/
3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond 3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond

3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond - PDF document

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
377 views
Uploaded On 2017-03-05

3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond - PPT Presentation

SincethreefacesmeetateveryvertexweknowthateveryvertexinthepolyhedronmusthavedegreethreeThehandshakinglemmaassertsthatthesumofthedegreesisequaltotwicethenumberofedgessowehavetheequation3V2Eorequiva ID: 522499

Sincethreefacesmeetateveryvertex weknowthateveryvertexinthepolyhedronmusthavedegreethree.Thehandshakinglemmaassertsthatthesumofthedegreesisequaltotwicethenumberofedges sowehavetheequation3V=2Eorequiva

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "3.POLYHEDRA,GRAPHSANDSURFACES3.2.Platoni..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond Sincethreefacesmeetateveryvertex,weknowthateveryvertexinthepolyhedronmusthavedegreethree.Thehandshakinglemmaassertsthatthesumofthedegreesisequaltotwicethenumberofedges,sowehavetheequation3V=2Eorequivalently,V=2 3E.ThismeansthatifweknowthevalueofE,thenwealsoknowthevalueofV. Sinceeveryfaceisapentagon,weknowthateveryvertexinthedualmusthavedegreeve.Thehandshakinglemmaonthedualassertsthatthesumofthenumbersofedgesaroundeachfaceisequaltotwicethenumberofedges,sowehavetheequation5F=2Eorequivalently,F=2 5E.ThismeansthatifweknowthevalueofE,thenwealsoknowthevalueofF. NowwecanuseEuler'sformulaV�E+F=2andsubstituteforVandF.Ifyoudothisproperly,youshouldobtain2 3E�E+2 5E=2)E=30.Fromthis,wecaneasilydeducethatV=2 3E=20andF=2 5E=12.Youcanandshouldusethismethodtodeterminethenumberofvertices,edgesandfacesforeachofthePlatonicsolidsand,ifyoudoso,you'llendupwithatablelikethefollowing. polyhedronndVEF tetrahedron33464cube438126octahedron346128dodecahedron53203012icosahedron35123020 ThefollowingdiagramshowsthevePlatonicsolids—theyarecalledthetetrahedron,thehexahedron,theoctahedron,thedodecahedronandtheicosahedron.1Therstthreeareeasiertoimagine,becausetheyaresimplythetriangularpyramid,thecube,andtheshapeobtainedfromgluingtwosquarepyramidstogether. 1ThesenamescomefromtheancientGreekandsimplymeanfourfaces,sixfaces,eightfaces,twelvefacesandtwentyfaces,respectively.Ofcourse,wealmostalwaysrefertothehexahedronmoreaffectionatelyasthecube.2 3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond arenotactuallyfaces,sincetheyhaveholesinthemiddleofthem.Allyouneedtodoisdividetheseregionsintobonadefaceswiththehelpofsomeextraedges.SinceEuler'sformuladoesn'tworkforthisshape,therearetwothingswecando—starttocryortrytomakeitwork.Mathematicianswouldgenerallypreferthelatterapproach.TomakeEuler'sformulaworkformoregeneralshapes,yousimplyneedtonotethatV�E+F=0inthisparticularcaseand,infact,V�E+F=0foranyshapewhichhasoneholethroughthemiddleofit.Infact,ifyoutrythesamethingforshapeswithgholes,you'lleventuallydiscoverthatV�E+F=2�2g.SoV�E+Fseemstochangewhenyoutalkaboutverydifferentgeometricobjects—forexample,objectswithdifferentnumbersofholes—butseemstobethesamewhenyoutalkaboutsimilargeometricobjects—forexample,objectswiththesamenumberofholes.Anotherobservationisthatifwetakethegeometricobjectpicturedaboveanddrawitsothatitlooksabitcurvier,thenthatdoesn'tchangethenumberofvertices,edgesandfaces,soV�E+Fdoesn'tchangeatall.Infact,wecanbend,stretch,warp,morphordeformitandthevalueofV�E+Fwouldn'tchange.TheEarthSupposethatyoulivedareallyreallylongtimeago.Thenyouwouldprobablybelieve,asdidmostpeo-ple,thatthesurfaceoftheEarthisabigatplane.Andwhatmakesyouthinkthat?Well,it'ssimplyduetothefactthateverywhereyoustand,youno-ticethatthere'saprettyatpieceofearthimmedi-atelysurroundingyourfeet.Andsinceabigatplaneseemstohavethissameproperty,you'vesim-plyjumpedtotheconclusionthattheEarthmustbebigatplane.But,asyouknow,thisisratherfool-ishthinking.Therearemanygeometricobjectsapartfromtheplanewhichhavethisproperty.Thesphereisjustonemoreexample,andwe'regoingtoexploreothershapesthatcanarise.Thisidealeadsustostudythingscalledsurfaceswhichwe'llsoontalkabout. TopologyThetwostoriesabove—oneaboutEuler'sformulaandoneabouttheEarth—motivateustoconsidertopology,whichveryroughlystudiesintrinsicfundamentalpropertiesofgeometricobjectsandwhichdoesn'tcareaboutlength,size,angle,andsoforth.Whenyoustudyobjectsinmathematics,youalwaysneedtohavesomenotionofwhentwoofthoseobjectsarethesame.Forexample,inEuclideangeometrywehavecongruence,ingrouptheorywehaveisomorphism,ingraphtheorywehaveisomorphism,andintopologywehavethenotionofhomeomorphism.Intuitivelyspeaking,twogeometricobjectsarehomeomorphicifit'spossibletobend,stretch,warp,morphordeformonesothatitbecomestheotherone.Notethatyouarenotallowedtocutandgluehere.5 