/
HowtorefutearandomCSPSarahR.AllenRyanO'DonnellDavidWitmerJuly4,2015 HowtorefutearandomCSPSarahR.AllenRyanO'DonnellDavidWitmerJuly4,2015

HowtorefutearandomCSPSarahR.AllenRyanO'DonnellDavidWitmerJuly4,2015 - PDF document

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
394 views
Uploaded On 2016-07-20

HowtorefutearandomCSPSarahR.AllenRyanO'DonnellDavidWitmerJuly4,2015 - PPT Presentation

DepartmentofComputerScienceCarnegieMellonfsrallenodonnelldwitmergcscmueduSupportedbyNSFgrantsCCF0747250andCCF1116594SomeofthisworkperformedwhilethesecondnamedauthorwasattheBogaziciUnive ID: 412979

DepartmentofComputerScience CarnegieMellon.fsrallen odonnell dwitmerg@cs.cmu.edu.SupportedbyNSFgrantsCCF-0747250andCCF-1116594.Someofthisworkperformedwhilethesecond-namedauthorwasattheBogaziciUnive

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "HowtorefutearandomCSPSarahR.AllenRyanO'..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

HowtorefutearandomCSPSarahR.AllenRyanO'DonnellDavidWitmerJuly4,2015AbstractLetPbeanontrivialk-arypredicateovera nitealphabet.ConsiderarandomCSP(P)instanceIovernvariableswithmconstraints,eachbeingPappliedtokrandomliterals.WhenmntheinstanceIwillbeunsatis ablewithhighprobability,andthenaturalassociatedalgorithmictaskisto ndarefutationofI|i.e.,acerti cateofunsatis ability.WhenPisthe3-aryBooleanORpredicate,thisisthewellstudiedproblemofrefutingrandom3-SATformulas;inthiscase,anecientalgorithmisknownonlywhenmn3=2.Understandingthedensityrequiredforaverage-caserefutationofotherpredicatesisofimportanceforvariousareasofcomplexity,includingcryptography,proofcomplexity,andlearningtheory.Themainpreviously-knownresultisthatforageneralBooleank-arypredicateP,havingmndk=2erandomconstraintssucesforecientrefutation.Inthisworkwegiveageneralcriterionforarbitraryk-arypredicates,onethatoftenyieldsecientrefutationalgorithmsatmuchlowerdensities.Speci cally,ifPfailstosupportat-wiseindependent(uniform)probabilitydistribution(2tk),thenthereisanecientalgorithmthatrefutesrandomCSP(P)instancesIwithhighprobability,providedmnt=2.Indeed,ouralgorithmwill\somewhatstrongly"refuteI,certifyingOpt(I)1� k(1);ift=kthenwefurthermoregetthestrongestpossiblerefutation,certifyingOpt(I)E[P]+o(1).Thislastresultisneweveninthecontextofrandomk-SAT.Regardingtheoptimalityofourmnt=2densityrequirement,priorworkonSDPhierar-chieshasgivensomeevidencethatecientrefutationofrandomCSP(P)maybeimpossiblewhenmnt=2.Thusthereisanindicationouralgorithm'sdependenceonmisoptimalforev-eryP,atleastinthecontextofSDPhierarchies.Alongtheselines,weshowthatourrefutationalgorithmcanbecarriedoutbytheO(1)-roundSOSSDPhierarchy.Finally,asanapplicationofourresult,wefalsifythe\SRCSPassumptions"usedtoshowvarioushardness-of-learningresultsintherecent(STOC2014)workofDaniely,Linial,andShalev{Shwartz. DepartmentofComputerScience,CarnegieMellon.fsrallen,odonnell,dwitmerg@cs.cmu.edu.SupportedbyNSFgrantsCCF-0747250andCCF-1116594.Someofthisworkperformedwhilethesecond-namedauthorwasattheBogaziciUniversityComputerEngineeringDepartment,supportedbyMarieCurieInternationalIncomingFellowshipprojectnumber626373.The rstandthirdnamedauthorswerepartiallysupportedbytheNationalScienceFoundationGraduateResearchFellowshipProgramunderGrantNo.DGE-1252522. 1OnrefutationofrandomCSPsConstraintsatisfactionproblems(CSPs)playamajorroleincomputerscience.Thereisavasttheory[BJK05]ofhowalgebraicpropertiesofaCSPpredicatea ectitsworst-casesatis abilitycomplexity;thereisasimilarlyvasttheory[Rag09]ofworst-caseapproximabilityofCSPs.Finally,thereisarichrangeofresearch|fromthe eldsofcomputerscience,mathematics,andphysics|ontheaverage-casecomplexityofrandomCSPs;see[Ach09]forasurveyjustofrandomk-SAT.ThispaperisconcernedwithrandomCSPs,andinparticulartheproblemofecientlyrefutingsatis abilityforrandominstances.Thisisawell-studiedalgorithmictaskwithconnectionsto,e.g.,proofcomplexity[BB02],inapproximability[Fei02],SAT-solvers[SAT],cryptography[ABW10],learningtheory[DLSS14],statisticalphysics[CLP02],andcomplexitytheory[BKS13].Historically,randomCSPsareprobablybeststudiedinthecaseofk-SAT,k3.ThemodelhereinvolveschoosingaCNFformulaIovernvariablesbydrawingmclauses(ORsofkliterals)independentlyanduniformlyatrandom.(Theprecisedetailsoftherandommodelareinessential;seeSection3.1formoreinformation.)Thisisoneofthebestknownecientwaysofgeneratinghard-seeminginstancesofNP-completeandcoNP-completeproblems.Thecomputationalhardnessdependscruciallyonthedensity, =m=n.Foreachkthereis(conjecturally)aconstantcriticaldensity ksuchthatIissatis ablewithhighprobabilitywhen k,andIisunsatis ablewithhighprobabilitywhen &#x-277; k.(Hereandthroughout,\withhighprobability(whp)"meanswithprobability1�o(1)asn!1.)ThisphenomenonoccursforallnontrivialrandomCSPs;inthecaseofk-SATit'sbeenrigorouslyproven[DSS15]forsucientlylargek.Thereisanaturalalgorithmictaskassociatedwiththetworegimes.When konewantsto ndasatisfyingassignmentforI.When &#x-309; konewantstorefuteI;i.e., ndacerti cateofunsatis ability.MostheuristicSAT-solversuseDPLL-basedalgorithms;onunsatis ableinstances,theyproducecerti catesthatcanbeviewedasrefutationswithintheResolutionproofsystem.Moregenerally,arefutationalgorithmfordensity isanyalgorithmthat:a)outputs\unsatis able"or\fail";b)neverincorrectlyoutputs\unsatis able";c)outputs\fail"withlowprobability(i.e.,probabilityo(1)).1Empiricalworksuggeststhatas increasestowards k, ndingsatisfyingassignmentsbecomesmoredicult;andconversely,as increasesbeyond k, ndingcerti catesofunsatis abilitygraduallybecomeseasier.AseminalpaperofChvatalandSzemeredi[CS88]showedthatforanysucientlylargeintegerc(dependingonk),arandomk-SATinstancewithm=cnrequiresResolutionrefutationsofsize2 (n)(whp).Ontheotherhand,Fu[Fu96]showedthatpolynomial-sizeResolutionrefutationsexist(whp)oncemO(nk�1);Beameetal.[BKPS99]subsequentlyshowedthatsuchproofscouldbefoundeciently.2Abreakthroughcamein2001,whenGoerdtandKrivelevich[GK01]abandonedcombinatorialrefutationsforspectralones,showingthatrandomk-SATinstancescanbeecientlyrefutedwhenmeO(ndk=2e).Soonthereafter,FriedmanandGoerdt[FG01](seealso[FGK05])showedthatfor3-SAT,ecientspectralrefutationsexistoncemn3=2+(forany&#x-309;0).Thesedensitiesfork-SAT|aroundn3=2for3-SATandndk=2eingeneral|havenotbeenfundamentallyimproveduponinthelast14years.3(SeeTable1foramoredetailedhistoryofresultsinthis 1Wecautionthereaderthatinthispaperwedonotconsidertherelated,butdistinct,scenarioofdistinguishingplantedrandominstancesfromtrulyrandomones.2Inthispaperweusethefollowingnot-fully-standardterminology:Astatementoftheform\Iff(n)O(g(n))thenX"meansthatthereexistsacertainfunctionh(n),withh(n)beingO(g(n)),suchthatthestatement\Iff(n)h(n)thenX"istrue.WealsouseeO(f(n))todenoteO(f(n)polylog(f(n)),andOk(f(n))todenotethatthehiddenconstanthasadependenceonk(mostoftenoftheform2O(k)).3Actually,itisclaimedin[GJ02]thatonecanobtainnk=2+foroddk\alongthelinesof[FG01]".Ononehand,thisistrue,aswe'llseeinthispaper.Ontheotherhand,noproofwasprovidedin[GJ02],andwehavenotfoundtheclaimrepeatedinanypapersubsequentto2003.1 area.)Improvingthen3=2boundfor3-SATiswidelyregardedasamajoropenproblem[ABW10],withconjecturesregardingitspossibilitygoingbothways[BB02,DLSS13].SeealsotheintriguingworkofFeige,Kim,andOfek[FKO06]showingthatpolynomial-size3-SATrefutationsexistwhponcemO(n1:4).Strongrefutation.Inanotablepaperfrom2002,Feige[Fei02]madeafruitfulconnectionbe-tweenthehardnessofrefutingrandom3-SATinstancesandtheinapproximabilityofcertainop-timizationproblemsthatarechallengingtoanalyzebyothermeans.ThisreferstocertifyingnotonlythatarandominstanceIisunsatis able,butfurthermorethatOpt(I)1�forsomecon-stant�0.HereOpt(I)denotesthemaximumfractionofsimultaneouslysatis ableconstraintsinI.Feigespeci callyintroducedthefollowing\R3SATHypothesis":Forallsmall�0andlargec2N,thereisnopolynomial-time-refutationalgorithmforrandom3-SATwithm=cn.Tostress-testFeige'sR3SATHypothesis,onemayaskiftheaforementionedrefutationalgorithmsfork-SATcanbeimprovedto-refutationalgorithms.Coja-Oghlanetal.[COGL04]showedthattheycanbeinthecaseofk=3;4.Indeed,theygavealgorithmsforwhatiscalledstrongrefutationinthesecases.Herestronglyrefutingk-SATreferstocertifyingthatOpt(I)1�2�k+o(1)(notethatOpt(I)1�2�kwhpassumingmO(n)).Beyondk-SAT.AsinthealgebraicandapproximationtheoriesofCSP,it'sofsigni cantinteresttoconsiderrandominstancesoftheCSP(P)problemforgeneralpredicatesP:Zkq!f0;1g,besidesjustBooleanOR.