVECTORSPACES67A.LetAbealineartransformationsfromVtoV.IfkerA2=kerAthenV=kerAA(V).Sketchofproof:NotethatA(V)\kerA=fAx:x2kerA2g.Thelatterset,however,equalsf0gsincekerA2=kerA.By5.1.9andthefundamentaltheoremoflinearalgebraweobtainthenthatdim(A(V)kerA)=dimV.SinceVis nite-dimensionalthisimpliesthatA(V)[ker(A)spansV.B.SupposeA1andA2arecommutativelineartransformationsfromVtoV,thatkerA1\kerA2istrivial,andthatkerA21=kerA1.Thenker(A1A2)=kerA1kerA2.Sketchofproof:Assumex=u+vwhereu2kerA1andv2kerA2.ThenA1A2x=A2A1u+A1A2v=0,i.e.,x2ker(A1A2).Nextsupposethatx2ker(A1A2).BypartAweknowthatx=u+A1vforsomev2Vandsomeu2kerA1.HenceA21A2v=0.SincekerA21=kerA1wehavealso0=A1A2v=A2A1v.HenceA1v2kerA2.C.AssumethatA1,...,AmarepairwisecommutativelineartransformationsfromVtoVsuch

73 thatkerA2j=kerAjforj=1;:::;mandkerAj\ker
thatkerA2j=kerAjforj=1;:::;mandkerAj\kerA`=f0gforj6=`.Thenker(A1:::Am)=kerA1:::kerAm.Sketchofproof:Firstshow(byinduction)thatkerA1\ker(Am+1�k:::Am)=f0gfork=1;:::;m�1.Hence,bypartB,ker(A1:::Am)=kerA1ker(A2:::Am).Anotherinductioncompletestheproof.5.2.4Quotientspaces.Let(V;K;+;)beavectorspaceandUasubspaceofV.Recallthat(V=U;+)isacommutativegroup.Onemayde neascalarmultiplicationKV=U!V=Uby( ;x+U)7! x+U.Thisscalarmultiplication(alsodenotedbyiswellde nedandturns(V=U;K;+;)intoavectorspace,calledthequotientspaceofVwithrespecttoU.Let':V!V=Ubethecanonicalgrouphomomorphismwhichisindeedavectorspacehomomorphism,i.e.,alinearmap.SinceU=ker(')andsince'issurjectiveweobtainfromTheorem5.2.2dim(V=U)=dimV�dimUifUis nite-dimensional.5.2.5Invariantsubspaces.Letf:V!VbealineartransformationonavectorspaceVandUasubspaceofV.Iff(U)UthenUiscalledaninvariantsubspacewithrespecttof.Forexample,thesubspaceC1(R)ofC1(R)isaninvariantsubspacewithrespecttothelinear

74 transformationy7!y0.5.3.Finite-dimension
transformationy7!y0.5.3.Finite-dimensionalvectorspaces5.3.1Existenceofabasisofa nite-dimensionalvectorspace.SupposethatVisann-dimensionalvectorspaceandthatAisasubsetofVwithnelements.IfAspansV,thenitisabasisofV.Inparticular,anyn-dimensionalvectorspacehasabasisconsistingofnelements.Sketchofproof:LetVbeavectorspaceofdimensionn.Thenthereexistsasetfx1;:::;xngwhichspansV.Assumethatthissetisnotlinearlyindependent.Thenoneofitselements,sayxn,isalinearcombinationoftheothers.Thisfactisusedtoshowthatanyx2Vcanberepresentedbyalinearcombinationofx1;:::;xn�1.HenceVisinfactspannedbyfx1;:::;xn�1gbutthisisacontradictiontothefactthatVhasdimensionn.5.3.2Exchangeofbasiselements.SupposeVisavectorspaceofdimensionn�0andthatB=fb1;:::;bngspansV(andhenceisabasisofV).IfAisalinearlyindependentsubsetofVwithknelementssuchthatA\Bisempty,thenthereexistsabasisofVwhichcontainsAandn�kelementsofB. 5.3.FINITE-DIMENSIONALVECTORSPACES69withmrowsandncolumns)bylettingthej-thcolumnofMbethetupleofcoeci

