/
Accurate and systematically improvable density functional theory embed Accurate and systematically improvable density functional theory embed

Accurate and systematically improvable density functional theory embed - PDF document

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
417 views
Uploaded On 2017-01-11

Accurate and systematically improvable density functional theory embed - PPT Presentation

THEJOURNALOFCHEMICALPHYSICS18A5072014AccurateandsystematicallyimprovabledensityfunctionaltheoryembeddingforcorrelatedwavefunctionsJasonDGoodpasterTaylorABarnesFrederickRManbyandThomasFMiller ID: 508731

THEJOURNALOFCHEMICALPHYSICS 18A507(2014)AccurateandsystematicallyimprovabledensityfunctionaltheoryembeddingforcorrelatedwavefunctionsJasonD.Goodpaster TaylorA.Barnes FrederickR.Manby andThomasF.Miller

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Accurate and systematically improvable d..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Accurate and systematically improvable density functional theory embedding forcorrelated wavefunctions Citation: 140, 18A507 (2014); doi: 10.1063/1.4864040 View online: View Table of Contents: Published by the Articles you may be interested in J. Chem. Phys. 137, 224113 (2012); 10.1063/1.4770226 J. Chem. Phys. 136, 044105 (2012); 10.1063/1.3678180 J. Chem. Phys. 132, 164115 (2010); 10.1063/1.3380834 J. Chem. Phys. 127, 214302 (2007); 10.1063/1.2814157 J. Chem. Phys. 125, 014105 (2006); 10.1063/1.2209688 THEJOURNALOFCHEMICALPHYSICS,18A507(2014)AccurateandsystematicallyimprovabledensityfunctionaltheoryembeddingforcorrelatedwavefunctionsJasonD.Goodpaster,TaylorA.Barnes,FrederickR.Manby,andThomasF.MillerIIIDivisionofChemistryandChemicalEngineering,CaliforniaInstituteofTechnology,Pasadena,California91125,USA Electronicmail:fred.manby@bristol.ac.uk.Presentaddress:CaliforniaInstituteofTechnology,Pasadena,California,USA.Electronicmail:tfm@caltech.eduoftheinteractionbetweensubsystemsisalsohandledusingDFTtheory,whichintroduceserrorsintoboththeembeddingpotentialoftheWFTsubsystem,andthenonadditiveenergybetweensubsystems.WeanalyzeWFT-in-DFTembeddingbydecomposingtheerrorintothesethreecontributions,andusetheresultstosuggestfurtherimprovementstoprojector-basedembedding.Theanalysisisperformedthroughcarefulcom-parisonwithlocalcoupled-clustercalculations. 18A507-2Goodpasteretal.J.Chem.Phys.,18A507(2014),whichcorrespondtosubsystemsAandB,respectively.Thesetwosetsoforbitalsareusedtoformthedensityma-tricesofsubsystemsAandBintheatomicorbitalbasis,Next,thesubsystemFockmatrixisformedfortheem-beddingcalculation,suchthatAinBnBA,B]+g[˜A],(1)wheretheembeddedcoreHamiltonianisAinBnBA,B]=h+g[A+B]Šg[A]+µPB.(2)Here,histhestandardone-electroncoreHamiltonian,cludesallthetwo-electronterms,isaprojectionoperator,isalevel-shiftparameter;˜isthedensitymatrixas-sociatedwiththeMOeigenstatesof.Theprojectionoperatorisgivenbylabeltheatomicorbitalbasisfunctions.Inthelimitof,theMOsinareconstrainedtobemu-tuallyorthogonalwiththeMOsofsubsystemB;ifinad-ditionthesamedensityfunctionalisusedforallcalculations,theMOscoincidewiththeoriginalorbitalsAself-consistenteldoptimization,usingtheFockma-,isperformedtoobtain˜,andthenalDFT-in-DFTenergyisisA;A,B]=EDFT[˜A]+EDFT[B]+EnadDFT[A,B]+tr[(˜AinBnBA,B]Šh)],(4)whereEDFTisthestandardDFTenergy(evaluatedwithcore-)andandA,B]isthenonadditiveenergybetweenthesubsystemdensities.Thelasttermisarst-ordercorrectiontothedifferencebetweenbetweenA,B]andandA,B].31InthelimitofandtheDFT-in-DFTembeddingenergyisidenticaltotheenergyfromthecorrespondingKScalculationperformedoverthefullsystem;asaresult,theprojector-basedapproachisnu-mericallyexactforDFT-in-DFTembeddingcalculations.practice,alargenitevalueofisused,andanadditionalperturbativecorrectiontotheenergycanbeperformed;forappropriatevaluesofthiscorrectionistypicallyfarsmallerthantheenergydifferencesdiscussedinthispaperandisthusneglectedthroughout.Furthermore,ashasbeenpreviouslyemphasized,thisembeddingschemeisexactforanyself-consistenteldmethod,suchasHartree-Fock(HF)theory.Thenonadditivecontributiontotheenergy,,A,B],canbedecomposedintoelectrostaticandexchange-correlationcontributions A,B]=Exc[A+B]ŠExc[A]ŠExc[B].