(ThoughBooleanpredicatesaremorefamiliar,largerdomainsareofinterest,e.g.,forq-colorabilityofk-uniformhypergraphs.)Speci cally,weareinterestedinthequestionofhowpropertiesofPa ectthenumberofconstraintsneededforecientrefutationofrandomCSP(P)instances.ThisprecisequestionisveryrelevantforworkincryptographybasedonthecandidateOWFsandPRGsofGoldreich[Gol00];seealso[ABW10]andthesurveyofApplebaum[App13].IthasalsoprovenessentialfortherecentexcitingapproachtohardnessoflearningduetoDaniely,Linial,andShalev-Shwartz[DLSS13,DLSS14,DSS14].WediscussthislearningconnectionandourresultsonitinmoredetailinSection5.Thespecialcaseofrandom3-XORhasprovedparticularlyimportant:itisrelatedto3-SATrefutationthroughFeige's\3XORPrinciple"(see[Fei02,FO05,FKO06]);it'sthebasisforcrypto-graphicschemesduetoAlekhnovich[Ale03](andisrelatedtothe\LearningParitieswithNoise"problem);it'susedinthebestknownlowerboundsfortheSOSSDPhierarchy[Gri01,Sch08],whichwediscussfurtherinSection6;and,BarakandMoitra[BM15]haveshownittobeequivalenttoacertain\tensorpredictionproblem"inlearningtheory.Priortothiswork,verylittlewasknownabouthowthepredicatePa ectsthecomplexityofrefutingrandomCSP(P)instances.Themainknownresult,followingfromtheworkCoja-Oghlan,Cooper,andFrieze[COCF10],wasthefollowing:ForanyBooleank-arypredicateP,onecanecientlystronglyrefuterandomCSP(P)instancesI(i.e.,certifyOpt(I)E[P]+o(1))providedthenumberofconstraintsmsatis esmeO(ndk=2e).Inthecaseofk-XOR,theveryrecentworkofBarakandMoitra[BM15]showedhowtoimprovethisboundtomeO(nk=2).4 4Thepresentauthorsalsoobtainedthisresultaroundthesametime,butwecredittheresultto[BM15]astheypublishedearlier.Withtheirpermissionwerepeattheproofherein,partlybecauseweneedtoproveaslightlymoregeneralvariant.2 CSP Poly-sizerefutationswhponcem Strength Ecient/Existential Reference k-SAT O(nk�1) Refutation Existential [Fu96] k-SAT O(nk�1=logk�2(n)) Refutation Ecient [BKPS99,BKPS02] k-SAT eO(ndk=2e) Refutation Ecient [GK01,FGK05] 3-SAT O(n3=2+) Refutation Ecient [FG01,FGK05] k-SAT O(nk=2+) Refutation Ecient Claimedpossiblein[GJ02,GJ03] Exactly-k1-out-of-k-SAT eO(n) Refutation Ecient [BB02] 2-out-of-5-SAT O(n3=2+) Refutation Ecient [GJ02,GJ03] NAE-3-SAT O(n) (1)-Refutation Ecient [KLP96,GJ02,GJ03] k-SAT O(ndk=2e) Refutation Ecient [COGLS04,FO05] 3-SAT eO(n3=2) Refutation Ecient [GL03] 3-SAT eO(n3=2) Strong Ecient [COGL04,COGL07] 4-SAT O(n2) Strong Ecient [COGL04,COGL07] 3-SAT O(n3=2) Refutation Ecient [FO04] 3-SAT O(n1:4) Refutation Existential [FKO06] 3-XOR O(n3=2) 1=n (1)-refutation Ecient Implicitin[FKO06] 3-SAT (n3=2) Refutation Ecient Claimedin[FKO06] Booleank-CSP O(ndk=2e) Strong Ecient [COCF10] k-XOR eO(nk=2) Strong Ecient [BM15](alsoherein) Anyk-CSP eO(nk=2) Quasirandom(=)strong) Ecient Thispaper Anyk-CSPnotsupportingt-wiseindep. eO(nt=2) k(1)-refutation Ecient Thispaper Table1:Uptologarithmicfactorsonm,ourworksubsumesallpreviouslyknownresults.3 2OurresultsandtechniquesHerewedescribeourmainresultsandtechniquesatahighlevel.Precisetheoremstatementsappearlaterintheworkandthede nitionsoftheterminologyweuseisgiveninSection3.WealsomentionthatinSectionBwewillgeneralizeallofourresultstothecaseoflargeralphabets;butwe'lljustdiscussBooleanpredicatesP:f0;1gk!f0;1gforsimplicity.Ourmainresultgivesa(possiblysharp)boundonthenumberofconstraintsneededtorefuterandomCSP(P)instances.Beforegettingtoit,we rstdescribesomemoreconcreteresultsthatgointothemainproof.Allofourresultsrelyonastrongrefutationalgorithmfork-XOR(actually,aslightgeneralizationthereof).FormeO(ndk=2e),sucharesultfollowsfrom[COCF10];however,theexponentdk=2ecanbeimprovedtok=2.Wegiveademonstrationofthisfactherein;asmentionedearlier,itwaspublishedveryrecentlybyBarakandMoitra[BM15,Corollary5.5andExtensions].Theorem2.1.Thereisanecientalgorithmthat(whp)stronglyrefutesrandomk-XORinstanceswithatleasteO(nk=2)constraints;i.e.,itcerti esOpt(I)1 2+o(1).TheproofofTheorem2.1followsideasfrom[COGL07]andearlierworkson\discrepancy"ofrandomk-SATinstances.Thecaseofevenkisnotablyeasier,andwepresenttwo\folklore"argumentsforit.Thecaseofoddkistrickier.Roughlyspeakingweviewtheinstanceasahomogeneousdegree-kmultilinearpolynomial,whichwewanttocertifytakesononlysmallvaluesoninputsinf�1;1gn.Consideringseparatelythecontributionsbasedonthe\last"ofthekvariablesineachconstraint,andthenusingCauchy{Schwarz,itsucestoboundthenormofacarefullydesignedquadraticformofdimensionnk�1,indexedbytuplesofk�1variables.Thisisdoneusingthetracemethod[Wig55,FK81].Similartechniques,includingtheuseofthetracemethod,datebacktothe2001Friedgman{Goerdtwork[FG01]refutingrandom3-SATgivenm=n3=2+constraints.WithTheorem2.1inhand,thenextstepiscertifyingquasirandomnessofrandomk-aryCSPinstanceshavingmeO(nk=2)constraints.RoughlyspeakingwesaythataCSPinstanceisquasirandomif,foreveryassignmentx2f0;1gn,theminducedk-tuplesofliteralvaluesareclosetobeinguniformlydistributedoverf0;1gk.(Notethatthisisonlyapropertyoftheinstances'constraintscopes/negations,andhasnothingtodowithP.)Sincethe\VaziraniXORLemma"impliesthatadistributiononf�1;1gkisuniformifandonlyifallits2kXORsarehavebias1 2,weareabletoleverageTheorem2.1toprove:Theorem2.2.Thereisanecientalgorithmthat(whp)certi esthatarandominstanceofCSP(P)isquasirandom,providedthenumberofconstraintsisatleasteO(nk=2).Ifaninstanceisquasirandom,thennosolutioncanbemuchbetterthanarandomlychosenone.ThusbycertifyingquasirandomnessweareabletostronglyrefuterandominstancesofanyCSP(P):Theorem2.3.Foranyk-arypredicateP,thereisanecientalgorithmthat(whp)stronglyrefutesrandomCSP(P)instanceswhenthenumberofconstraintsisatleasteO(nk=2).Inparticular,thistheoremimprovesupon[COCF10]byafactorofp nwheneverkisodd;thissavingsisneweveninthewell-studiedcaseofk-SAT.TheaboveresultdoesnotmakeuseofanypropertiesofthepredicatePotherthanitsarity,k.Wenowcometoourmainresult,whichshowsthatformanyinterestingP,randomCSP(P)instancescanberefutedwithmanyfewerconstraintsthannk=2.Inthefollowingtheorem,the4 phrase\t-wiseuniform"(oftenimpreciselycalled\t-wiseindependent")referstoadistributiononf�1;1gkinwhichallmarginaldistributionsontoutofkcoordinatesareuniform.Theorem2.4.(Main.)LetPbeak-arypredicatesuchthatthereisnot-wiseuniformdistributionsupportedonitssatisfyingassignments,t2.Thenthereisanecientalgorithmthat(whp) k(1)-refutesrandominstancesofCSP(P)withatleasteO(nt=2)constraints.WeremarkthatpropertyofapredicatePsupportingapairwiseuniformdistributionhasplayedanimportantroleinapproximabilitytheoryforCSPs,eversinceAustrinandMossel[AM09]showedthatsuchpredicatesarehereditarilyapproximation-resistantundertheUGC.Also,notethatthelargesttforwhichapredicatePsupportsat-wiseuniformdistributiondeterminestheminimumnumberofconstraintsrequiredbyouralgorithm.ThisvalueiscloselyrelatedtothenotionofdistributioncomplexitystudiedbyFeldman,Perkins,andVempala[FPV14,FPV15]inthecontextofplantedrandomCSPs.Informally,thedistributioncomplexityofaplantedCSPisthelargesttforwhichthedistributionoverconstraintinputsf�1;1gkinducedbytheplantedassignmentist-wiseuniform.Despitethissimilarity,thealgorithmictechniquesusedbyFeldman,Perkins,andVempalaintheplantedcase[FPV14]donotseemtodirectlyapplytorefutation.TheideabehindtheproofofTheorem2.4isthatwitheO(nt=2)constraintswecanusethealgorithmofTheorem2.2tocertifyquasirandomness(closenesstouniformity)forallsubsetsoftoutofkcoordinates.Thusforeveryassignmentx2f0;1gn,theinduceddistributiononconstraintk-tuplesis(o(1)-closeto)t-wiseuniform.SincePdoesnotsupportat-wiseuniformdistribution,thisessentiallyshowsthatnoxcaninduceafully-satisfyingdistributiononconstraintinputs.Tohandletheo(1)-closenesscaveat,weshowthatifPdoesnotsupportat-wiseuniformdistribution,thenitis-farfromsupportingsuchadistribution,for= k(1).Thealgorithmcantheninfact(�o(1))-refuterandomCSP(P)instances.Example2.5.Tobrie yillustratetheresult,considertheExactly-k-out-of-2k-SATCSP,studiedpreviouslyin[BB02,GJ03].Theassociatedpredicatesupportsa1-wiseuniformdistribution,namelytheuniformdistributionoverstringsinf0;1g2kofHammingweightk.However,itisnothardtoshowthatitdoesnotsupportanypairwiseuniformdistribution.Asaconsequence,randominstancesofthisCSPcanberefutedwithonlyeO(n)constraints,independentofk.2.1AnapplicationfromlearningtheoryRecently,anexcitingapproachtoprovinghardness-of-learningresultshasbeendevelopedbyDaniely,Linial,andShalev-Shwartz[DLSS13,DLSS14,DSS14,Dan15].Themostgeneralresultsappearin[DLSS14].Inthiswork,Danielyetal.provecomputationalhardnessofseveralcen-trallearningtheoryproblems,basedontwoassumptionsconcerningthehardnessofrandomCSPrefutation.Whiletheassumptionsmadein[DSS14,Dan15]appeartobeplausible,ourworkun-fortunatelyshowsthatthemoregeneralassumptionsmadein[DLSS14]arefalse.Belowwestatethe(admittedlystrong)assumptionsfrom[DLSS14](uptosomeveryminortechnicaldetailswhicharediscussedandtreatedinSection5).Wewillneedonepieceoftermi-nology:the0-variabilityVAR0(P)ofapredicateP:f�1;1gk!f0;1gistheleastcsuchthatthereexistsarestrictiontosomecinputcoordinatesforcingPtobe0.Essentially,theassumptionsstatethatonecanobtainhardness-of-refutationwithanarbitrarilylargepolynomialnumberofcon-straintsbyusingafamilyofpredicates(Pk)that:a)haveunbounded0-variability;b)don'tsupportpairwiseuniformity.However,ourworkshowsthatavoidingt-wiseuniformityforunboundedtisalsonecessary.5 SRCSPAssumption1.