75 entsofthevectorf(aj)withrespecttototheba
entsofthevectorf(aj)withrespecttotothebasisB,i.e.,iff(aj)=Pmk=1 k;jbkthenM=0B@ 1;1::: 1;n...... m;1::: m;n1CA:Thencomputingf(x)isreducedtomatrixmultiplication,sincewehaveforanyx2Knf(x)=264y1...ym375B=M264x1...xn375A:Conversely,everymnmatrixrepresentsalineartransformationfromKntoKmafterchoosingorderedbasesinbothdomainandrange.Moregenerally,ifVandWarevectorspacesoverKofdimensionsnandm,respectively,thenanylineartransformationffromVtoWisrepresentedbyamatrixwithentriesinKandeverymatrixofsuitabledimensionsrepresentsalineartransformationafterorderedbases(v1;:::;vn)and(w1;:::;wm)ofVandWarechosen.Speci cally,giventhesebasesde neisomorphismsg:V!Knandh:W!Kmasin5.3.4.Then,accordingtotheabove,thelineartransformationhfg�1:Kn!KmmayberepresentedbyanmnmatrixM.Thenthej-thcolumnofMish(f(g�1(ej)))=h(f(vj))=[f(vj)](w1;:::;wm),i.e.,them-tupleofcoecientsoff(vj)whenwrittenintermsoftheorderedbasis(w1;:::;wm).5.3.6Systemsoflinearequations.Considerasystemofmline

76 arequationsinnun-knownsx1,...,xn,i.e,a1;
arequationsinnun-knownsx1,...,xn,i.e,a1;1x1+:::+a1;nxn=b1;a2;1x1+:::+a2;nxn=b2;:::am;1x1+:::+am;nxn=bm:LetAbethematrixwithentriesAi;k=ai;k2K,b=(b1;:::;bm)�2Km,andx=(x1;:::;xn)�2Kn.ThentheabovesystemcanbeconciselywrittenasAx=bandAcanbeconsideredasthematrixofalineartransformationfromKntoKm(alsodenotedbyA).Wewillnowconsiderthequestionsofexistenceanduniquenessofsolutionsofsuchasystemoflinearequations.ThecolumnsofAareelementsofKm.TheyspanA(Kn),theimageofKnunderthelineartransformationA.ThenumberoflinearindependentcolumnsofAiscalledthecolumnrankof(thematrix)A.ItisequaltothedimensionofA(Kn)andhenceequaltotherankofthelineartransformationA.Let(A;b)bethem(n+1)matrixobtainedbyadjoiningbasacolumntoA.ThevectorbdependslinearlyonthecolumnsofAifandonlyifthematricesAand(A;b)havethesame(column)rank.ThisimpliesthatAx=bhasasolutionifandonlyifrank(A;b)=rankA.Sincen=rankA+dimkerAthelineartransformationAisinjectiveandhenceasolutionofAx=bisuniqueifandonlyifrankA=n.Thesolutionsofahomogeneousequation

77 Ax=0aregivenastheelementsofkerA.Ifxandxp
Ax=0aregivenastheelementsofkerA.IfxandxparebothsolutionsofAx=bthenx�xp2kerA.HencethesolutionsofAx=baregivenastheelementsofthecosetxp+kerA=fa+xp:a2kerAg.ThuswehaveproventhefollowingTheorem.LetAbeanmnmatrixandb2Km.ThenexistenceanduniquenessofsolutionsofthesystemAx=bisgivenbythefollowingtable 705.VECTORSPACES Ax=b=0 Ax=b6=0 rank(A;b)�rankA doesnothappen systemisunsolvable rank(A;b)=rankA=n x=0istheuniquesolution systemisuniquelysolvable rank(A;b)=rankAn systemhasnontrivialsolutions systemhasmanysolutionsMoreover,thesetofsolutionsofAx=0isasubspaceofKnwhosedimensionisgivenbyn�rankA.IfxpissomesolutionofAx=bthenanysolutionxofAx=bcanbeexpressedbyx=xp+xhwherexhisasolutionofAx=0.5.3.7Gaussianelimination.TwosystemsAx=bandA0x=b0ofmlinearequationsinnunknownsarecalledequivalentiftheyhavepreciselythesamesolutions.AsystemAx=bistransformedintoanequivalentsystembyanyofthefollowingelementaryrowoperations:(a)Multiplyanequationbyanonzeroscalar.(b)Addamultipleofoneequationtoanotherone.(c)Intercha