(7)Theelectrostaticterm,,iseasilyevaluated,andalthoughtheexactformofisunknown,approxi-matefunctionalsarewellestablished.Sincetheembed-dedMOsareorthogonaltothoseinsubsystemB,thereisnononadditivityinthekineticenergy.Thisremovestherequirementofperformingoptimizedeffectivepotentialorusingapproximatenonadditivekineticenergyfunctionals.Theprojector-basedformalismeasilyallowsforWFT-in-DFTembedding,inwhichsubsystemAistreatedusingaWFT-leveldescriptionandsubsystemBisdescribedattheDFTlevel.Thisisachievedbyreplacingthestandardone-electroncoreHamiltonianwiththeembeddedcoreHamilto-nianofEq..TheelectronicenergyfromtheWFT-in-DFTembeddingapproachisisA;A,B]=A|ˆHAinBnBA,B]|AŠtr[A(hAinBnBA,B]Šh)]+EDFT[B]+EnadDFT[A,B],(8)where|AistheembeddedwavefunctionfromtheWFTmethod,andAinBnBA,B]istheWFTHamiltonianresultingfromreplacingthestandardone-electroncoreHamiltonianwiththeembeddedcoreHamiltonian.Thetermtr[˜AinBnBA,B]Šh)]isin-cludedinthersttermofEq.andthusdoesnotshowupintherst-ordercorrectionterm,asitdidinEq.III.RESULTSI:SOURCESOFERRORINWFT-IN-DFTEMBEDDINGA.Term-by-termcomparisonwithLCSSD(T)WenowformulateanapproachtocomparetheindividualtermsintheenergyexpressionofaCCSD(T)-in-DFTembed-dingcalculationwiththecorrespondingvaluescalculatedattheCCSD(T)level.Todothis,werstrecognizethatthelo-cal(L)CCSD(T)methodbySchützandWernerexactlyequivalenttothecanonicalCCSD(T)methodwhenallorbitalpairsarecorrelatedandallexcitationdomainsaresettothefullvirtualbasis.ThetermsintheLCCSD(T)energyexpression,inturn,canbeorganizedinawaythatenablesdirectcomparisontothetermsintheCCSD(T)-in-DFTem-beddingenergyexpression.TheLCCSD(T)energycanbedecomposedasafunctionoftheamplitudesandtheatomic-orbitaldensitymatricesas 18A507-3Goodpasteretal.J.Chem.Phys.,18A507(2014)istheHFenergyandandA,B]isthesameasEq.,exceptwiththecorrespondingexchangetermsre-e-A,B].Whenthefullvirtualspaceisincluded,thesinglesareadditiveandthusthereisnononadditivecom-ponent.Thenonadditivecorrelationforthedouble-excitationtermsissimplyandlikewiseforthetriple-excitationcorrelationenergy.ThecorrelationenergyfromthesingleexcitationswithinsubsystemAisgivenbywherethesummationspanstheoccupiedorbitalsofsubsys-temA,istheinternal-externalpartoftheFockmatrixinvectorform,andarethesingleexcitationamplitudesinvec-torform.ThecorrelationenergyfromthedoubleexcitationswithinsubsystemAisgivenbyi,jjLijCij],(12)wherethesummationspanstheoccupiedorbitalsofsub-systemA,andaretheinternalcoulombandexchangematrices.Thematrixelementsofaregivenby,wherearethedoubleandsingleexcitationamplitudes,respectively.Finally,thecorrelationenergyfromthetripleexcitationswithinsubsystemAisgivenbyi,j,krstrijkrstrstsijkrstrsttijkrstrstijkrstijkrstwheretherstsummationspanstheoccupiedorbitalsofsub-systemA,theindicesrepresentoccupiedorbitals,andtheindicesrepresentunoccupiedorbitals.isanelementoftheoverlapmatrixoftheprojectedatomicor-bitals,()aretwo-electronintegrals,andarethesingleijkrstisdenedasijkrstijkrstijkrtsijktsrijksrtijktrsijkstrijkrstarethetriplesamplitudes.Thetensorelementijkrstcontainsthedouble-excitationam-B.CalculationdetailsAllgeometryoptimizationsareperformedusingandareprovidedinthesupplementaryAllothercalculationsareperformedinMolproInallcalculationstheorbitalsarelocalizedusingPipek-Mezeylocalization.TheatomsassociatedwithsubsystemAforeachreactionaregiveninthesupplementaryAnylocalizedorbitalwithaLöwdinchargeof0.4onanatomassociatedwithsubsystemAisincludedinthesetoforbitalsassociatedwithsubsystemA.Allcalculationsemployalevelshiftparameter,whichissetto10a.u.AllKS-DFTcalculationsemployalargegridfortheexchange-correlationfunctionalevaluation,achievedbyspecifyingtheMolprooptionGRID.Forcom-putationalefciency,allLCCSD(T)calculationsemploydensitytting(DF),andthetriplesareapproximatedusingthenoniterative(T0)procedure.WeemphasizethattheT0procedureisonlyusedforcalculationsinvolving,andwhichariseinourerroranalysis;thisnoniterativeprocedureisnotusedforanycalculationsoutsideofSec.IIICToenabletherigorouscomparisonoftermsfromtheLCCSD(T)calculationandtheembeddingcalculation,somecaremustbetaken.First,allorbitalpairsarecorrelatedtorecovertheenergyfromcanonicalCCSD(T).Second,thechoiceoforbitalsmustbeconsistentbetweentheLCCSD(T)andCCSD(T)-in-DFTembeddingcalculations.IntheWFT-in-DFTembeddingmethod,subsystemBcomprisesKSMOs,andthusevaluationoftheerrorsresult-ingfromusingtheDFTenergyofsubsystemBrequirestheuseofKSMOsasthereferenceMOs.Thedifferencebe-tweencanonicalCCSD(T)usingtheHFreferenceandDF-LCCSD(T0)usingtheKSreferenceiswithin0.3mforallreactionsdiscussedinSec.IIIC,whichissmallerthantheothersourcesoferrorthatareanalyzed;therefore,through-outSec.IIIC,wewillsimplyrefertotermscalculatedfromDF-LCCSD(T0)asCCSD(T).Likewise,consistentevaluationoftheerrorarisingfromtheembeddingpotentialrequiresthatthereferenceMOsfortheembeddedCCSD(T)calculationonsubsystemAbeob-tainedfromthecorrespondingDFTcalculation.ThischoiceofreferenceMOsisonlyusedinSec.IIIC.Inallothersec-tions,thereferenceMOsoftheembeddedCCSD(T)calcula-tionarechosentobethesetofMOsresultingfromanem-beddedHFcalculation.WenotethatthedifferencebetweenCCSD(T)-in-DFTembeddingwheretheMOsforsubsystemAareobtainedfromanembeddedDFTcalculationcomparedtoanembeddedHFcalculationiswithin0.2mforthere-actionsconsideredinSec.IIICBelowweanalyzethecontributionstotheembeddinger-rorforasetofsixenergiesassociatedwithdifferentreac-tions.Allofthechosenreactionsarenotonlylargeenoughtoinvolvepartitioningacrossacovalentbond,butalsosmallenoughtoallowforcalculationoftheCCSD(T)referenceen-ergyforthefullsystem.ThereactionsconsideredaregiveninTableThedatasetconsistsofthefollowingreactions:(1)ac-tivationenergyforthesymmetricS2reactionofClpropylchloride;(2)acidhydrolysisofdimethylethertoformmethanol;(3)deprotonationofthephenolhydroxylgroup;(4)ring-closingisomerizationof3-methylene-1-heptenetoformbutylcylobutane;(5)theDiels-Alderreactionof2-methoxy-1,3-butadienewithmethylvinylketone;and(6)theactivationenergyfortheDiels-Alderreaction.Thegeometriesareprovidedinthesupplementarymaterial. 18A507-4Goodpasteretal.J.Chem.Phys.,18A507(2014)TABLEI.CCSD(T)reactionenergiesandbarriersinthetestsetobtainedusingcc-pVTZwithaug-cc-pV(Td)ZonCl,andaug-cc-pVTZforallatomsforreactions2–4.Foreaseoferroranalysis,weadoptasignconventioninwhichallreactionsoractivationprocessesarepositiveinenergy.Geome-trieswereobtainedusingB3LYPwith6-311G*(reaction1),def2-TZVP(reactions2–4),or6-31G*(reactions5,6). Eh 2activationbarrier7.82Acidhydrolysis177.83Phenoldeprotonation568.84Ringclosing10.65Diels-Alderreaction63.16Diels-Alderbarrier34.0 C.SourcesoferrorinWFT-in-DFTembedding1.ErrorfromtheembeddingpotentialNowwediscusshowcomparisonoftermsintheenergyexpressionsforCCSD(T)andCCSD(T)-in-DFTembeddingcanbeusedtodeterminetheerrorarisingfromtheembeddingpotential.TheenergyofsubsystemAfromtheCCSD(T)cal-culationisthesumoftheHFenergy(usingtheKSdensity)andthecorrelationenergyofsubsystemA,,A]+EA(S)+EA(D)+EA(T).(14)ThetotalenergyofsubsystemAfromaCCSD(T)-in-DFTembeddingcalculationisAinBnBA,B]|AŠtr[A(hAinBnBA,B]Šh)].(15)ForanembeddingpotentialthatincludesalloftheCCSD(T)many-bodyeffects,theenergyofwouldbeidentical;therefore,theerrorarisingfromtheembeddingpotentialiscalculatedasTheerrorinthereactionenergiesarisingfromtheem-beddingpotentialisthereforethechangeinproductsandreactants,ThebluesquaresinFigureshowthevalueofforthedataset,comparedtothetotalCCSD(T)-in-B3LYPembeddingerrorshownintheblackcircles.Fornosystemistheerrorlargerthan1.5m,withtheaverageerrorbeing0.8m.Thisdemonstratesakeyinsightofthispaper,whichisthattheembeddingpotentialcalculatedusingWFT-in-DFTembeddingisveryaccurate.2.ErrorfromuseofDFTforsubsystemBNext,wequantifytheWFT-in-DFTembeddingerrorre-sultingfromtreatingsubsystemBusingDFT.ThiserrorisobtainedbycomputingcomputingB]Š EHF[B]+EB(S)+EB(D)+EB(T) ,(17)whichallowsforadirectcomparisonoftheDFTandCCSD(T)energiesofsubsystemB. 2 3 4 5 6 -5 0 5 10 15 ReactionError (mEh) FIG.1.Theerrorarisingfromtheembeddingpotential(bluesquares),theDFTenergyofsubsystemB(violettriangles),andthenonadditiveexchange-correlationenergy(greendiamonds)comparedtothetotalCCSD(T)-in-B3LYPembeddingerror(blackcircles).CCSD(T)calculationsperformedonthefullsystemareusedasthereference.Thelargestsourceoferroristhenonadditiveexchange-correlationenergyfunctional.ThevaluescalculatedforareshowninFigureasviolettriangles.Thelargesterrorinthisdatasetis2.5mandtheaverageerroris1.5m.Theseerrorsarelargerthanthoseresultingfromtheembeddingpotential,butarestillrel-ativelysmallcomparedtothetotalWFT-in-DFTembeddingerror.Therefore,forthisdataset,DFTdoesanadequatejobdescribingtheenergychangelocalizedwithintheenviron-mentandisnotthedominatesourceoferror.3.Errorfromthenonadditiveexchange-correlationenergyFinally,weanalyzetheerrorthatarisesfromevaluationofthenonadditiveexchange-correlationenergywithanap-proximatefunctional.TheerrorisobtainedbycomputingcomputingA,B]Š EnadHF[A,B]+Enad(D)corr+Enad(T)corr ,(18)whichallowsforthedirectcomparisonoftheapproximatedensityfunctionaltotheenergyobtainedattheCCSD(T)level.ThevaluesforaregiveninFigureasgreendiamonds.ThistermdominatestheWFT-in-DFTembeddingerror,withthelargestvalueofbeing14.2mandtheaveragevaluebeing7.2m.ItisthusthistermthatisresponsibleforintroducingthelargesterrorintheWFT-in-DFTembeddingmethodology.Thesumof,andallofthediscrepancybetweentheCCSD(T)-in-DFTcalcula-tionsandtheCCSD(T)calculationsperformedoverthefullsystem.DuetotheuseofdensityttingandthenoniterativetriplesapproximationusedintheCCSD(T)calculation,thesumoftheseerrorsisoffbyanaverageof0.4mtothetotalCCSD(T)-in-B3LYPembeddingerror;thismakesnodifferenceintheinterpretationofthedata.Toconrmthatourresultsarenotsensitivetotheap-proximateexchange-correlationfunctional,werepeatedtheanalysisusingbothPBEandM06(notshown).Theseconclusionsarerobustwithrespecttotheapproximate 18A507-5Goodpasteretal.J.Chem.Phys.,18A507(2014)exchange-correlationfunctional.Thenonadditiveexchange-correlationenergyremainsthelargestsourceoferror,fol-lowedbytheDFTenergyofsubsystemB.Again,wendthatDFT,forallofthefunctionalstested,providesveryaccurateembeddingpotentials.D.Improvementofthenonadditiveexchange-correlationenergyHavingdeterminedthenonadditiveexchange-correlationenergytobethedominatesourceoferror,newalgorithmscanbeproposedtocalculatethistermmoreaccurately.Oneapproachwouldbetoevaluatethenonadditiveexchangeex-actlyandtouseacomputationallycheapWFTmethod,suchasMP2,toevaluatethenonadditivecorrelation.There-sultingcorrectiontotheWFT-in-DFTembeddingenergyisisA,B]Štr ˜AHFŠA (hAinBnBA,B]Šh),(19)where˜istheHFembeddeddensityofsubsystemA,istheMP2amplitude,andaretheexchangetwoelectronintegrals.FortheMP2calculation,theorbitalsareused,whichallowsforthedirectcalculationoftheMP2correlationbetweentheHForbitalsforAandtheKSorbitalsofB.comparestheCCSD(T)-in-B3LYPembeddingerror(black)totheMP2-correctedCCSD(T)-in-B3LYPem-beddingerror(red).TheaverageerrorofWFT-in-DFTem-beddingis4.6m,whichdropsto1.2mwhentheMP2correctionisapplied.Alternatively,insteadofcalculatingthefullMP2energyinEq.,onecouldonlycalculatethescaledoppositespin(SOS)-MP2correlationenergy.ingtheoppositespinMP2correlationbytheusualempiricalfactorof1.3leadstotheSOS-MP2-correctedCCSD(T)-in-B3LYPembeddingerrorshowninblueinFigure.Apply-ingtheSOS-MP2correctionresultsinanaverageerrorof1.1m,whichisessentiallythesameerrorasthatofthefull 0 2 4 6 8 10 12 1 2 3 4 5 6 Energy (mEh)Reaction FIG.2.BargraphoftheerrorintheenergyobtainedfromCCSD(T)-in-B3LYPembedding(black),MP2-correctedCCSD(T)-in-B3LYPembedding(red),andSOS-MP2-correctedCCSD(T)-in-B3LYPembedding.CCSD(T)calculationsperformedonthefullsystemareusedasthereference.MP2correction,andonlyrequirescomputationsthatscalecomparedtoforthefullMP2energy.TheaverageerrorofstandardMP2calculationsonthesesystemsis6.3mrelativetoCCSD(T);itisthusclearthateffectivenessoftheMP2correctiondoesnotrelyontheMP2energybeingparticularlyaccurateforthedescriptionofthefullsystem.Instead,weobservethatMP2theoryaccuratelyrepresentsthecorrelationenergybetweensubsystemsAandB,whilenotnecessarilyrepresentingothercorrelationtermsaccurately.Thisisconsistentwithotherlocalcoupled-clustermethodsthattreatdistantpairsattheMP2level.IV.RESULTSII:CONTINUITY,CONVERGENCE,ANDCONJUGATIONINWFT-IN-DFTEMBEDDINGA.PotentialenergysurfacesNext,weexaminethepotentialenergysurfaceforhet-erolyticbondcleavage.Localcorrelationmethodsshowdis-continuitiesinthepotentialenergysurfacefortheheterolyticbondcleavageofCOdissociationinketene.Here,westudyarelatedsystem,COdissociationin1-penten-1-one.showspotentialenergycurvescalculatedusingCCSD(T),B3LYP,andCCSD(T)-in-B3LYPembed-ding.Thecc-pVDZbasiswasusedforallcalculations.Here,B3LYPperformsrelativelywellnearequilibrium,butover-estimatestheenergybyupto16mneardissociation.TheCCSD(T)-in-B3LYPcalculationsareveryaccuratenear (b)(c)(d) FIG.3.(a)PotentialenergycurvesforthedissociationoftheC-Cbondinsinglet1-penten-1-oneobtainedusingCCSD(T)(green),KS-DFTwithB3LYP(blue),andCCSD(T)-in-B3LYPembedding(black).ThestructurewasreoptimizedattheHF/cc-pVDZleveloftheoryforeachvalueoftheC-Cbonddistance.TheOCH–moietywastreatedattheCCSD(T)levelfortheCCSD(T)-in-B3LYPembeddingcalculations.(b)–(d)Theer-rorinCCSD(T)-in-B3LYPembedding(black)andMP2-correctedCCSD(T)-in-B3LYPembedding(red)asafunctionofdistancebetweenthecarbon-carbondoublebond.Theresultsareshownforthreepartitioningsofthemolecule,withsubsystemAcorrespondingto(b)CH–(18electrons),(c)OCH–(22electrons),or(d)O–(30electrons). 