([DLSS14].)Foralld2NthereisalargeenoughCsuchthatthefollowingholds:IfP:f�1;1gk!f0;1ghasVAR0(P)Candishereditarilyapproximationresistantonsatis ableinstances,thenthereisnopolynomial-timealgorithmrefuting(whp)randominstancesofCSP(P)withm=ndconstraints.SRCSPAssumption2.([DLSS14],generalizingthe\RCSPAssumption"of[BKS13]tosuper-linearlymanyconstraints.)Foralld2NthereisalargeenoughCsuchthatthefollowingholds:IfP:f�1;1gk!f0;1ghasVAR0(P)Candis-farfromsupportingapairwiseuniformdistri-bution,thenforall�0thereisnopolynomial-timealgorithmthat(+)-refutes(whp)randominstancesofCSP(P)withm=ndconstraints.In[DLSS14]itisshownhowtoobtainthreeverynotablehardness-of-learningresultsfromtheseassumptions.Howeverasstated,ourworkfalsi estheSRCSPAssumptions.Indeed,theassumptionsarefalseeveninthethreespeci ccasesusedby[DLSS14]toobtainhardness-of-learningresults.Wenowdescribethesecases.Case1.TheHuangpredicates(H)arearity-(3)predicatesintroducedin[Hua13];theyarehereditarilyapproximationresistantonsatis ableinstancesandhave0-variability ().In[DLSS14]theyareusedinSRCSPAssumption1todeducehardnessofPAC-learningDNFswith!(1)terms.However:Theorem2.6.Forall9,thepredicateHdoesnotsupporta4-wiseuniformdistribution.ThusbyTheorem2.4wecanecientlyrefuterandominstancesofCSP(H)withjusteO(n2)constraints,independentof.ThiscontradictsSRCSPAssumption1.Case2.ThemajoritypredicateMajkhas0-variabilitydk=2eandisshownin[DLSS14]tobe1 k+1-farfromsupportingapairwiseuniformdistribution.In[DLSS14]thesepredicatesareusedinSRCSPAssumption2todeducehardnessofagnsoticallylearningBooleanhalfspacestowithinanyconstantfactor.However:Theorem2.7.Foroddk25,thepredicateMajkdoesnotsupporta4-wiseuniformdistribution;infact,itis:1-farfromsupportinga4-wiseuniformdistribution.Theorem2.4thenimplieswecaneciently-refuterandominstancesofCSP(Majk)witheO(n2)constraints,where=:11 k+1.ThiscontradictsSRCSPAssumption2.Case3.Finally,wealsoprovethatSRCSPAssumption1isfalseforanotherfamilyofpredi-cates(Tk)usedby[DLSS14]toshowhardnessofPAC-learningintersectionsof4Booleanhalfspaces.Ourresultsdescribedinthesethreecasesalluselinearprogrammingduality.Speci cally,inLemma3.16weshowthatPis-farfromsupportingat-wiseuniformdistributionifandonlyifthereexistsak-variablemultilinearpolynomialQthatsatis escertainpropertiesinvolvingPand.WethenexplicitlyconstructthesedualpolynomialsfortheHuang,Majority,andTkpred-icates.WeconcludethissectionbyemphasizingtheimportanceoftheDaniely{Linial{Shalev-Shwartzhardness-of-learningprogram,despitetheaboveresults.Indeed,subsequentlyto[DLSS14],DanielyandShalev-Shwartz[DSS14]showedhardnessofimproperlylearningDNFformulaswith!(logn)termsunderamuchweakerassumptionthanSRCSPAssumption1.Speci cally,theirworkonly6 assumesthatforalldthereisalargeenoughksuchthatrefutingrandomk-SATinstancesishardwhentherearem=ndconstraints.Thisassumptionlooksquiteplausibletous,andmayevenbetruewithknotmuchlargerthan2d.Mostrecently,DanielyshowedhardnessofapproximatelyagnosticallylearninghalfspacesusingtheXORpredicateratherthanmajority[Dan15].Thisresultshowsthatthereisnoecientalgorithmthatagnosticallylearnshalfspacestowithinaconstantapproximationratioundertheassumptionthatrefutingrandomk-XORinstancesishardwhenm=ncp klogkforsomec�0.Healsoshowshardnessoflearninghalfspacestowithinanapproximationfactorof2log1�nforany�0assumingthatthereexistssomeconstantc�0suchthatforalls,refutingrandomk-XORinstanceswithk=logsnishardwhenm=nck.2.2EvidencefortheoptimalityofourresultsIt'snaturaltoaskwhetherthent=2dependenceinourmainTheorem2.4canbeimproved.Aswedon'texpecttoproveunconditionalhardnessresults,weinsteadmerelyseekgoodevidencethatrefutingt-wisenon-supportingpredicatesPishardwhenmnt=2.Anaturalformofevidencewouldbeshowingthatvariousstrongclassesofpolynomial-timerefutationalgorithmsfailwhenmnt=2.Tomakesenseofthisweneedtotalkabouttheformofsuchalgorithms;i.e.,propositionalproofsystems.Recently,therehasbeensigni cantstudyofthe\SOS"(Sum-Of-Squares)proofsystem,intro-ducedbyGrigorievandVorobjov[GV01];see,e.g.,[OZ13,BS14]fordiscussion.Ithasthefollowingvirtues:a)itisverypowerful,beingabletoecientlysimulateotherproofsystems(e.g.,Reso-lution,Lovasz{Schrijver);b)itisautomatizable[Las00,Par00],meaningthatn-variable\degree-dSOSproofs"canbefoundinnO(d)timewhenevertheyexist;c)wedoknowsomeexamplesoflowerboundsfordegree-dSOSproofs.InSection6ofthispaperweshowthefollowing:Theorem2.8.Allofourrefutationalgorithmsfork-arypredicatescanbeextendedtoproducedegree-2kSOSproofs.Wenowreturntothequestionofevidencefortheoptimalityofconstraintdensityusedinourresults.DatingbacktoFranco{Paull[FP83]andChvatal{Szemeredi[CS88],therehasbeenalonglineofworkinproofcomplexityshowinglowerboundsforrefutingrandom3-SATinstances,especiallyintheResolutionproofsystem.ThisculminatedintheworkofBen-SassonandWigder-son[BSW99],whichshowedthatforrandom3-SAT(and3-XOR)withm=O(n3=2�),Resolutionrefutationsrequiresize2n ()(whp).Morerecently,Schoenbeck[Sch08]showed(usingtheexpan-sionanalysisof[BSW99])thatrandomk-XORandk-SATinstanceswithmnk=2�requireSOSproofsofdegreen (),andhencetake2n ()timetorefutebythe\SOSMethod".See[Tul09,Cha13]forrelatedlarger-alphabetfollowups.TheseresultshowthattheBarak{MoitraeO(nk=2)boundforrefutingrandomk-XOR(whichalsoworksinO(k)-degreeSOS)andourboundforrandomk-SATaretight(uptosubpolynomialfactors)withintheSOSframework.GiventhepoweroftheSOSframework,thisarguablyconstitutessomereasonableevidencethatnopolynomial-timealgorithmcanrefuterandomk-SATinstanceswithmnk=2.Wenowdiscussourmaintheorem'snt=2boundforpredicatesPnotsupportingt-wiseuniformdistributions.InthecontextofinapproximabilityandSDP-hierarchyintegralitygaps,thisconditiononPhasbeensigni cantlystudiedinthecaseoft=2.ForPnotsupportingpairwiseuniformity,itisknown[BGMT12,TW13]thattheSherali{AdamsandLovasz{Schrijver+SDPhierarchiesrequiredegree (n)torefuterandomCSP(P)instances(whp)whenm=O(n).ThisresultwasalsorecentlyprovenforthestrongerSOSproofsystembyBarak,Chan,andKothari[BCK15],exceptthattheCSP(P)instancesarenotquiteuniformlyrandom;theyare\slightlypruned"randominstances.7 NowsupposePisapredicatethatdoesnotsupportat-wiseuniformdistribution,wheret�2.Thesecondandthirdauthorsrecentlyessentiallyshowed[OW14]thatfortheSherali{Adams+SDPhierarchy,degreen ()is(whp)necessarytorefuterandomCSP(P)instanceswhenmnt=2�.Asacaveat,againtheinstancesareslightlyprunedrandominstances,ratherthanbeingpurelyuniformlyrandom.