78 ngeanytwooftheequations.Totheserowoperat
ngeanytwooftheequations.Totheserowoperationsamongequationscorrespondsimilarrowoperationsamongtherowsofthematrix(A;b).Twomatricesarecalledrow-equivalentifitispossibletotransformoneintotheotherbya nitesequenceofelementaryrow-operations.Rowequivalenceis(ofcourse)anequivalencerelation.Ofcourse,thematrices(A;b)and(A0;b0)arerow-equivalentifandonlyifthesystemsAx=bandA0x=b0areequivalent.Amatrixissaidtobearow-echelonmatrixifitsatis es(a)allzerorowsoccurbelowanynonzerorow,(b)the rstnonzeroentryofeachnonzerorowoccurstotherightofthe rstnonzeroentryofanyrowabove.The rstnonzeroentryofarowiscalledapivot.Theorem.EverymatrixAisrow-equivalenttoarow-echelonmatrixR.ThenumberoflinearlyindependentrowsofA(calledtherowrankofA)equalsboththenumberoflinearlyindependentcolumnsofA(i.e.,thecolumnrankofA)andthenumberofnonzerorowsofR.Sketchofproof:The rstclaimfollowsbyinductiononthenumberofrows.Theele-mentaryrowoperationsleavethenumberoflinearlyindependentrowsofamatrixinvariant(astheydonotchangethes

79 pacespanned).SincethesystemsAx=0andRx=0a
pacespanned).SincethesystemsAx=0andRx=0areequiv-alent,i.e.,sincekerA=kerR,weobtainrankA=n�dimkerA=n�dimkerR=rankR,assumingthatAisanmnmatrix.Hencetheelementaryrowoperationsleavealsothecolumnrankofamatrixinvariant.TheproofiscompletedbytheobservationthatcolumnrankandrowrankofRareequaltothenumberofnonzerorowsofR.ThereforeelementaryrowoperationscanbeusedtodeterminetherankofAandtherankof(A;b)andhencetoanswerthequestionsofexistenceanduniquenessofsolutionsofAx=b.Buttheyarealsousefulinactuallycomputingthesolution:Let(B;b0)bearow-echelonmatrixwhichisrowequivalentto(A;b)andassumethatrankB=rank(B;b0).ThenxsolvesAx=bifandonlyifxsolvesBx=b0.Letx=(x1;:::;xn)�.IfcolumnkofBcontainsthepivotofsomerowthenxkiscalledadeterminedandotherwiseafreevariable.Anychoiceofscalarsforthefreevariableswillleadtoasolution.Thedeterminedvariablescannowbecomputedonebyonestartingwiththeonehavingthelargestindex.Example:Consider0@1�111211111A0@x1x2x31A=0@1�5b1A: 745.VECTORSPACESwhereeachmatrixJlisaJordanbl