18A507-6Goodpasteretal.J.Chem.Phys.,18A507(2014)equilibriumandslightlyunderestimatetheenergynearthedissociationlimit.MP2-correctedCCSD(T)-in-B3LYPwerealsoperformedforthissystem;theresultsarenotshowninpanelAofFigure,becausetheyaregraphicallyin-distinguishablefromtheuncorrectedCCSD(T)-in-B3LYPshowtheerrorinCCSD(T)-in-B3LYPembeddingandMP2-correctedCCSD(T)-in-B3LYPem-beddingforthreedifferentsubsystempartitioningsofthemolecule.Theerrorandthechangeoftheslopeatthederiva-tivediscontinuityaround1.5ÅdecreasesbytreatingmoreofthesystemattheCCSD(T)level.Energydiscontinuitiesof50areseenatshortdistances,asshowninFigureofthesupplementarymaterial.Likeotherlocalcorrelationmethods,abruptchangesinthelocalizedorbitalsfordifferentnuclearcongurationsleadtodiscontinuitiesintheWFT-in-DFTembeddingenergyanditsderivatives.Here,thesede-fectsaresmallandcanbesystematicallycontrolledbyin-creasingthesizeofsubsystemA.B.WFT-in-DFTembeddingofconjugatedsystemsAdemandingcaseforanyembeddingmethodologyisthepartitioningofa-conjugatedsystem.TheapplicabilityofWFT-in-DFTembeddingtotreatsuchsystemsistestedandcomparedtosystemswithoutconjugation.First,weconsiderthedissociationofauorideanionfrombothanalkanechain(1-uorodecane)andanalkenechain(1-uoro-1,3,5,7,9-decapentaene).ThegeometriesforbothcompoundsandtheirdissociatedproductswereobtainedusingB3LYP/def2-TZVP.AllCCSD(T)andembeddingcal-culationswereperformedusingthecc-pVDZbasis,withaug-cc-pVDZforuorine.showstheCCSD(T)-in-B3LYPwithandwithouttheMP2correctionforuorideaniondissociationfromthealkanechain.Resultsareprovidedforanumberofdifferentchoicesofthesubsystempartitioning,andtheerrorofbothmethodscanbeseentorapidlyvanishasmoreatomsareincludedintheWFTsubsystem.TheindividualsourcesoferrorintheCCSD(T)-in-B3LYPembeddingcalculations,computedinthesamewayasinSec.IIIC,areshowninFigure.Again,itisobservedthattheerrorarisingfromtheembeddingpotentialissmall,accountingforonlyasmallportionofthetotalerror.Unlikepreviousresults,theerrorarisingfromtreatingsubsystemBattheDFTlevelisofsimilarmagnitudeasthenonadditiveexchange-correlationenergyerror.Astheseerrorsareofop-positesign,evaluatingthenonadditiveexchange-correlationenergyusingDFTleadstoafavorablecancelationoferror.TheMP2correctiononlyincreasestheaccuracyofthesub-systeminteractionenergy,andcannotbeexpectedtocorrectlargeerrorsassociatedwiththeDFTenergyofsubsystemB.showstheMullikenpopulationofthedensityassociatedwithsubsystemBontheatomsassociatedwithsubsystemA.Inthedissociatedproduct,thedensityasso-ciatedwithsubsystemBdistributesontotheatomsofsub-systemAtostabilizethepositivecharge.Wendthatwhenthedifferenceofthisquantityislargebetweentwocong- 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5 6 7 8 9 B charge on ANumber of Carbons in Subsystem A(a)(b)(c) -10 0 10 20 Error (mEh) -10 -5 0 5 Error (mEh) FIG.4.(a)TheerrorinCCSD(T)-in-B3LYPembedding(blackopencircles)andMP2-correctedCCSD(T)-in-B3LYPembedding(redlledcircles)asafunctionofthenumberofcarbonsincludedinsubsystemAforthedisso-ciationofthealkane.TheB3LYPenergyisgivenbytheblackdottedline.(b)ContributionstotheWFT-in-DFTerror:embeddingpotential(blueopencircles),DFTforsubsystemB(violetlledcircles),andDFTfornonadditiveexchange-correlationenergy(greensquares).(c)DFTMullikenpopulationofthedensityassociatedwithsubsystemBontheatomsinsubsystemA,shownfor1-uorodecane(blackopencircles)andthedissociatedalkanechain(redlledcircles).urations,thereistypicallyafavorablecancelationoferrorbetweentheerrorarisingfromtreatingsubsystemBusingDFTandtheerrorarisingfromevaluatingthenonadditiveexchange-correlationenergyusingDFT.Ingeneral,wenotethatifthenonadditiveexchange-correlationisnotthedomi-nantsourceoferror,theMP2correctioncannotsignicantlyimprovetheaccuracyoftheembeddingcalculation.Afterdissociationoftheuorideanionfrom1-uoro-1,3,5,7,9-decapentaene,thesubsequentgeometryoptimiza-tionleadstoanisomerizationwheretheprotononthesec-ondcarbonmovestotherst.Therefore,theanalysisforthisreactionbeginsatthesecondcarbon.FigureshowstheerrorinCCSD(T)-in-B3LYPembedding(blackopencircles)andMP2-correctedCCSD(T)-in-B3LYPembedding(redlledcircles)asafunctionofthenumberofcarbonsin-cludedinsubsystemAforuorideaniondissociationfrom1-uoro-1,3,5,7,9-decapentaene.Unlikethealkanecase,the 18A507-7Goodpasteretal.J.Chem.Phys.,18A507(2014) 0.1 0.2 0.3 0.4 0.5 2 3 4 5 6 7 8 9 B charge on ANumber of Carbons in Subsystem A(a)(b)(c) -10 0 10 20 Error (mEh) -20 -15 -10 -5 0 Error (mEh) FIG.5.