(Theinstancesin[OW14]arealsointhe\Goldreich[Gol00]style";i.e.,therearenoliterals,butthe\right-handsides"arerandom.Howeveritisnothardtoshowtheproofsin[OW14]gothroughinthestandardrandommodelofthispaper.)Futurework[MWW15]isdevotedtoremovingthepruningintheseinstances.AlthoughtheSherali{Adams+SDPhierarchyiscertainlyweakerthantheSOShierarchy,theseworksstillconstitutesomeevidencethatourmaintheorem'srequirementofmeO(nt=2)fornon-t-wisesupportingpredicatesmaybeessentiallyoptimal.FurtherevidencefortheoptimalityofourresultsisprovidedbytheworkofFeldman,Perkins,andVempalaonstatisticalalgorithmsforrandomplantedCSPs[FPV15].TheyshowthattheirlowerboundsagainststatisticalalgorithmsforsolvingrandomplantedCSPsalsoimplylowerboundsagainststatisticalalgorithmsforrefutinguniformlyrandomCSPs.Speci cally,theyprovethatwhenPsupportsat-wiseuniformdistribution,anystatisticalalgorithmusingqueriesthattakeeO(nt=2)possiblevaluescanonlyrefuterandominstancesofCSP(P)withatleaste (nt=2)constraints.Asanapplicationofthisresult,theyalsoshowthatanyconvexprogramrefutingsuchaninstanceofCSP(P)musthavedimensionatleaste (nt=2).2.3Certifyingindependencenumberandchromaticnumberofrandomhyper-graphsCoja-Oghlan,Goerdt,andLanka[COGL07]alsousetheirCSPrefutationtechniquestocertifythatrandom3-and4-uniformhypergraphshavesmallindependencenumberandlargechromaticnumber.Weextendtheseresultstorandomk-uniformhypergraphs.Theorem2.9.Forarandomk-uniformhypergraphH,thereisapolynomialtimealgorithmcer-tifyingthattheindependencenumberofHisatmost withhighprobabilitywhenHhasatleasteOn5k=2 2khyperedges.Theorem2.10.Forarandomk-uniformhypergraphH,thereisapolynomialtimealgorithmcertifyingthatthechromaticnumberofHisatleastwithhighprobabilitywhenHhasatleasteO�2knk=2hyperedges.Theproofsofthesetheoremsfollowtheoutlineof[COGL07].WeshowTheorem2.9usingaslightlymoregeneralformofTheorem2.1.Theorem2.10followsalmostdirectlyfromTheorem2.9usingthefactthateverycolorclassofavalidcoloringisanindependentset.DetailsaregiveninAppendixC.3Preliminariesandnotation3.1ConstraintsatisfactionproblemsWereviewsomebasicde nitionsandfactsrelatedtoconstraintsatisfactionproblems(CSPs).InthissectionwediscussonlytheBooleandomain,whichweprefertowriteasf�1;1gratherthanf0;1g.ThestraightforwardextensionstolargerdomainsappearinSectionB.Wewillneedthefollowingnotation:Forx2RnandS[n]wewritexS2RjSjfortherestrictionofxtocoordinatesS;i.e.,(xi)i2S.Wealsousetodenotetheentrywiseproductforvectors.8 De nition3.1.GivenapredicateP:f�1;1gk!f0;1g,aninstanceIoftheCSP(P)problemovervariablesx1;:::;xnisamultisetofP-constraints.EachP-constraintconsistsofapair(c;S),whereS2[n]kisthescopeandc2f�1;1gkisthenegationpattern;thisrepresentstheconstraintP(cxS)=1.Wetypicallywritem=jIj.LetValI(x)bethefractionofconstraintssatis edbyassignmentx2f�1;1gn,i.e.,ValI(x)=1 mP(c;S)2IP(cxS).Theobjectiveisto ndanassignmentxmaximizingValI(x).TheoptimumofI,denotedbyOpt(I),ismaxx2f�1;1gkValI(x).IfOpt(I)=1,wesaythatIissatis able.Wealsowrite PforthequantityEzf�1;1gk[P(z)];i.e.,thefractionofassignmentsthatsatisfyP.ForanyinstanceIinwhicheachconstraintinvolveskdi erentvariables,wehaveOpt(I) P.5Wenextde neastandardrandommodelforCSPs.ForP:f�1;1gk!f0;1g,letFP(n;p)bethedistributionoverCSPinstancesgivenbyincludingeachofthe2knkpossibleconstraintsindependentlywithprobabilityp.Notethatwemayincludeconstraintsondi erentpermutationsofthesamesetofvariables,constraintsonthesametupleofvariableswithdi erentnegationsc,andconstraintswiththesamevariableoccurringasmorethanoneargument.ItisreasonabletoincludesuchconstraintsinthecasethatthepredicatePisnotasymmetricfunction.Weuse mtodenotetheexpectednumberofconstraints,namely2knkp.AsnotedinFact3.6below,thenumberofconstraintsminadrawfromFP(n;p)isverytightlyconcentratedaround m,andweoftenblurthedistinctionbetweentheseparameters.AppendixDexplicitlydescribesamethodforsimulatinganinstancedrawnfromFP(n;p)whenthenumberofconstraintsis xed.Quasirandomness.Wenowintroduceanimportantnotionforthispaper:thatofaCSPinstancebeingquasirandom.VersionsofthisnotionoriginateintheworksofGoerdtandLanka[GL03](underthename\discrepancy"),Khot[Kho06](\quasi-randomness"),AustrinandHastad[AH13](\adaptiveuselessness"),andChan[Cha13](\lowcorrelation"),amongotherplaces.Tode neit,we rstneedtode netheinduceddistributionofaninstanceandanassignment.De nition3.2.GivenaCSPinstanceIandandanassignmentx2f�1;1gn,theinduceddis-tribution,denotedDI;x,istheprobabilitydistributiononf�1;1gkwheretheprobabilitymasson 2f�1;1gkisgivenbyDI;x( )=1 jIj#f(c;S)2IjcxS= g:Inotherwords,itistheempiricaldistributiononinputstoPgeneratedbytheconstraintscopes/negationsonassignmentx.NotethatthepredicatePitselfisirrelevanttothisnotion.WewilldropthesubscriptIwhenitisclearfromthecontext.Wede neDI;x=2kDI;xtobethedensityfunctionassociatedwithDI;x.Wecannowde nequasirandomness.De nition3.3.ACSPinstanceIis-quasirandomifDI;xis-closetotheuniformdistributionforallx2f�1;1gn;i.e.,ifdTV(DI;x;Uk)forallx2f�1;1gn.HereweusethenotationUkfortheuniformdistributiononf�1;1gkaswellasthefollowing:De nition3.4.IfDandD0areprobabilitydistributionsonthesame nitesetAthendTV(D;D0)denotestheirtotalvariationdistance,1 2P 2AjD( )�D0( )j.IfdTV(D;D0)wesaythatDandD0are-close.IfdTV(D;D0)wesaytheyare-far.(Asneitherinequalityisstrict,thesenotionsarenotquiteopposites.)Animmediateconsequenceofaninstancebeingquasirandomisthatitsoptimumiscloseto P: 5Technically,ourde nitionsallowconstraintswithavariableappearingmorethanonce,soOpt(I) Pdoesn'talwaysholdforus.ButsinceweonlyconsiderrandomI,we'llinfacthaveOpt(I) PwhpoverIanyway.9 Fact3.5.IfIis-quasirandom,thenOpt(I) P+(andinfact, Opt(I)� P ).WeconcludethediscussionofCSPsbyrecordingsomefactsthatareproveneasilywiththeCherno bound:Fact3.6.LetIFP(n;p).Thenthefollowingstatementsholdwithhighprobability.1.m=jIj2 m1Oq logn m.2.Opt(I) P1+Oq 1 Pn m.3.IisOq 2kn m-quasirandom.3.2AlgorithmsandrefutationsonrandomCSPsDe nition3.7.LetPbeaBooleanpredicate.WesaythatAis-refutationalgorithmforrandomCSP(P)with mconstraintsifAhasthefollowingproperties.First,onallinstancesItheoutputofAiseitherthestatement\Opt(I)1�"oris\fail".Second,Aisneverallowedtoerr,whereerringmeansoutputting\Opt(I)1�"onaninstancewhichactuallyhasOpt(I)�1�.Finally,AmustsatisfyPrIFP(n;p)[A(I)=\fail"]o(1)(asn!1);wherepisde nedby m=2knkp.AlthoughAisoftenadeterministicalgorithm,wedoallowittoberandomized,inwhichcasetheaboveprobabilityisalsooverthe\internalrandomcoins"ofA.Werefertothisnotionasweakrefutation,orsimplyrefutation,whenthecerti cationstatementisoftheform\Opt(I)1"(equivalently,when=1=jIj).Werefertothenotionasstrongrefutationwhenthestatementisoftheform\Opt(I) P+o(1)"(equivalently,when=1� P+o(1)).Remark3.8.InSection5wewillencountera\two-sidederror"variantofthisde nition.Thisistheslightlyeasieralgorithmictaskinwhichwerelaxtheconditiononerring:itisonlyrequiredthatforeachinstanceIwithOpt(I)�1�,itholdsthatPr[A(I)=\Opt(I)1�"]1=4,wheretheprobabilityisjustovertherandomcoinsofA.Remark3.9.Wewillalsousetheanalogousde nitionforcerti cationofrelatedproperties;e.g.,wewilldiscuss-quasirandomnesscerti cationalgorithmsinwhichthestatement\Opt(I)1�"isreplacedbythestatement\Iis-quasirandom".3.3t-wiseuniformityAnimportantnotionforthispaperisthatoft-wiseuniformity.Recall:De nition3.10.ProbabilitydistributionDonf�1;1gkissaidtobet-wiseuniform,1tk,ifforallS[k]withjSj=ttherandomvariablexSisuniformonf�1;1gtwhenxD.(Weremarkthatthisconditionissometimesinaccuratelycalled\t-wiseindependence"intheliterature.)Wewillalsoconsiderthemoregeneralnotionof(;t)-wiseuniformity.Thisistypicallyde nedusingFouriercoecients:10 De nition3.11.ProbabilitydistributionDonf�1;1gkissaidtobe(;t)-wiseuniformifjbD(S)jforallS[k]with0jSjt,whereD=2kDistheprobabilitydensityassociatedwithdistributionD.HereweareusingstandardnotationfromFourieranalysisofBooleanfunctions[O'D14].Inparticular,foranyf:f�1;1gk!Rwewritef(x)=PS[k]bf(S)xSforitsexpansionasamultilinearpolynomialoverR,withxSdenotingQi2Sxi(nottobeconfusedwiththeprojectionxS2RjSj).Remark3.12.Itisasimplefact(anditfollowsfromLemma3.13below)that(0;t)-wiseuniformityisequivalenttot-wiseuniformity.Alsoimportantforusisarelatedbutdistinctnotion,thatofbeing-closetoat-wiseuniformdistribution.It'seasytoshowthatifDis-closetoat-wiseuniformdistributionthenDis(2;t)-wiseuniform.Intheotherdirection,wehavethefollowing(seealso[AAK+07]forsomequantitativeimprovement):Lemma3.13.