80 ockiscalledaJordanmatrix.5.5.6Nilpotentt
ockiscalledaJordanmatrix.5.5.6Nilpotenttransformations.AlineartransformationTfroma nite-dimensionalvectorspaceVtoitselfiscallednilpotentifthereexistsanaturalnumbermsuchthatTmisthezerotransformation.SupposethatTm=0andthatisaneigenvalueofTwithassociatedeigenvectorx.ThenTmx=mxandthisshowsthat=0.Hence,anilpotenttransformationhasonlyoneeigenvalue,namelyzero.ThateigenvaluehasalgebraicmultiplicityequaltothedimensionofV.Theorem.SupposeT:V!Visanilpotentlineartransformationonann-dimensionalcomplexvectorspaceV.ThenVisadirectsumofT-cyclicsubspaces.Sketchofproof:TheproofisbyinductiononthedimensionofV.LetMbethesetofallnaturalnumbersforwhichthetheoremistrue.Then12M,becausedim(V)=1and06=x2VimplythatTx=0andhenceV=[x]T.Nextassumethatn2Mandthatdim(V)=n+1.SinceTisnilpotentdim(T(V))n.ThereforethereisasubspaceFofVofdimensionnsuchthatT(V)F.Sincedim(F)=nandFisinvariantunderTthereexistvectorsx1,...,xksuchthatF=Lkj=1[xj]Twheretheindicesarechosensuchthatm1:::mkwhenmjdenotesdim([x

81 j]T).Nowchooseg2V�F.Thenthereexistsh2
j]T).Nowchooseg2V�F.Thenthereexistsh2Fandnumbers 1,..., ksuchthatTg=Th+Pkj=1 jxj.Indeed,sinceTg2FwehaveTg=kXj=1mj�1X`=0 j;`T`xjandcanthereforechooseh=kXj=1mj�1X`=1 j;`T`�1xjand j= j;0forj=1;:::;k.Wenowdistinguishtwocases.Inthe rstcaseallofthenumbers jarezero.De ningxk+1=g�hgivesTxk+1=0,hxk+1i=[xk+1]T,andV=F[xk+1]T.Inthesecondcasewehaveanumberpsuchthat p6=0but j=0wheneverj�p.Inthiscasewede ne~xp=(g�h)= pandF0=Lj6=p[xj]T.ThenT`+1~xp=T`xp+p�1Xj=1 j pT`xj:ThisimpliesthatTmp+1~xp=0andthatf~xp;T~xp;:::;Tmp~xpgislinearlyindependent.Hence[~xp]TisaT-cyclicsubspaceofdimensionmp+1.Since[~xp]T\F0=f0gweobtainthatthesum[~xp]T+F0isdirectandhasdimensionn+1.ThusV=[~xp]TF0.Thisshowsthatn+12M.Thetheoremfollowsnowfromtheinductionprinciple.TheaboveproofisduetoGohbergandGoldberg(AsimpleproofoftheJordande-compositiontheoremformatrices,AmericanMathematicalMonthly103(1996),p.157{159).Corollary.Vhasanorderedbasiss

82 uchthatthematrixassociatedwithTisaJordan
uchthatthematrixassociatedwithTisaJordanmatrixallofwhoseJordanblockshaveeigenvaluezero.Conversely,everysuchmatrixisnilpotent. 5.6.MULTILINEARALGEBRA77thespectraltheoremimplies(zI�T)�1=X2(T)()�1Xm=0(T�I)m (z�)m+1E:ThenuseCauchy'sintegralformulaandagainthespectraltheorem.5.5.12TheminimalpolynomialandCayley'stheorem.LetT:V!Vbealineartransformationona nite-dimensionalcomplexvectorspace.Supposethat1,...,mareitsdistincteigenvalueswhoserespectiveindicesare1,...,m.Thenthepolynomial(�1)1:::(�m)miscalledtheminimalpolynomialofT.InviewofTheorem5.5.4weobtainimmediatelythevalidityofthefollowingtheoremofCayley.Theorem.Ifqis(amultipleof)theminimalpolynomialofTthenq(T)=0.Amongallpolynomialsfwithleadingcoecientonesatisfyingf(T)=0theminimalpolynomialofTistheoneoflowestdegree.5.5.13Thecharacteristicpolynomial,traceanddeterminant.LetT:V!Vbealineartransformationona nite-dimensionalcomplexvect