(a)TheerrorinCCSD(T)-in-B3LYPembedding(blackopencir-cles)andMP2-correctedCCSD(T)-in-B3LYPembedding(redlledcircles)asafunctionofthenumberofcarbonsincludedinsubsystemAforthedissociationofthealkene.TheB3LYPenergyisgivenbytheblackdottedline.(b)ContributionstotheWFT-in-DFTerror:embeddingpotential(blueopencircles),useofDFTforsubsystemB(violetlledcircles),nonadditiveexchange-correlationenergy(greensquares).(c)DFTMullikenpopulationofthedensityassociatedwithsubsystemBontheatomsinsubsystemA,shownfor1-uoro-1,3,5,7,9-decapentaene(blackopencircles)andthedissociatedalkenechain(redlledcircles).alkenecaseexhibitslargeerrorswhichslowlydecreaseoncethemajorityofthesystemistreatedattheCCSD(T)level.showsthedecompositionofthecontributionstotheerrorinCCSD(T)-in-B3LYPembedding.Inthiscalcu-lation,theerrorarisingfromtreatingsubsystemBusingDFTisthedominatesourceoferror.ThisexplainswhytheerrorremainslargeuntilthemajorityofthesystemistreatedattheCCSD(T)level,andwhytheMP2-correctionisinsufcienttoreducetheerror.showstheMullikenpopulationoftheden-sityassociatedwithsubsystemBontheatomsassociatedwithsubsystemAforthealkenecase.Aswiththealkanecase,alargedifferenceinthisquantityisseenbetweentheuorinatedanddeuorinatedcompounds.Thisobserva-tionprovidesinsightintowhytheerrorfromtheDFTen-ergyofBcontributesstronglytotheerroroftheembeddingTABLEII.ThemagnitudeofthechangeinthedipolemomentbetweenproductsandreactantsforthedissociationofFfromthealkaneandalkenechains,aswellasthecorrespondingmagnitudesfortheH-Fexchangereac-tion.Valuesarereportedinatomicunits. MethodDissociationExchange AlkaneB3LYP7.3380.781CCSD7.5390.802AlkeneB3LYP1.7020.551CCSD3.0340.630 Themagnitudeofthechangeinthedipolemomentbe-tweentheuorinatedanddeuorinatedcompoundsisshowninTableforKS-DFTwithB3LYPandCCSD.Inthealkanedissociation,thechangeinthedipolemomentislarge,demonstratingasmallpolarizability,andthereisgoodagree-mentbetweenKS-DFTandCCSD.Inthealkenedissocia-tion,thechangeindipolemomentisconsiderablysmallerthanthealkanecase,demonstratingthatthedensitypolar-izestostabilizecharge.Forthealkene,thereislargedis-agreementbetweenKS-DFTandCCSD,demonstratingtheknownfailureofDFTtoaccuratelytreatpolarizabilitythough-conjugatedsystem.Therefore,whentherearelargeer-rorsassociatedwithKS-DFT,theselargeerrorswillaffecttheDFTenergyofsubsystemB,causinglargeWFT-in-DFTem-beddingerrors.WeemphasizethatforcasesinwhichDFTdoescorrectlydescribethepolarizationoftheenvironment,thislargesourceoferrordoesnotarise.ThefailureofWFT-in-DFTembeddinginFigureisnotafailureofembeddingitself,butratherafailureofDFTtoaccuratelytreatthepolar-izabilityof-conjugatedsystems.Finally,weconsiderthereactionofexchangingtheuorideanionfrom1-uorodecaneand1-uoro-1,3,5,7,9-decapentaenewithahydride(Figure).ThechangeindipolemomentforthesereactionsisprovidedinTable.Thesereac-tionsexhibitamoderatechangeindipolemoment,andthereisgoodagreementbetweenCCSDandKS-DFT.plottheerrorintheCCSD(T)-in-B3LYPembeddingandMP2-correctedCCSD(T)-in-B3LYPembeddingenergiesforthehydrideexchangereactionsfromalkaneandalkenechains,respectively,asafunctionofthenumberofcarbonsincludedinsubsystemA.Foreveryparti-tion,theerrorsaresmall.Forthesmallestdivision,theMP2correctionprovidesasignicantimprovementintheaccuracyoftheCCSD(T)-in-B3LYPembeddingenergy;forlargerdi-visions,theeffectoftheMP2correctionismuchsmaller.Un-likeinthecaseofuorideaniondissociation,DFTappliedtothehydrideexchangereactionaccuratelyrepresentsthechangeindipole.AstherearenolargeerrorsarisingfromtheDFTenergyofsubsystemB,WFT-in-DFTembeddingper-formsaccuratelyandtheMP2correctionfurtherimprovestheenergetics.TheimportantobservationfromthesecalculationsisthatwhenthereisalargeerrorintheDFTcalculationontheenvironment,therewillbecorrespondinglylargeerrorsintheWFT-in-DFTembeddingenergy.Importantly,thisfail-ureisassociatedwitherrorsintrinsictotheDFTfunc-tionals,anddoesnotariseduetoerrorsintheembedding 18A507-8Goodpasteretal.J.Chem.Phys.,18A507(2014) -1 0 1 1 2 3 4 5 6 7 8 9 Error (mEh)Number of Carbons in Ssystem A(a)(b) -1 0 1 2 Error (mEh) FIG.6.TheerrorinCCSD(T)-in-B3LYPembedding(blackopencircles)andMP2-correctedCCSD(T)-in-B3LYPembedding(redlledcircles)asafunctionofthenumberofcarbonsincludedinsubsystemAfortheexchangeofuoridetoahydridein(a)1-uorodecaneand(b)1-uoro-1,3,5,7,9-potential.WhenachemicalprocessinvolvesalargechangeintheMullikenpopulationofsubsystemBlocatedonthesub-systemAatoms,itislikelythattheembeddingerrorwillbedominatedbyerrorsarisingfromtheDFT-leveltreatmentofsubsystemB;errorsofthissortcannotbereducedbytheMP2V.CONCLUSIONSProjector-basedquantumembeddingprovidesaschemeformultiscaledescriptionswiththeexactnesspropertythatDFT-in-DFTisequivalenttoDFTonthewholesystem.Inmanytestsandapplications,wendtheaccuracyoftheschemetobeexcellent,allowingforaggressivepartitioningacrosscovalentbondsclosetothereactivecenterofthesys-temofinterest.However,forsomeapplications,theerrorsin-troducedbyembeddingarelargerthanwouldtypicallybeac-ceptable,andtheprincipalaimsofthispaperhavebeentounderstandandtakestepstowardsresolvingtheerrorsinsuchCarefulcomparisonofCCSD(T)-in-DFTembeddingcal-culationswithCCSD(T)calculationsperformedoverthefullsystemhasledtokeyinsightsregardingthesourcesoferrorintheembeddingcalculations.First,theembeddingpotentialobtainedusingapproximatedensityfunctionalsisfoundtobeaccurateforallofthecaseswehaveinvestigated,makingacontributiontotheoverallerroroftheembeddingcalculationthatisnegligiblecomparedtoothersourcesoferror.Itwasnotimmediatelyobviousthatthiswouldbethecase,becausefunctionals(particularlyincaseswheretheyareparameter-ized)aredesignedwithaccurateenergiesinmind.Andsecond,itisfoundthatinmanycases,theprimarysourceoferrorinCCSD(T)-in-DFTembeddingisthetreat-mentofnonadditiveexchange-correlationeffectswithanap-proximatedensityfunctional.Thisisimportantbecauseitistheonetermintheerrorforwhichsimplecorrectionscanbedevelopedthatconservetheefciencyoftheoriginalmethod.Here,wefoundthatuseofMP2orSOS-MP2correctionsforthistermtypicallyimprovedtheaccuracyoftheenergeticsforchemicalreactions,reducingtheaverageerrorfrom4.6mto1.2mwithrespecttoCCSD(T)calculationsperformedoverthefullsystem.ToinvestigatetheconvergencewithrespecttothesizeofsubsystemA,westudieddissociationandexchangeeventsattheterminusof10-carbonalkylandconjugatedchains.FortheremovalofF,theresultsoftheCCSD(T)-in-DFTem-beddingcalculationfortheconjugatedsystemarenoticeablyworsethanforthealkane,anditisfoundthattheMP2cor-rectiondoesnotreducethiserrorinthecomputedreactionenergy.Ouranalysisshows,however,thattheseresultsfollowfromthefactthatDFTprovidesapoordescriptionofthepo-larizationofthechargedalkenefragmentandthattheuncor-rectedCCSD(T)-in-DFTresultsbenetfromacancellationoferrorsintheDFTtreatmentofsubsystemBandintheDFTtreatmentofnonadditiveexchange-correlation.TheMP2cor-rectionimprovesthedescriptionofnonadditiveenergyterm,butitdoesnotcompensatefortheinaccuraciesintheDFTdescriptionofsubsystemB.Forahydrideexchangereactionattheterminusofthealkylandconjugatedchains,theCCSD(T)-in-DFTem-beddingresultsconvergesmoothlyandrapidlytoreferenceCCSD(T)calculationsperformedoverthefullsystem,regard-lessofinclusionoftheMP2correctionandregardlessofcon-jugationinthechain.TheseresultsdemonstratethatintheregimewhereDFTisadequateforthetreatmentoftheen-vironment,ourprojector-basedembeddingschemecaneffec-tivelypartitionthesystem,eveninconjugatedmolecules.Thecurrentworkdemonstratesthatprojection-basedem-beddingprovidesbotharigorousandpracticalapproachtoembeddingcorrelatedwavefunctionsinaDFTdescriptionoftheenvironment.Althoughtheresultspresentedhereutilizecoupled-clustermethodsfordescribingthecorrelatedwave-fuction,weemphasizethatprojection-basedembeddingcanbecombinedjustaseasilywithmulti-referenceelectronicstructuremethods,aswellasanymean-elddescriptionoftheenvironment.Theembeddingmethodisstraightforwardtoemploy—requiringonlythespecicationofwhichatomsaretobetreatedattheWFTandDFTlevelsoftheory—anditisfullyimplementedandavailableintheMOLPROchemistrypackage.ACKNOWLEDGMENTSThisworkissupportedbytheU.S.ArmyResearchLab-oratoryandtheU.S.ArmyResearchOfce(USARO)un-derGrantNo.W911NF-10-1-0202(J.D.G.),bytheAirForceOfceofScienticResearch(USAFOSR)underGrantNo.FA9550-11-1-0288(T.A.B.),andbythe(U.S.)DepartmentofEnergy(DOE)underGrantNo.DE-SC0006598(J.D.G.).T.F.M.acknowledgessupportfromaCamilleandHenryDreyfusFoundationTeacher-ScholarAwardandanAlfredP.SloanFoundationResearchFellowship.F.R.M.wasvis-itingCaltechwhilemostoftheresearchwasperformed.Hegratefullyacknowledgessupportforthesabbaticalthrough 