(Alon{Goldreich-Mansour[AGM03,Theorem2.1]).IfDisan(;t)-wiseuniformdistributiononf�1;1gk,thenthereexistsat-wiseuniformdistributionD0onf�1;1gkwithdTV(D;D0)tXi=1�ktkt:Inparticularift=kwehavethebound2k(andthiscanalsobeimproved[Gol11]to2k=2�1).Finally,wemakeacrucialde nition:De nition3.14.ApredicateP:f�1;1gk!f0;1gissaidtobet-wisesupportingifthereisat-wiseuniformdistributionDwhosesupportiscontainedinP�1(1).WesayPis-farfromt-wisesupportingifeveryt-wiseuniformdistributionDis-farfrombeingsupportedonP;i.e.,hasprobabilitymassatleastonP�1(0).3.4AdualcharacterizationoflimiteduniformityItisknownthattheconditionofPsupportingat-wiseuniformdistributionisequivalenttothefeasibilityofacertainlinearprogram;henceonecanshowthatPisnott-wisesupportingbyexhibitingacertaindualobject,namelyapolynomial.Thisappears,e.g.,inworkofAustrinandHastad[AH09,Theorem3.1].Hereinwewillextendthisfactbygivingadualcharacterizationofbeingfarfromt-wisesupporting.De nition3.15.Let01.ForamultilinearpolynomialQ:f�1;1gk!R,wesaythatQ-separatesP:f�1;1gk!f0;1gifthefollowingconditionshold:Q(z)�18z2f�1;1gk;Q(z)8z2P�1(1);bQ(;)=0,i.e.,Qhasnoconstantcoecient.Wenowprovidethequantitativeversionoftheaforementioned[AH09,Theorem3.1]:Lemma3.16.LetP:f�1;1gk!f0;1gandlet01.ThenPis-farfromt-wisesupportingifandonlyifthereisa-separatingpolynomialforPofdegreeatmostt.11 Proof.Theproofisanapplicationoflinearprogrammingduality.ConsiderthefollowingLP,whichhasvariablesD(z)foreachz2f�1;1gk.minimizeXz2f�1;1gk(1�P(z))D(z)(1)s.t.Xz2f�1;1gkD(z)zS=2kbD(S)=08S[k]0jSjt(2)Xz2f�1;1gkD(z)=1(3)D(z)08z2f�1;1gk Constraint(3)andthenonnegativityconstraintensurethatDisaprobabilitydistributiononf�1;1gk.Constraint(2)expressesthatDist-wiseuniform(seeRemark3.12).Theobjective(1)isminimiz-ingtheprobabilitymassthatDputsonassignmentsinP�1(0).ThustheoptimalvalueoftheLPisequaltothesmallest suchthatPis -closetot-wisesupporting;equivalently,thelargest suchthatPis -farfromt-wisesupporting.ThefollowingisthedualoftheaboveLP.Ithasavariablec(S)foreach0jSjtaswellasavariablecorrespondingtoconstraint(3).maximize(4)s.t.XS[k]0jSjtc(S)zS1�P(z)�8z2f�1;1gk:(5) Observethatafeasiblesolution(fc(S)gS;)ispreciselyequivalenttoamultilinearpolynomialQofdegreeatmostt,namelyQ(z)=�PSc(S)zS,that-separatesP.ThusPis-farfromt-wisesupportingifandonlyiftheLP'sobjective(1)isatleast,ifandonlyifthedual'sobjective(4)isatleast,ifandonlyifthereisa-separatingpolynomialforPofdegreeatmostt. FromthisproofwecanalsoderivethatifPfailstobet-wisesupportingthenitmustinfactbe k(1)-farfrombeingt-wisesupporting:Corollary3.17.SupposeP:f�1;1gk!f0;1gisnott-wisesupporting.Thenitisinfact-farfromt-wisesupportingfor=2�eO(kt)(or=2�eO(2k)whent=k).Proof.LetK=1+Pti=1�ktbethenumberofvariablesinthedualLPfromLemma3.16,soKkt+1ingeneral,withK2kwhent=k.Byassumption,theobjective(4)ofthedualLP'soptimalsolutionisstrictlypositive.Thisoptimumoccursatavertex,whichisthesolutionofalinearsystemgivenbyaKKmatrixof1entriesanda\right-handside"vectorwith0;1entries.ByCramer'srule,thesolution'sentriesareratiosofdeterminantsofintegermatriceswithentriesinf�1;0;1g.Thusanystrictlypositiveentryisatleast1=N,whereNisthemaximumpossiblesuchdeterminant.ByHadamard'sinequality,N=KK=2andtheclaimedresultfollows. 12 4Quasirandomnessanditsimplicationsforrefutation4.1Strongrefutationofk-XORInthissection,westateourresultonstrongrefutationofrandomk-XORinstanceswithm=~O�nk=2constraints.(RecallthatessentiallythisresultwasveryrecentlyobtainedbyBarakandMoitra[BM15].)Weactuallyhaveaslightlymoregeneralresult,allowingvariablesandcoecientstotakevaluesin[�1;1]andnotjustinf�1;1g.WewillusethisadditionalfreedomtoproverefutationresultsforCSPsoverlargeralphabetsinAppendixBandrefutationresultsforindependencenumberandchromaticnumberofrandomhypergraphsinAppendixC.Theorem4.1.Fork2andpn�k=2,letfw(T)gT2[n]kbeindependentrandomvariablessuchthatforeachT2[n]k,E[w(T)]=0(6)Pr[w(T)6=0]p(7)jw(T)j1:(8)ThenthereisanecientalgorithmcertifyingthatXT2[n]kw(T)xT2O(k)p pn3k=4log3=2n:forallx2Rnsuchthatkxk11withhighprobability.Inthisform,thetheoremisnotreallyaboutCSPrefutationatall.Itsaysthatthevalueofapolynomialwithrandomcoecientsisclosetoitsexpectationwhenitsinputsarebounded.WegivetheproofinAppendixA.Itfollowstechniquesfrom[COGL07]fairlycloselyandisessentiallythesameastheproofof[BM15].Wewillusethistheoremtoproveourresultsinsubsequentsections.Weobtainstrongrefutationofk-XORasasimplecorollary.Corollary4.2.Fork2,letIFk-XOR(n;p).Then,withhighprobability,thereisadegree-2kSOSproofthatOpt(I)1 2+ when m2O(k)nk=2log3n 2.Proof.Wecanwritethek-XORpredicateask-XOR(z)=1�Qki=1zi 2;soforak-XORinstanceIFk-XOR(n;p),ValI(x)=1 2�1 2mXT2[n]kXc2f1gk1f(T;c)2IgxTYi2[k]ci=1 2+2k�1 mXT2[n]kw(T)xT;wherew(T)=�2�kPc2f1gk1f(T;c)2IgQi2[k]ci.Thew(T)'sarerandomvariablesdependingonthechoiceofI;observethatE[w(T)]=0,Pr[w(T)6=0]2kp,andjw(T)j1forallT2[n]k.ByTheorem4.1,thereisanalgorithmcertifyingthatOpt(I)1 2+2O(k)p pn3k=4log3=2n m:withhighprobabilitywhenpn�k=2.Sincem=(1+o(1)) mwithhighprobability,choosing m2O(k)nk=2log3n 2givesthedesiredresult. Asanexample,wecanchoose =1 lognandcertifythatOpt(I)1 2+o(1)when m=eOk(nk=2).13 4.2Quasirandomnessandstrongrefutationofanyk-CSPNext,wewillusethealgorithmofTheorem4.1tocertifythataninstanceofCSP(P)isquasirandom.Thiswillimmediatelygiveusastrongrefutationalgorithm.Inordertocertifyquasirandomness,Lemma3.13impliesthatitsucestocertifyeachFouriercoecientofDI;xhassmallmagnitude.Lemma4.3.Let;6=S[k]withjSj=s.Thereisanalgorithmthat,withhighprobability,certi esthat dDI;x(S) 2O(s)maxfns=4;p nglog5=2n m1=2forallx2f�1;1gn,assumingalsothat mmaxfns=2;ng.Toprovethislemma,weneedanotherlemmacertifyingthatpolynomialswhosecoecientsaresumsof0-meanrandomvariableshavesmallvalue.Lemma4.4.LetS[k]withjSj=s�0.Let2NandletfwU(i)gU2[n]s;i2[]beindependentrandomvariablessatisfyingconditions(6),(7),and(8)forsomep1 ns=2.Thenthereisanalgorithmthatcerti eswithhighprobabilitythatXU2[n]sxUXj=1wU(j)(2O(s)p pn3s=4log5=2nifs24maxfp p;1gnlognifs=1.forallx2Rnsuchthatkxk11.TheproofisstraightforwardandwedeferittoSection4.4.ProofofLemma4.3.Withoutlossofgenerality,assume12S.Applyingde nitions,weseethat[DI;x(S)=EzDI;xzS=1 mXU2[n]sXT2[n]kTS=UXc2f1gk1f(T;c)2IgcSxU=1 mXU2[n]sxUXT2[n]kTS=UXc02f1gk�1wS(T;c0):(9)wherewede newS(T;c0)=1f(T;(1;c0))2Ig(c0)Snf1g�1f(T;(�1;c0))2Ig(c0)Snf1gandrecallthatTSistheprojectionofTontothethecoordinatesinS.ItisclearthatE[wS(T;c0)]=0,Pr[wS(T;c0)6=0]p,andjwS(T;c0)j1.Thereare=2k�1nk�stermsineachsumofwS(T;c0)'sandwecanapplyLemma4.4.Whens=2,wepluginthesevaluesandseethatwecancertifythat[DI;x(S)2O(s)ns=4log5=2n m1=2.Whens=1, mnimpliesthatp1 2andwecancertifythat[DI;x(S)2O(s)p nlogn m1=2.Thelowerboundcanbeprovedinexactlythesamewaybyconsideringtherandomvariables�wS(T;c0). TheexistenceofanalgorithmforcertifyingquasirandomnessfollowsfromLemmas3.13and4.3.Theorem4.5.Thereisanecientalgorithmthatcerti esthataninstanceIFP(n;p)ofCSP(P)is -quasirandomwithhighprobabilitywhen m2O(k)nk=2log5n 2.Since -quasirandomessimpliesthatOpt(I) P+ ,thisalgorithmalsostronglyrefutesCSP(P).Theorem4.6.Thereisanecientalgorithmthat,givenaninstanceIFP(n;p)ofCSP(P),certi esthatOpt(I) P+ withhighprobabilitywhen m2O(k)nk=2log5n 2.14 4.3(;t)-quasirandomnessand (1)-refutationofnon-t-wise-supportingCSPsInthecasethatapredicateisnott-wisesupporting,aweakernotionofquasirandomnesssucestoobtain (1)-refutation.De nition4.7.AninstanceIofCSP(P)is(;t)-quasirandomifDI;xis(;t)-wiseuniformforeveryx2f�1;1gn.Fact3.6showsthatrandominstanceswitheO(n)constraintsare(o(1);t)-quasirandomforalltkwithhighprobability.Lemma4.3directlyimpliesthatwecancertify(;t)-quasirandomnesswhenmeO(nt=2).Theorem4.8.Thereisanecientalgorithmthatcerti esthataninstanceIFP(n;p)ofCSP(P)is( ;t)-quasirandomwithhighprobabilitywhen m2O(t)nt=2log5n 2andt2.Wenowreachthemainresultofthissection,whichstatesthatifapredicateis-farfromt-wisesupporting,thenwecanalmost-refuteinstancesofCSP(P).Theorem4.9.LetPbe-farfromt-wisesupporting.Thenthereisanecientalgorithmthat,givenaninstanceIFP(n;p)ofCSP(P),certi esthatOpt(I)1�+ withhighprobabilitywhen mkO(t)nt=2log5n 2andt2.Wegivetwoproofsofthistheorem.InProof1,thetheoremfollowsdirectlyfromcerti cationof( ;t)-quasirandomnessandLemma3.13.Proof1.RunthealgorithmofTheorem4.8tocertifythatIis( =kt;t)-quasirandomwithhighprobability.Byde nition,wehavecerti edthatDI;xis( =kt;t)-wiseuniformforallx2f�1;1gn,.Lemma3.13thenimpliesthatforallxthereexistsat-wiseuniformdistributionD0xsuchthatdTV(DI;x;D0x) .Nowde neDsattobeanarbitrarydistributionoversatisfyingassignmentstoP.SincePis-farfrombeingt-wisesupporting,weknowthatdTV(D0;Dsat)foranyt-wiseuniformdistributionD0.ThetriangleinequalitythenimpliesthatdTV(DI;x;Dsat)� forallx2f�1;1gnandthetheoremfollows. Proof2givesaslightlyweakerversionofTheorem4.9,requiringthestrongerassumptionthat m2O(k)nt=2log5n 