83 orspace.Supposethat1,...,marei
orspace.Supposethat1,...,mareitsdistincteigenvalueswhoserespectivealgebraicmultiplicitiesarek1,...,km.Thenthepolynomial(�1)k1:::(�m)km=n�a1n�1+:::+(�1)naniscalledthecharacteristicpolynomialofT.Thenumbera1=k11+:::+kmmiscalledthetraceofTandisdenotedbytrT.Thenumberan=k11:::kmmiscalledthedeterminantofTandisdenotedbydetT.SinceI�Thasaneigenvalue�jofalgebraicmultiplicitykjifandonlyifThasaneigenvaluejofthesamemultiplicityitfollowsthatthecharacteristicpolynomialofTequalsdet(I�T).Theorem.SupposeT:V!Visalineartransformationonacomplex nite-dimensionalvectorspace.ThenTisinvertibleifandonlyifdetT6=0.InthiscaseT�1isalsoalineartransformationfromVtoV.5.6.MultilinearAlgebra5.6.1Multilinearforms.SupposeVisavectorspaceoverthe eldK.Toanyfunctionf:Vk!Kandanyelement(x;y)2Vj�1Vk�jwemayassociatethefunctionfx;y:V!K:t7!f(x;t;y).Thefunctionfiscalledamultilinearformora(covariant)tensorofrankk

84 overVifforallj2f1;:::;kgandall(x;y)2Vj&#
overVifforallj2f1;:::;kgandall(x;y)2Vj�1Vk�jthefunctionfx;yislinear.IfVhasdimensionnthesetTkofalltensorsofrankkoverVisavectorspaceofdimensionnk.5.6.2Antisymmetrictensors.SupposefisatensorofrankkoverthevectorspaceV.Thenfiscalledantisymmetricifforeverytranspositiontherelationshipf(x1;:::;xk)=�f(x1;:::;xk)holds.Equivalently,fiscalledantisymmetricwhenj6=landxj=xlimplythatf(x1;:::;xk)=0.TheantisymmetrictensorsofrankkformasubspaceofTk.5.6.3Determinantforms.LetVbeann-dimensionalvectorspaceandfb1;:::;bngabasisofV.Anantisymmetrictensorfofrankniscalledadeterminantform.Itisuniquely 805.VECTORSPACES(a)kfk1=maxfjf(x)j:x2[a;b]g,(b)kfkp=Rbajf(x)jpdx1=pifp1.5.7.2Innerproducts.AgainletVbeavectorspaceovereithertherealorthecomplexnumbers.Afunction(;):VV!Kiscalledaninnerproductorascalarproductifitsatis esthefollowingconditions:(a)(x;x)0forallx2V,(b)(x;x)=0ifandonlyifx=0,(c)( x+ y;z)= (x;z)+ (y;z),forall ; 2Kandallx;y;z2V,(d)

85 (x;y)= (y;x)forallx;y2V.Here equals
(x;y)= (y;x)forallx;y2V.Here equals oritscomplexconjugatedependingonwhetherK=RorK=C.Notethaty=0ifandonlyif(x;y)=0forallx2V.IfK=Rtheinnerproductisbilinear(linearinbothofitsarguments).IfK=Ctheinnerproductislinearinits rstargumentbutantilinearinitssecond:(x; y+ z)= (x;y)+ (x;z).Ifthereexistsaninnerproduct(;)onVthen(V;(;))iscalledaninnerproductspace.Examples:RnandCncanbeconsideredasinnerproductspaces.AninnerproductonCnisgivenby(x;y)=Pnk=1xk yk.AlsoC0([a;b])canbeconsideredasaninnerproductspacewhen[a;b]isaclosedintervalinR:aninnerproductis(f;g)=Rbaf gdx.Theorem.1.Aninnerproductsatis esSchwarz'sinequality,i.e.,j(x;y)j(x;x)1=2(y;y)1=2:2.Everyinnerproductspaceisanormedvectorspaceunderthenormx7!kxk=(x;x)1=2.Sketchofproof:1.Assume(x;y)6=0.Let =j(x;y)j=(y;x).Foranyrealr0(x�r y;x�r y)=(x;x)�2rj(x;y)j+r2(y;y):Now(y;y)6=0sinceotherwise(x;y)wouldbezero.Schwarz'sinequalityfollowsnowfromchoosingr=j(x;y)j=(y;y).2.Thetriangleinequ