3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond Amoremathematicallyprecisedenitionofhomeomorphismisasfollows.Twogeometricobjectsarehomeomorphicifthereexistsabijection—inotherwords,aone-to-onecorrespondence—fromonetotheotherwhichiscontinuousandhasacontinuousinverse.IftwogeometricobjectsAandBarehomeomorphic,thenwewriteA=B,andwecallabijectionfromAtoBwhichiscontinuousandhasacontinuousinverseahomeomorphism.2Example.Thesphereandthecubearecertainlyhomeomorphictoeachother.Thisisbecauseyoucantakethesphereandsquashitintoaboxuntilitlookslikeacube.Or,ontheotherhand,youcouldtakeacubeandblowituplikeaballoonuntilitlookslikeasphere.Thesesortsofdeformationsarecertainlyallowedandshowthatthetwoshapesarehomeomorphic.Forthesamesortofreason,adiskandasquarearealsohomeomorphictoeachother.Youcanprobablyseewhytopologyissometimesinformallycalledrubbersheetgeometry.Anexplicithomeomorphisminthiscaseisn'ttoodifculttodescribeand,ifyouwerereallykeen,youcouldevenwritedownanequationforone.Theideaistostickthesphereinsideofthecubeandsupposethatthesphereisalightbulbwithasourceoflightatitscentre.Anypointonthespherenowcastsashadowonthecube,andthisgivesamapfromthespheretothecubewhichisacontinuousbijectionwithacontinuousinverse.Example.Consideranunknottedpieceofstringliketheoneshownbelowleftandaknottedpieceofastringliketheoneshownbelowright. Believeitornot,thesetwoarehomeomorphictoeachother.Sure,youneedtocuttheknotopenandgluetheendstogetheragaintomaketheunknottedloop—butthat'sonlyifyouhappentoliveinthreedimensions.Topology,unlikewemeremortals,doesn'tliveinanynumberofdimensions.Intuitively,youcandeformtheunknottedloopintoaknotifyoumakethosedeformationsinfour-dimensionalspace.Thereasonbeingthatlinescanjustmovepasteachotherinfour-dimensionalspacewithouthitting.It'sjustthehigherdimensionalanalogueofthefactthattwopointsonthelinecan'tmovepasteachotherwithouthittingyetintwodimensions,theycandosowithease.Ifthisdoesn'tconvinceyou,thenyoucanalwaysgobacktothemathematicaldenitionofhomeomorphism.Supposethatyouwrotethenumbersfrom1to100alongtheunknottedloop,inorder.Youcouldalsodothesamethingaroundtheknottedloopandconvinceyourselfthatthere'safunctionfromonetotheotherwhichmatchesupthenumbers.It'seasytoseethatsuchafunctioncanbemadetobeabijectionwhichiscontinuousandhasacontinuousinverse—hence,thetwoarehomeomorphic. 2ThewordhomeomorphismcomesfromtheancientGreekwordsmeaningsimilarshape.6 3.POLYHEDRA,GRAPHSANDSURFACES3.2.PlatonicSolidsandBeyond Problem.IfaplanargraphwithEedgesdividestheplaneintoFfaces,provethatF2E 3.Proof.Forthisproblem,weneedtoassume—asisusual—thatthegraphcontainsnoloopsormultipleedges.NotethatthedualgraphhasFverticesand,sinceeveryfaceoftheoriginalgraphhasatleastthreesides,everyvertexofthedualgraphhasdegreeatleastthree.Sothesumofthedegreesoftheverticesinthedualgraphisatleast3F.However,thenumberofedgesinthedualgraphisequaltoE.Sowecannowinvokethehandshakinglemmatodeducethat2E3F,whichrearrangestogivethedesiredresult. Problem.Considerapolyhedronallofwhosefacesaretrianglessuchthatfourfacesmeetateveryvertex.Determinethenumberofvertices,edgesandfacesofthepolyhedron.Proof.IfyouwanttoworkoutthethreeunknownquantitiesV,EandF,thenitmakessensetolookforthreerelationsthatthesenumbersobeys.Onerelationwillcomefromusingthehandshakinglemma,anotherwillcomefromusingthehandshakinglemmaonthedual,andanotherisgiventousbyEuler'sformula. Sincefourfacesmeetateveryvertex,weknowthateveryvertexinthepolyhedronmusthavedegreefour.Thehandshakinglemmaassertsthatthesumofthedegreesisequaltotwicethenumberofedges,sowehavetheequation4V=2Eorequivalently,V=1 2E.ThismeansthatifweknowthevalueofE,thenwealsoknowthevalueofV. Sinceeveryfaceisatriangle,weknowthateveryvertexinthedualmusthavedegreethree.Thehandshakinglemmaonthedualassertsthatthesumofthenumbersofedgesaroundeachfaceisequaltotwicethenumberofedges,sowehavetheequation3F=2Eorequivalently,F=2 3E.ThismeansthatifweknowthevalueofE,thenwealsoknowthevalueofF. NowwecanuseEuler'sformulaV�E+F=2andsubstituteforVandF.Ifyoudothisproperly,youshouldobtain1 2E�E+2 3E=2)E=12.Fromthis,wecaneasilydeducethatV=1 2E=6andF=2 3E=8.Infact,anexampleofsuchapolyhedronisgivenbythePlatonicsolidknownastheoctahedron. 8