2.Itisbasedonthedualpolynomialcharacterizationofbeing-farfromt-wisesupporting.WhileperhapslessintuitivethanProof1,Proof2ismoredirect.ItonlyusestheXORrefutationalgorithmandbypasses[AGM03]'sconnectionbetween(;t)-wiseuniformityand-closenesstoat-wiseuniformdistribution.WewereabletoconvertProof2intoanSOSproof(seeSection6.4),butwedidnotseehowtotranslateProof1intoanSOSversion.Proof2requiresPlancherel'sTheorem,afundamentalresultinFourieranalysis.Theorem4.10(Plancherel'sTheorem).Foranyf;g:f�1;1gk!R,Ez2Uk[f(z)g(z)]=XS[k]bf(S)bg(S):Proof2.SincePis-farfromt-wisesupporting,thereexistsadegree-tpolynomialQthat-separatesP.Thede nitionof-separatingimpliesthatP(z)�(1�)Q(z)forallz2f�1;1gk.Summingoverallconstraints,wegetthatforallx2f�1;1gn,XT2[n]kXc2f1gk1f(T;c)2IgP(xTc)�m(1�)XT2[n]kXc2f1gk1f(T;c)2IgQ(xTc);15 or,equivalently,ValI(x)�(1�)Ez2DI;x[Q(z)].ItthenremainstocertifythatEz2DI;x[Q(z)] .ObservethatEz2DI;x[Q(z)]=Ez2Uk[DI;x(z)Q(z)]=X;6=S[k][DI;x(S)bQ(S);wherethesecondequalityfollowsfromPlancherel'sTheorem.SinceQ�1andE[Q]=0,Q2kandhencejbQ(S)j2kforallS.To nishtheproof,weapplyLemma4.3tocertifythat [DI;x(S)  22kforallS. WithCorollary3.17,Theorem4.9impliesthatwecan k(1)-refuteinstancesofCSP(P)witheOk(nt=2)constraintswhenPisnott-wisesupporting.Corollary4.11.LetPbeapredicatethatdoesnotsupportanyt-wiseuniformdistribution.Thenthereisanecientalgorithmthat,givenaninstanceIFP(n;p)ofCSP(P),certi esthatOpt(I)1�2�eO(kt)withhighprobabilitywhen m2eO(kt)nt=2log5nandt2.4.4ProofofLemma4.4Recallthestatementofthelemma.Lemma4.4.LetS[k]withjSj=s�0.Let2NandletfwU(i)gU2[n]s;i2[]beindependentrandomvariablessatisfyingconditions(6),(7),and(8)forsomep1 ns=2.Thenthereisanalgorithmthatcerti eswithhighprobabilitythatXU2[n]sxUXj=1wU(j)(2O(s)p pn3s=4log5=2nifs24maxfp p;1gnlognifs=1.forallx2Rnsuchthatkxk11.TheproofusesBernstein'sInequality.Theorem4.12(Bernstein'sInequality).LetX1;:::;XMbeindependent0-meanrandomvariablessuchthatjXijB.Then,fora�0,Pr"MXi=1Xi�a#exp �1 2a2 PMi=1E[X2i]+1 3Ba!:ProofofLemma4.4.First,wede nevU=Xj=1wU(i):ObservethatthevU'sareindependentandthateachoneisthesumofmean-0,i.i.d.randomvariableswithmagnitudeatmost1.NotingthatPi=1E[wU(i)2]p,wecanuseBernstein'sInequalitytoshowthatthejvUj'sarenottoobigwithhighprobability.Ifs2,Theorem4.1thenimpliesthatthedesiredalgorithmexists.Ifs=1,wearesimplyboundingalinearfunctionover1variables.Weconsidertwocases:Smallpandlargep.16 Case1:p1 4.Choosinga=2slogninBernstein'sInequality,weseethatPr[jvUj2slogn]n�2s.AunionboundoverallUthenimpliesthatPr[anyjvUj�2slogn]n�s.Ifs2,weobservethatPr[vU6=0]p,scalethevU'sdownby2slogn,andapplyTheorem4.1togetthestatedresult.Ifs=1,weobtainthesecondboundbyobservingthatXi2[n]vixiXi2[n]jvij2nlogn:(10)Case2:p�1 4.Weseta=4sp plognandgetthatPr[anyjvUj�4sp plogn]n�sasabove.Ifs2,wecanthendividethevU'sby4sp plognandapplyTheorem4.1.Ifs=1,wegetaboundof4p pnlogninthesamewayas(10). 5HardnessoflearningimplicationsRecentworkbyDanielyetal.[DLSS14]reducestheproblemofrefutingspeci cinstancesofCSP(P)totheproblemofimproperlylearningcertainhypothesisclassesintheProbablyApproximatelyCorrect(PAC)model[Val84].Inthismodel,thelearnerisgivenmlabeledtrainingexamples(x1;`(x1));:::;(xm;`(xm)),whereeachxi2f�1;1gn,each`(xi)2f0;1g,andtheexamplesaredrawnfromsomeunknowndistributionDonf�1;1gnf0;1g.ForsomehypothesisclassHf0;1gf�1;1gnwesaythatDcanberealizedbyHifthereexistssomeh2HsuchthatPr(x;`(x))D[h(x)6=`(x)]=0.InimproperPAClearning,onaninputofmtrainingexamplesdrawnfromDsuchthatDcanberealizedbysomeh2H,andanerrorparameter,thealgo-rithmoutputssomehypothesisfunctionfh:f�1;1gn!f0;1g(notnecessarilyinH)suchthatPr(x;`(x))D[fh(x)6=`(x)].InimproperagnosticPAClearning,theassumptionthatDcanberealizedbysomeh2HisremovedandthealgorithmmustoutputahypothesisthatperformsalmostaswellasthebesthypothesisinH.Moreformally,thehypothesisfhmustsatisfythefollow-ing:Pr(x;`(x))D[fh(x)6=`(x)]minh2HPr(x;`(x))D[h(x)6=`(x)]+.InimproperapproximateagnosticPAClearning,thelearnerisalsogivenanapproximationfactora1andmustoutputahypothesisfhsuchthatPr(x;`(x))D[fh(x)6=`(x)]aminh2HPr(x;`(x))D[h(x)6=`(x)]+.Danielyetal.reducetheproblemofdistinguishingbetweenrandominstancesofCSP(P)andinstanceswithvalueatleast asaPAClearningproblembytransformingeachconstraintintoalabeledexample.ToshowhardnessofimproperlylearningacertainhypothesisclassinthePACmodel,theyde neapredicatePthatisspeci ctothehypothesisclassandassumehardnessofdistinguishingbetweenrandominstancesofCSP(P)andinstanceswithndconstraintsandvalueatleast foralld�0.Theythendemonstratethatthesamplecanberealized(orapproximatelyrealized)bysomefunctioninthehypothesisclassiftheCSPinstanceissatis able(orhasvalueatleast ).TheyalsoshowthatifthegivenCSPinstanceisrandom,thesetofexampleswillhaveerroratleast1 4(intheagnosticcase1 5)forallhinthehypothesisclasswithhighprobability.Usingthisapproach,theyobtainhardnessresultsforthefollowingproblems:improperlylearningDNFformulas,improperlylearningintersectionsof4halfspaces,andimproperlyapproximatelyagnosticallylearninghalfspacesforanyapproximationfactor.5.1HardnessassumptionsThehardnessassumptionsmadein[DLSS14]arethesameasthosepresentedinSection2.1,exceptforafewminordi erences.First,theirmodel xesthenumberofconstraintsratherthantheprobabilitywithwhicheachconstraintisincludedintheinstance.Itiswell-knownthatresultsinonemodeleasilytranslatetotheother.WeincludeaproofinAppendixDforcompleteness.17 Additionally,SRCSPAssumptions1and2purporthardnessofdistinguishingrandominstancesofCSP(P)fromsatis ableinstances,evenwhenthealgorithmisallowedtoerrwithprobability1 4overitsinternalcoins.Thealgorithmspresentedintheprecedingsectionsnevererronsatis ableinstances;further,theyonlyfailtocertifyrandominstanceswithprobabilityo(1).Asaresult,ourrefutationalgorithmsalsofalsifyweakerversionsofbothSRCSPAssumptions,whereintheallowedprobabilityoferrorisbothlowerandone-sided.Foreachpredicatepresentedin[DLSS14],wefalsifytheappropriateSRCSPassumptionusingthefollowingapproach.ForeachpredicatePandcorresponding�0,wede neadegree-tpolynomialthat-separatesP.Usingtherefutationtechniquespresentedintheprecedingsections,wededucethateO(nt=2)constraintsaresucienttodistinguishrandominstancesofCSP(P)fromthosethataresatis able(orhavevalueatleast ).Inordertosimplifythepresentation,webeginwithsimplerversionsofthepolynomialsandthenscalethemtoattaintheappropriatevaluesof.Thefollowinglemmawillbeofuseforthisscaling.Lemma5.1.ForpredicateP:f�1;1gk!f0;1g,letQ:f�1;1gk!Rbeanunbiasedmultilinearpolynomialofdegreetsuchthatthereexist1�0;00notdependentonzforwhichthefollowingholds:Q(z)1forallz2P�1(1)andQ(z)0forallz2f�1;1gk.Thenthereexistsadegree-tpolynomialQ:f�1;1gk!Rthat1 1�0-separatesP.Proof.De neQ(z)=Q(z) 1�0.ClearlyQisalsounbiasedandhasdegreet.Thenforallz2P1,Q(z) 1�01 1�0.Similarly,forallz,Q(z) 1�00 1�0=�1�0 1�0+1 1�0=�1+1 1�0. Wenowdemonstratethattheabovecanbeappliedtothepredicatessuggestedin[DLSS14]byde ningseparatingpolynomialsandapplyingTheorem4.95.2Huang'spredicateandhardnessoflearningDNFformulasInordertoobtainhardnessofimproperlylearningDNFformulaswith!(1)terms,Danielyetal.usethefollowingpredicate,introducedbyHuang[Hua13].Huangshowedthatitishereditarilyapproximationresistant;Danielyetal.alsoobservedthatits0-variabilityis (k1=3)[DLSS14].De nition5.2.Letk=+�3forsomeinteger3.Forz2f�1;1gk,indexzasfollows.Labelthe rstbitsofzasz1;:::;z.Theremaining�3bitsareindexedbyunorderedtriplesofintegersbetween1and.EachT[]withjTj=3isassociatedwithadistinctbitoftheremaining�3bits,whichisindexedbyzT.Wesaythatzstronglysatis estheHuangpredicatei foreveryT=fzi;zj;z`gsuchthatzi;zj;z`aredistinctelementsof[],zizjz`=zfi;j;`g.Additionally,wesaythatzsatis estheHuangpredicatei thereexistssomez02f�1;1gksuchthatzhasHammingdistanceatmostfromz0andz0stronglysatis estheHuangpredicate.De neH:f�1;1gk!f0;1gasfollows:H(z)=1ifzsatis estheHuangpredicateandH(z)=0otherwise.Danielyetal.reducetheproblemofdistinguishingbetweenrandominstancesofCSP(H)with2ndconstraintsandsatis ableinstancestotheproblemofimproperlyPAClearningtheclassofDNFformulaswith!