86 alityfollowsfromSchwarz'sinequality.
alityfollowsfromSchwarz'sinequality.5.7.3Orthogonality.Suppose(;)isaninnerproductonavectorspaceV.If(x;y)=0wesaythatxandyareorthogonalanddenotethisbyx?y.LetMbeasubsetofVandde neM?=fx2V:(8y2M:(x;y)=0)g.Ifx1;x22M?thensois x1+ x2,i.e.,M?isasubspaceofV.M?iscalledtheorthogonalcomplementofM.Theorem.LetXbeasubsetofaninnerproductspace.IftheelementsofXarenonzeroandpairwiseorthogonalthenXislinearlyindependent.Sketchofproof:Taketheinnerproductofalinearcombinationofthevectorswitheachofthevectorsthemselves.5.7.4Orthonormalsubsets.AsetXwhoseelementshavenormoneandarepairwiseorthogonaliscalledorthonormal.Theorem.LetXbealinearlyindependentcountable(e.g., nite)subsetofaninnerprod-uctspace.ThenhXi,thespanofX,hasanorthonormalbasis.Sketchofproof:ThebasiscanbeproducedfromXusingthesocalledGram-Schmidtprocess:de nez1=x1=kx1k.Thenz1hasnormoneandspanshfx1gi.Nextassumethat, 825.VECTORSPACESTisalineartransformation.ItiscalledtheadjointofT.NotethatT=Tsince(Tx;y)= (y;T&#

87 3;x)= (Ty;x)=(x;Ty):Letfx1;:::;xngbeanor
3;x)= (Ty;x)=(x;Ty):Letfx1;:::;xngbeanorthonormalbasisofV.Supposethat,withrespecttothatbasis,TisrepresentedbythematrixAwhileTisrepresentedbythematrixB,i.e.,Txj=Pnl=1Al;jxlandTxj=Pnl=1Bl;jxl.ObservethatAl;j=(Txj;xl)=(xj;Txl)=(xj;nXk=1Bk;lxk)= Bj;l:HencewefoundthatthematrixrepresentingTisthecomplexconjugateofthetransposeofthematrixrepresentingT(orjustthetransposeifthescalar eldisR).WewillwriteB=A.Theorem.LetT:V!Vbealineartransformationona nite-dimensionalinnerproductspace.ThenkerT=T(V)?andkerT=T(V)?.Inparticular,TandThavethesamerank.Sketchofproof:Thefollowingsequenceofequivalencesshowsthe rststatement.x2kerT,Tx=0,8y:(Tx;y)=0,8y:(x;Ty)=0,x2(T(V))?:5.7.8Normallineartransformations.SupposeVisa nite-dimensionalvectorspace.AlineartransformationT:V!VonaninnerproductspaceViscallednormalifitcommuteswithitsadjoint,i.e.,ifTT=TT.IfTisnormalandx2Vthen(Tx;Tx)=(Tx;Tx).ThisimpliesthatkerT=kerTforanynormallineartransformation.IfTi

88 snormalandx2kerT2,thenTx2kerT=kerT.T
snormalandx2kerT2,thenTx2kerT=kerT.Therefore0=(TTx;x)=(Tx;Tx)andhencekerT=kerT2.SinceTisnormalifandonlyifT�Iisnormal,thisimpliesthatthealgebraicandgeometricmultiplicitiesofanyeigenvalueofanormallineartransformationcoincide.Inparticular,ifV,thedomainofT,isacomplexvectorspacethenVhasabasisofeigenvectorsofT.Supposeand0aredistincteigenvaluesofanormallineartransformationTandthatxandx0aretheassociatedeigenvectors.Then(�0)(x;x0)=(Tx;x0)�(x;Tx0)=0whichimpliesthat(x;x0)=0,i.e.,thatxandx0areorthogonal.Inparticular,ifV,thedomainofT,isacomplexvectorspacethenVhasanorthonormalbasisofeigenvectorsofT.InsummarywehavetheTheoremSpectraltheorem.LetTbeanormallineartransformationona nite-dimensionalcomplexvectorspaceVwithdistincteigenvalues1;:::;m.Thenthereexistpairwiseor-thogonalsubspacesU1;:::;UmsuchthatV=U1:::UmandT=mXj=1jPjwherethePjareorthogonalprojectionsontoUj.5.7.9Self-adjointlineartransformations.Alineartransformationonaninnerproduc