18A507-9Goodpasteretal.J.Chem.Phys.,18A507(2014)aUniversityResearchFellowshipfromtheInstituteofAdvancedStudiesattheUniversityofBristolandaRoyalSocietyWolfsonResearchMeritAward.A.WarshelandM.Karplus,J.Am.Chem.Soc.,5612(1972).A.WarshelandM.Levitt,J.Mol.Biol.,227(1976).P.Sherwood,A.H.deVries,S.J.Collins,S.P.Greatbanks,N.A.Burton,M.A.Vincent,andI.H.Hillier,FaradayDiscuss.,79(1997).J.L.Gao,P.Amara,C.Alhambra,andM.J.Field,J.Phys.Chem.A4714(1998).H.LinandD.G.Truhlar,Theor.Chem.Acc.,185(2007).H.M.SennandW.Thiel,Angew.Chem.,Int.Ed.,1198(2009).L.Hu,P.Söderhjelm,andU.Ryde,J.Chem.TheoryComput.,761S.Dapprich,I.Komáromi,K.S.Byun,K.Morokuma,andM.J.Frisch,J.Mol.Struct.:THEOCHEM,1(1999).F.MaserasandK.Morokuma,J.Comput.Chem.,1170(1995).K.Kitaura,E.Ikeo,T.Asada,T.Nakano,andM.Uebayasi,Chem.Phys.,701(1999).D.G.FederovandK.Kitaura,J.Chem.Phys.,6832(2004).D.G.FederovandK.Kitaura,J.Phys.Chem.A,6904(2007).P.Arora,W.Li,P.Piecuch,J.W.Evans,M.Albao,andM.S.Gordon,J.Phys.Chem.C,12649(2010).S.R.Pruitt,M.A.Addicoat,M.A.Collins,andM.S.Gordon,Phys.Chem.Chem.Phys.,7752(2012).K.R.Brorsen,N.Minezawa,F.Xu,T.L.Windus,andM.S.Gordon,J.Chem.TheoryComput.,5008(2012).A.Gaenko,T.L.Windus,M.Sosonkina,andM.S.Gordon,J.Chem.The-oryComput.,222(2013).G.SenatoreandK.Subbaswamy,Phys.Rev.B,5754(1986).P.Cortona,Phys.Rev.B,8454(1991).T.A.WesolowskiandA.Warshel,J.Phys.Chem.,8050(1993).J.D.Goodpaster,N.Ananth,F.R.Manby,andT.F.MillerIII,J.Chem.,084103(2010).J.D.Goodpaster,T.A.Barnes,andT.F.MillerIII,J.Chem.Phys.164108(2011)..Rajchel,P.S.Zuchowski,M.M.Szczesniak,andG.ChaasiPhys.Lett.,160(2010).S.Fux,C.R.Jacob,J.Neugebauer,L.Visscher,andM.Reiher,J.Chem.,164101(2010).J.Nafziger,Q.Wu,andA.Wasserman,J.Chem.Phys.,234101N.Govind,Y.A.Yang,A.J.R.daSilva,andE.A.Carter,Chem.Phys.,129(1998).N.Govind,Y.A.Wang,andE.A.Carter,J.Chem.Phys.,7677(1999).A.S.P.Gomes,C.R.Jacob,andL.Visscher,Phys.Chem.Chem.Phys.,5353(2008).T.A.Wesolowski,Phys.Rev.A,012504(2008).Y.G.KhaitandM.R.Hoffmann,J.Chem.Phys.,044107(2010).C.Huang,M.Pavone,andE.A.Carter,J.Chem.Phys.,154110(2011).C.HuangandE.A.Carter,J.Chem.Phys.,194104(2011).S.Hofener,A.S.P.Gomes,andL.Visscher,J.Chem.Phys.,044104O.Roncero,A.Zanchet,P.Villarreal,andA.Aguado,J.Chem.Phys.234110(2009).A.SeveroPereiraGomesandC.R.Jacob,Annu.Rep.Prog.Chem.,Sect.C:Phys.Chem.,222(2012).J.D.Goodpaster,T.A.Barnes,F.R.Manby,andT.F.MillerIII,J.Chem.,224113(2012).F.R.Manby,M.Stella,J.D.Goodpaster,andT.F.MillerIII,J.Chem.TheoryComput.,2564(2012).T.A.Barnes,J.D.Goodpaster,F.R.Manby,andT.F.MillerIII,J.Chem.,024103(2013).P.G.LykosandR.G.Parr,J.Chem.Phys.,1166(1956).J.C.PhillipsandL.Kleinman,Phys.Rev.,287(1959).A.A.CantuandS.Huzinaga,J.Chem.Phys.,5543(1971).H.Stoll,B.Paulus,andP.Fulde,J.Chem.Phys.,144108(2005).R.A.Mata,H.-J.Werner,andM.Schütz,J.Chem.Phys.,144106T.M.Henderson,J.Chem.Phys.,014105(2006).B.Swerts,L.F.Chibotaru,R.Lindh,L.Seijo,Z.Barandiaran,S.Clima,K.Pierloot,andM.F.A.Hendrickx,J.Chem.TheoryComput.,586J.L.Pascual,N.Barros,Z.Barandiaran,andL.Seijo,J.Phys.Chem.A,12454(2009).C.Hampel,K.Peterson,andH.-J.Werner,Chem.Phys.Lett.,1(1992).C.HampelandH.-J.Werner,J.Chem.Phys.,6286(1996).M.SchützandH.-J.Werner,Chem.Phys.Lett.,370(2000).M.Schütz,J.Chem.Phys.,9986(2000).M.Schütz,G.Rauhut,andH.-J.Werner,J.Phys.Chem.A,5997M.J.Frisch,G.W.Trucks,H.B.Schlegeletal.,Gaussian09,Gaussian,Inc.,Wallingford,CT,2009.H.-JWerner,P.J.Knowles,R.Lindh,F.R.Manby,M.Shützetal.MOLPRO,version2012.1,apackageofabinitioprograms,2012,seewww.molpro.netJ.PipekandP.Mezey,J.Chem.Phys.,4916(1989).M.SchützandF.-R.Manby,Phys.Chem.Chem.Phys.,3349(2003).H.-J.WernerandM.Schütz,J.Chem.Phys.,144116(2011).T.H.Dunning,Jr.,J.Chem.Phys.,1007(1989).T.H.Dunning,Jr.,K.A.Peterson,andA.K.Wilson,J.Chem.Phys.9244(2001).A.D.Becke,J.Chem.Phys.,5648(1993).J.A.PopleandP.C.Haharan,Theor.Chim.Acta,213(1973).F.WeigendandR.Ahlrichs,Phys.Chem.Chem.Phys.,3297(2005).W.J.Hehre,R.Ditcheld,andJ.A.Pople,J.Chem.Phys.,2257(1972).J.P.Perdew,K.Burke,andM.Ernzerhof,Phys.Rev.Lett.,3865(1996).Y.ZhaoandD.G.Truhlar,Theor.Chem.Acc.,215(2008).C.MøllerandM.S.Plesset,Phys.Rev.,0618(1934).M.Schütz,G.Hetzer,andH.-J.Werner,J.Chem.Phys.,5691(1999).Y.Jung,R.C.Lochan,A.D.Dutoi,andM.Head-Gordon,J.Phys.Chem.,9793(2004).N.J.RussandT.D.Crawford,J.Chem.Phys.,691(2004).H.L.Woodcock,H.F.SchaeferIII,andP.-R.Schreiner,J.Phys.Chem.A,11923(2002).Seesupplementarymaterialathttp://dx.doi.org/10.1063/1.4864040moleculargeometriesandadditionalresults.