(1)termsonasampleofO(nd)trainingexampleswitherror=1=5withprobabilityatleast3 4.HereweshowthatthereexistsapolynomialtimealgorithmthatrefutesrandominstancesofCSP(H)bydemonstratingthatHkdoesnotsupporta4-wiseuniformdistributionandapplyingTheorem4.9.Theorem5.3.Assume9.Thereexistsadegree-4polynomialQ:f�1;1gk!Rthat1 8-separatesH.Consequently,His1 8-farfromsupportinga4-wiseuniformdistribution.18 Proof.Asanotationalshorthand,writezabcforzfia;ib;icg.De ne:[]6f�1;1gk![�5;5]asfollows:(i1;i2;i3;i4;i5;i6;z)=z126z134z235z456+z256z146z345z123+z136z236z145z245+z124z234z356z156+z125z135z346z246:(11)ObservethatforeachmonomialzT1zT2zT3zT4of,foreveryj2[6],P4i=11fTi3jg=2.Further,foreachT[6]withjTj=3,zTappearsexactlyoncein.LetZ6bethesetofallordered6-tuplesofdistinctelementsof[].ForanorderedtupleI,weuse2()todenotemembershipinI.De neQ:f�1;1gk!Rasfollows.Our nalpolynomialQwillbeascaledversionofQ.Q(z)=avgI2Z6(I;z):ObservethatQdoesnotdependonanyofzf1g;:::zfg.Byconstruction,Qcontainsnoconstantterm,sobQ(;)=0.ClearlyQ(z)�5forallzbecause(11)isalwaysatleast�5.NowwelowerboundthevalueofQonallzthatsatisfyH.We rstshowthatforanyz0thatstronglysatis estheHuangpredicate,Q(z0)=5,thenboundQ(z0)�Q(z)foranyzwithHammingdistanceatmostfromz0.Byde nition,foreachz0Ti,wehavethatz0TiQj2Tiz0j=1.SoforeachmonomialofQ,1 jZ6jz0T1z0T2z0T3z0T4=1 jZ6j4Yi=1Yj2Tiz0j=1 jZ6jYj2T1[T2[T3[T4(z0j)2=1 jZ6j;wherethelastlinefollowsfromthefactthatP41=11fTi3jg=2:Becausethereare5jZ6jmonomialsinQ,theirsumis5.NowweconsiderthecasewherezdoesnotstronglysatisfytheHuangPredicate,butH(z)=1.Anysingletonindexonwhichzandz0di erwillnotchangethevalueofQ.LetN=fT:zT6=z0Tg.WelowerboundQbycountingthenumberofmonomialsinwhicheachzTappearsandQ(z)5�2 jZ6jXT2NXI2Z1fVzi2Ti2()Ig:For xedT,thenumberofmonomialscontainingthevariablesofzTisXI2Z1fVzi2Ti2()Ig=120(�3)(�4)(�5)becausethereareexactly120waystopermutethethreeindicesofTinIandtheremaining�3indicesarepermutedintheremaining3positionsofI.SoQ(z)5�240 jZ6j(�3)(�4)(�5)=5�240 (�1)(�2):(12)For9,(12)isatleast5�30 7.ApplyingLemma5.1,thereexistsQ:f�1;1gk!Rthat1 8-separatesH. Fromthisandthefactthat H=2~O(k1=3)�k(see[Hua13]),weobtainthefollowingcorollary.19 Corollary5.4.Forsucientlylargenandk93,thereexistsanecientalgorithmthatre-futesrandominstancesofCSP(H)witheO(n2)constraintswithhighprobability.Thisfalsi esAssumption2.1inthecaseoftheHuangpredicate.Remark5.5.IfweinsteadchoosetoscaleQbyafactorof1 52�3+2 22�6�44ratherthansubstituting=9into(12),wecanachieveabetterseparationof=2�3�46 22�6�44.For9,thisexpressionisstrictlyincreasinganditapproaches1 2asgrows.5.3HammingweightpredicatesTheremainingpredicateswewouldliketoexaminearesymmetric,meaningtheyarefunctionsonlyoftheirHammingweights.AgainforeachpredicatePwepresentamultivariatepolynomialthat-separatesPforsome01.EachofthesepolynomialscanalsobewrittenasaunivariatepolynomialontheHammingweightofitsinput,whichwewillusetoshowthateachofthefollowingpolynomials-separatesitspredicatefortheappropriatevalueof.Wegivetheconstructionbelow.De nition5.6.Forz2f�1;1gkwherez=z1;:::;zk,de neSz=Pki=1ziandcallSztheHammingweightofz.NotethatthisisanalogoustothenotionofaHammingweightofavectorinf0;1gk,butdi ersinthatitisnotsimplythecountofthenumberof1's.Wede neageneralpredicatethatissatis edwhenSzisatleastsome xedthresholdvalue.De nition5.7.Foralloddkandany2f�k;�k+2;:::;k�2;kg,de nethepredicateThrk:f�1;1gk!f0;1gasfollows:Thrk(z)=(1ifSz0otherwiseForexample,MajkisthesameasThr1kandThr�kkisthetrivialpredicatesatis edbyallz2f�1;1gk.Becausethemultilinearseparatingpolynomialswewillusearesymmetric,wepresentatrans-formationtoanequivalentunivariatepolynomialontheHammingweightoftheoriginalinput.Lemma5.8.LetQ:f�1;1gk!Rbeofthefollowingformforsomea;b;c;d2R:Q(z)=aXT[n]jTj=1zT+bXT[n]jTj=2zT+cXT[n]jTj=3zT+dXT[n]jTj=4zT:(13)De neQu:R!Rasfollows:Q(z)=d 24S4z+c 6S3z+b 2+d 3�dk 4S2z+a+c 6(�3k+2)Sz�bk 2+dk 24(3k�6):ThenQ(z)=Qu(Sz)forallz2f�1;1gk.Proof.Wecanwrite(13)asfollows:Q(z)=aK1k�Sz 2;k+bK2k�Sz 2;k+cK3k�Sz 2;k+dK4k�Sz 2;k;(14)20 whereKi(;k)=Pij=0(�1)j�i�k�i�jdenotestheKrawtchoukpolynomialofdegreei[Kra29,KL96].Substituting=k�Sz 2,yieldsthefollowingexpressions.In[KL96]the rstthreeexpressionsaregivenexplicitlyandthefourthcanbeeasilyobtainedbyapplyingtheirrecursiveformula.K1k�Sz 2;k=Sz;K3k�Sz 2;k=S3z�(3k�2)Sz 6;K2k�Sz 2;k=S2z�k 2;K4k�Sz 2;k=S4z+(8�6k)S2z+3k2�6k 24:Finally,substitutingtheseexpressionsinto(14)andbysomealgebra,Q(z)=d 24S4z+c 6S3z+b 2+d 3�dk 4S2z+a+c 6(�3k+2)Sz�bk 2+dk 24(3k�6):(15) Asaconsequence,bychoosingvaluesofa;b;c;andd,wecanworkwithaunivariatepolynomialwhileensuringthatitsmultivariateanalogueisunbiasedandhasdegreeatmost4(degree3whend=0).5.3.1Almost-MajorityandhardnessoflearningintersectionsofhalfspacesDe nition5.9.Danielyetal.de nethefollowingpredicateinordertoshowhardnessofimproperlylearningintersectionsoffourhalfspaces.I8k= 3^i=0Thr�1k(zki+1:::zki+k)!^: 7^i=4Thr�1k(zki+1:::zki+k)!:Thereductionreliesontheassumptionthatforalld�0,itishardtodistinguishrandominstancesofCSP(I8k)withndconstraintsfromsatis ableinstances.BecausetheinputvariablestoeachinstanceofThr�1kabovearedisjoint,itissucienttoshowthateachofthe rstfourgroupsofkvariablescannotsupporta3-wiseuniformdistributionandconsequentlyneithercanI8k;therefore,fromTheorem4.9wededucethatthereexistsanecientalgorithmthatrefutesrandominstancesofCSP(I8k)witheO(n3=2)constraintswithhighprobability.Danielyetal.de neapairwiseuniformdistributionsupportedonI8kaswellasapairwiseuniformdistributionsupportedonThr�1k,sot=3isoptimal.Theorem5.10.Assumek5andkisodd.Thereexist=(k)�0whereis (k�4)andadegree-3multilinearpolynomialQ:f�1;1gk!Rthat-separatesThr�1k.Consequently,Thr�1kdoesnotsupporta3-wiseuniformdistribution.Proof.LetQ(z)=(k2�k�1)XT[n]jTj=1zT+(1�k)XT[n]jTj=2zT+(1+k)XT[n]jTj=3zTandde neQu:R!Rasfollows:Qu(s)=1+k 6s3+1�k 2s2+k2�k�1+1+k 6(�3k+2)s�(1�k)k 2=1+k 6s3+1�k 2s2+3k2�7k�4 6s�(1�k)k 2:21 ThenbyLemma5.8,forallz2f�1;1gk,Q(z)=Qu(Sz).ItthereforesucestolowerboundQu(s)bothwhens�1andforalls2[�k;k].FirstweshowthatQuismonotonicallyincreasingins.dQu ds=k+1 2s2+(1�k)s+3k2�7k�4 6=1 6h(k�4)�3(s�1)2+2 3+3k+15�s�3 52+53 75i;whichisevidentlypositivefork5.BecauseQismonotonicallyincreasingins,Qu(s)Qu(�k)foralls2[�k;k].Qu(�k)=�k�1 6k3+1�k 2k2�3k2�7k�4 6k�(1�k)k 2=�1 6k4+7k3�13k2�k;(16)=�1 6k(k�2)(k2+9k+5)+9k;(17)whichisclearlynegativefork5.Nowitjustremainstolower-boundQu(s)fors�1.Again,sinceQuismonotonicallyincreasingins,weusethevalueQu(�1):Qu(�1)=�k�1 6+�1�k 2�3k2�7k�4 6�(1�k)k 2=1:ByapplyingLemma5.1,thereexistsanunbiasedmultilinearpolynomialQ:f�1;1gk!Rofdegree3that6 k4+7k3�13k2�k+6-separatesThr�1k. BecauseVAR0(I8k)isevidently (k)and I8k1 7forallk5,wehavethefollowingCorollary.Corollary5.11.Foroddk5andsucientlylargen,thereexistsanecientalgorithmthatdis-tinguishesbetweenrandominstancesofCSP(I8k)witheO(n3=2)constraintsandsatis ableinstanceswithhighprobability.Remark5.12.Thr�13isthesameas3-ORandThr�15isthesameasisthesameas2-out-of-5-SAT,sothisapproachcanbeusedto k(1)-refute3-SATinstancesand2-out-of-5-SATinstanceswitheOk(n3=2)constraints,whichimprovesupontheO(n3=2+)constraintsrequiredforrefutationof2-out-of-5-SATin[GJ02,GJ03].5.4MajorityandhardnessofapproximatelyagnosticallylearninghalfspacesDanielyetal.showthatapproximateagnosticimproperlearningofhalfspacesishardforallap-proximationfactors1basedontheassumptionthatforalld�0andforsucientlylargeoddk,itishardtodistinguishbetweenrandominstancesofCSP(Thr1k)withndconstraintsandinstanceswithvalueatleast1�1 10.ThisisbasedonthefactthatmaxDEzD[Thr1(z)]=1�1 k+1,whereDisapairwiseindependentdistributiononf�1;1gk,andapplyingSRCSPAssumption2.Hereweshowthatforoddk25,Thr1kis0:1-farfromsupportinga4-wiseuniformdistribution.Thevalue0:1isnotsharp,butischosenasacompromisebetweenareasonablylargevalueandareasonablysimpleproof.Theorem5.13.Thereexistsadegree-4multilinearpolynomialQ:f�1;1gk!Rthat0:1-separatesThr1kforalloddk25.22 Proof.LetQ(z)=8 27p kXT[n]jTj=1zT�5 9k3=2XT[n]jTj=3zT+4 3k2XT[n]jTj=4zTandletQu(s)=1 18k2s4�5 54k3=2s3+�1 3k+4 9k2s2+31 54p k�5 27k3=2s+1 6�1 3k(18)=1 543 k2s4�5 k3=2s3+�18 k+24 k2s2+31 p k�10 k3=2s+9�18 k:ThenbyLemma5.8,forallz2f�1;1gk,Q(z)=Qu(Sz).TosimplifyQ,let=sk�1=2.Thenwecanrewrite(18)asfollows:Qu(s)=1 5434�53+��18+24 k2+�31�10 k+9�18 k:(19)Firstwelower-boundQu(s)forall2Rusingthefollowingexpression,whichisequivalentto(19)bysomealgebra.Qu(s)=1 54h3(+29 18)2(�22 9)2+383 108�+1832 11492�38987378 837621+24 k�(�5 24)2�457 576i�1 54h3(+29 18)2(�22 9)2+383 108�+1832 11492�47+24 k��457 576i��48 54=�8 9;wherethelastinequalityfollowsfromthefactthatk24andthe rsttwotermsarealwaysnonnegative.Nextwelower-boundQu(s)fors�0.Qu(s)=1 5434�53+��18+24 k2+�31�10 k+9�18 k=1 543(�1 4)2(�25 12)2+41 120((�839 410)2+21507 1344800+27 4+9(�21 