89 tspaceiscalledself-adjointifT=T.Note
tspaceiscalledself-adjointifT=T.Notethateveryself-adjointlineartransformationisnormal.Example:AlineartransformationPisanorthogonalprojectionifandonlyifitisidempotentandself-adjoint.i.e.,P=P2=P. IndexK-isomorphism,54adjoint,82algebraassociative,14algebraic,54antilinear,80antisymmetric,77associative,13automorphismofvectorspaces,65axiom,7basis,64bijective,11bilinear,80binaryoperation,13cardinality,16Cartesianproduct,10center,27centralizer,27characteristic,53characteristicpolynomial,77commutative,13complementofaset,8compositionfactors,57compositionseries,57congruent,36conjugate,54connective,1constant,4contrapositive,1converse,1coordinate,68countable,17countablyin nite,17cyclic,73deMorgan'slawsinlogic,2insettheory,9de nition,7determinant,77determinantform,77di erenceofsets,8dimension,64directsuminternal,65distributive,13left,13right,13domainofarelation,10domainofdiscourse,5eigenprojection,76eigenspacealgebraic,71geometric,71eigenvalue,71eigenvector,71generalized,71element,5ele

90 mentaryrowoperations,70emptyset,8equalit
mentaryrowoperations,70emptyset,8equalityofsets,8extension,12 eld,14 eldextension,53 nite,54 niteset,17 xed eld,58formula,4freeabeliangroup,31freegroup,31function,11bijective,11injective,11surjective,11Galoisgroup,59greatestlowerbound,12group,14idempotent,75identity,13imageofarelation,1085 86INDEXofasetunderarelation,10indexofaneigenvalue,72in mum,12in nite,17countably,17injective,11innerproduct,80innerproductspace,80intersectionofsets,8invariant,67inverseelement,13irreducible,19isomorphicvectorspaces,65isomorphismofvectorspaces,65Jordanblock,73Jordanchain,73Jordanmatrix,74Jordannormalform,75leastupperbound,12linearcombination,63linearfunctional,81linearindependence,64logicalequivalence,2logicalimplication,1lowerbound,12maximalelement,12maximum,12minimalelement,12minimalpolynomial,77minimum,12multilinearform,77multiplicityofazero,44nilpotent,74normal,82normal eldextension,56one-to-one,11onto,11orderofagroup,23ofagroupelement,27orderedpair,10orderingpartial

91 ,12total,12well,12orthogonal,80orthonorm
,12total,12well,12orthogonal,80orthonormal,80pairwisedisjoint,8parity,26partition,11permutation,25pivot,70polynomialfunction,42powerset,8predicate,4preimageofasetunderarelation,10premise,2primenumber,19proofbycontradiction,4quanti erexistential,5universal,5R-module,14radicaladjunction,60radicalextension,60simple,60range,11rank,66relation,10antisymmetric,12composite,10equivalence,11inverse,10re exive,11symmetric,11transitive,11residueclass,36restriction,12ring,14root,44row-echelonmatrix,70scalarmultiplication,14scalarproduct,80scopeofaquanti er,5self-adjoint,82sentence,1singular,4set,5spectrum,71splitting eld,55statement,1sub eld,53subset,8proper,8subspace,63successor,14successorfunction,14supremum,12surjective,11tautology,1tensor,77theorem,7trace,77transcendental,54transformationlinear,65 INDEX87triangleinequality,22,79uncountable,17unionofsets,8unitarysubring,35upperbound,12variable,4bound,5determined,70free,5,70vectorspace,14 nite-dimensional,64in nite-dimensional,6