10)2�1 8:ApplyingLemma5.1,thereexistsQ:f�1;1gk!RsuchthatQhasdegree4andQ9 73-separatesThr1k. Corollary5.14.Forsucientlylargenandk,thereexistsanecientalgorithmthatdistinguishesbetweenrandominstancesofCSP(Thr1k)witheO(n2)constraintsandinstanceswithvalueatleast0:9withhighprobability.5.5Predicatessatis edbystringswithHammingweightatleast�(p k).Inlightofthefactthatthethresholdbasedpredicatesabovearenot4-wisesupporting,onemayattemptto ndanotherthreshold-basedpredicate.Hereweshowthatasymmetricthresholdpredicatethatis4-wisesupportingmustbesatis edbyallstringswithHammingweightatleast�p k 2.Furthermore,thereexistsasymmetricthresholdpredicatethatis4-wisesupportingwithathresholdof�(p k)andwesketchitsconstruction.WealsoconsiderthepredicateThr�1 2p kk.Whileitisnotusedin[DLSS14],weshowthatitdoesnotsupporta4-wiseuniformdistributionintheinterestofobtainingatighterboundfortheHammingweightabovewhichanunbiased,symmetricpredicateisnot4-wisesupporting.Thethresholdof�1 2p kisparticularlyinterestinginthatitasymptoticallymatchesthethresholdbelowwhichThrkis4-wisesupporting.23 Theorem5.15.Assumek99andkisodd.Thenthereexistsadegree-4polynomialQ:f�1;1gk!Rthat1 225-separatesThr�1 2p kk.Consequently,Thr�1 2p kkis1 255-farfrom4-wisesupport-ing.Proof.De neQ:f�1;1gk!RandQu:R!Rasfollows:Q(z)=3 2k�1=2XT[n]jTj=1zT+1 2k�1XT[n]jTj=2zT+2k�3=2XT[n]jTj=3zT+8k�2XT[n]jTj=4zTQu(s)=s4 3k2+s3 3k3=2+��7 4k+8 3k2s2+1 2k1=2+2 3k3=2s+3 4�2 kAgain,forsimplicityweset=sk�1=2andobtainthefollowingexpression:Qu(s)=1 34+1 33�7 42+1 2+3 4+1 k�8 32+2 3�2:(20)Observethatfork99,1 k�8 32+2 3�2=2 3k�2�1 42�49 16��1 48.Wenowlower-boundthevalueofQufors�1 2k1=2,orequivalently,�1 2:Qu(s)=1 34+1 33�7 42+1 2+3 4+1 k�8 32+2 3�2=1 3��35 292�+1 2�+200 69+61 12006�+1 2�+4631 35382+1526073 12517444+1 k�8 32+2 3�2+1 24:The rsttwotermsareclearlynonnegativewhen�1 2,so�1 24�1 48=1 48:WealsoshowthatQu(s)�14 3foralls2R.Qu(s)=1 34+1 33�7 42+1 2+3 4+1 k�8 32+2 3�2=�+19 92��29 182+211 486�+397 2112+195823 8306226+1 k�8 32+2 3�2�14 3�+19 92��29 182+211 486�+397 2112+1079081 365473944�14 3:The rstthreetermsarealwaysnonnegative,soQu(s)�14 3.ApplyingLemma5.1,T�1 2p kkis1 255-farfromsupportinga4-wiseuniformdistribution. Nowwedemonstratethatthereexistsa4-wiseuniformdistributionsupportedonThr1�2p k+1kwhenk=2m�1forsomeintegerm3.Claim5.16.Assumek=2m�1forsomeintegerm3.Thenthereexistsa4-wiseuniformdistributionsupportedonlyonz2f�1;1gksuchthatSz1�2p k+1.Proof.LetCbeabinaryBCHcodeoflengthkwithdesigneddistance2+1andletC?beitsdual.ThentheuniformdistributiononthecodewordsofCis2-wiseuniform[ABI86,MS77];seealso[AS04,Ch16.2].Letc=c1:::ckbeacodewordofC?;whereeachci2f�1;1g.TheCarlitz-Uchiyamabound[MS77,page280]statesthatforallc2C?,kXi=11 2(1�ci)k+1 2+(�1)p k+1:24 Observethatthequantity1 2(1�ci)simplymapscifromf�1;1gtof0;1gsothatwecanwritetheboundtomatchthepresentationin[MS77].Therefore,Sc=kXi=1ci=k�2kXi=11 2(1�ci)k�(k+1)�(2�2)p k+1=�1�(2�2)p k+1:Setting=2,wecanobtain4-wiseuniformityonthisdistributionandeachstringinthesupportofthedistributionhasHammingweightatleast�1�2p k+1: Remark5.17.Inordertoconstructa4-wiseuniformdistributionforanyvalueofk,onecouldsimplyexpresskasasumofpowersof2,constructseparatedistributionsondisjointvariablesasdescribedaboveforeachpowerof2(downtotheminimumlengthforwhichwecanachievedistanceatleast5,afterwhichpointweusetheuniformdistribution,andobtaina4-wiseuniformdistribution.ThetotalHammingweightofavectorsupportedbythisdistributionwouldthenbeatleast�O(p k).6SOSrefutationproofs6.1TheSOSproofsystemWe rstde netheSOSproofsystemintroducedin[GV01].Callapolynomialq2R[X1;:::;Xn]sum-of-squares(SOS)ifthereexistq1;:::;q`2R[X1;:::;Xn]suchthatq=q21++q2`.De nition6.1.LetX=(X1;:::;Xn)beindeterminates.Letq1;:::;qm;r1;:::;rm02R[X]andletA=fq10;:::;qm0g[fr1=0;:::;rm0g.Thereisadegree-dSOSproofthatAimpliess0,writtenasA`ds0;ifthereexistSOSu0;u1;:::;um2R[X]andv1;:::;vm02R[X]suchthats=u0+mXi=1uiqi+m0Xi=1viriwithdeg(u0)d,deg(uiqi)dforalli2[m],anddeg(viri)dforalli2[m0].Ifitalsoholdsthatu0;u1;:::;um=0,wewillwriteA`ds=0.Itiswell-knownthatadegree-dSOSproofcanbefoundusinganSDPofsizenO(d)ifitexists[Sho87,Par00,Las00,Las01].Inthissection,wewilltakethesetAtobefx2i=1gi2[n],enforcingthatvariablesare1-valued.Weshowthatwithhighprobabilitythereexistsalow-degreeSOSproofthatapolynomialrepresentingthevalueofaCSPinstanceisclosetoitsexpectation.FormoreinformationontheSOSproofsystemanditsapplicationstoapproximationalgorithms,see,e.g.,[OZ13,Lau09].25 6.2SOScerti cationofquasirandomnessAllofourSOSresultsrelyonthefollowingtheorem,whichistheSOSversionofTheorem4.1.Theorem6.2.Fork2andpn�k=2,letfw(T)gT2[n]kbeindependentrandomvariablessuchthatforeachT2[n]k,E[w(T)]=0(21)Pr[w(T)6=0]p(22)jw(T)j1:(23)Then,withhighprobability,fx2i1gi2[n]`2kXT2[n]kw(T)xT2O(k)p pn3k=4log3=2n:ThistheoremwasessentiallyprovenbyBarakandMoitra[BM15].WegiveaproofinAp-pendixA.3.We rstusethistheoremtoshowthatanSOSversionofLemma4.4holds.Lemma6.3.LetS[k]withjSj=s�0.Let2NandletfwU(i)gU2[n]s;i2[]beindependentrandomvariablessatisfyingconditions(6),(7),and(8)forsomep1 ns=2.Then,withhighprobability,fx2i1gi2[n]`2sXU2[n]sxUXj=1wU(j)(2O(s)p pn3s=4log5=2nifs24maxfp p;1gnlognifs=1.Proof.Wesketchthedi erencesfromtheproofofLemma4.4giveninSection4.4.Fors2,thelemmafollowsbyusingTheorem6.2insteadofTheorem4.1.Ifs=1,itsucestoshowthatfx2i1g`2v(i)xijv(i)j:foranyvsincesummingoveralliasin(10) nishestheproof.Ifvi0,observethatjvij�v(i)xi=jv(i)j 2(xi�1)2+jv(i)j 2(1�x2i):Ifv(i)0,weuse(xi+1)2insteadof(xi�1)2. ThelemmaimpliesanSOSversionofLemma4.3.Tomakethisprecise,wede neaspeci cpolynomialrepresentationof[DI;x(S):[DI;x(S)poly=1 mXT2[n]kXc2f1gk1f(T;c)2IgcSxST;wherexST=Qi2SxTi.Notethatthisisapolynomialinthexi's.Wecanshowthesepolynomialsarenottoolarge.Lemma6.4.Let;6=S[k]withjSj=s.Thenfx2i1gi2[n]`2sdDI;x(S)poly2O(k)maxfns=4;p nglog5=2n m1=2fx2i1gi2[n]`2sdDI;x(S)poly�2O(k)maxfns=4;p nglog5=2n m1=2:withhighprobability,assumingalsothat mmaxfns=2;ng.26 Proof.TheproofisessentiallythesameasthatofLemma4.3.Theexpressionweboundinthatproofisexactly[DI;x(S)poly.WeuseLemma6.3insteadofLemma4.4toshowthatthiscanbedoneindegree-2sSOS. BasedonLemma3.13,wewillthinkofLemma6.4asgivinganSOSproofofquasirandomness.Below,weuseittoproveSOSversionsofTheorems4.6and4.9.6.3Strongrefutationofanyk-CSPWenowde nethenaturalpolynomialrepresentationofValI(x):ValpolyI(x)=1 mXT2[n]kXc2f1gk1f(T;c)2Ig0@XS[k]bP(S)cSxST1A;wherexSTisasabove.WecanthengiveanSOSproofstronglyrefutingCSP(P).Theorem6.5.GivenaninstanceIFP(n;p)ofCSP(P),fx2i1gi2[n]`2kValpolyI(x) P+ withhighprobabilitywhen m2O(k)nk=2log5n 2.Proof.Byrearrangingterms,weseethatValpolyI(x)= P+X;6=S[k]bP(S)[DI;x(S)poly:NotethatthisisjustPlancherel'sTheoreminSOS.ThetheoremthenfollowsfromLemma6.4andtheobservationthatPS[k]jbP(S)j2O(k). 6.4 (1)-refutationofnon-t-wisesupportingCSPsTheorem6.6.LetPbe-farfrombeingt-wisesupporting.GivenaninstanceIFP(n;p)ofCSP(P),fx2i=1gi2[n]`maxfk;2tgValpolyI(x)1�+ :withhighprobabilitywhen m2O(k)nt=2log5n 2andt2.Toprovethistheorem,wewillneedtofollowingclaim,whichsaysthatanytrueinequalityinkvariablesoverf�1;1gkcanbeprovedindegree-kSOS.Recallthatthemultilinearizationofamonomialzs11zs22zskk2R[z1;:::;zk]isde nedtobezs1mod21zs2mod22zskmod2k,i.e.,wereplaceallz2ifactorsby1.Weextendthisde nitiontoallpolynomialsinR[z1;:::;zk]bylinearity.Claim6.7.Letf:f�1;1gk!Rsuchthatf(z)0forallz2f�1;1gkandletfpolybetheuniquemultilinearpolynomialsuchthatf(z)=fpoly(z)forallz2f�1;1gk.Thenfz2i=1gi2[k]`kfpoly(z)0:27 Proof.Sincef(x)0,thereexistsaBooleanfunctiong:f�1;1gk!Rsuchthatg(z)2=f(z)forallz2f�1;1gk.Letgpolybetheuniquemultilinearpolynomialsuchthatg(z)=gpoly(z)forallz2f�1;1gk.Sincegpoly(z)2=fpoly(z)forallz2f�1;1gk,uniquenessofthemultilinearpolynomialrepresentationoffimpliesthatthemultilinearizationof(gpoly)2isequaltofpoly.Writtenanotherway,wehavethatfz2i=1gi2[k]`kfpoly(z)=gpoly(z)2.Thisimpliesthatfz2i=1gi2[k]`kfpoly(z)0. ProofofTheorem6.6.TheproofisanSOSversionofProof2ofTheorem4.9above.Claim6.7impliesthatforQofdegreeatmosttthat-separatesP,fz2i=1gi2[k]`kQ(z)�P(z)+1�0:Summingoverallconstraints,wegetfx2i=1gi2[n]`kValpolyI(x)�(1�)1 mXT2[n]kXc2f1gk1f(T;c)2Ig0@XS[k]bQ(S)cSxST1A;RearrangingtermsasintheproofofTheorem6.5,weseethattherighthandsideisequaltoXS[k]bQ(S)[DI;x(S)poly:SinceQhasmean0,jQj2kandPS[k]jbP(S)j2O(k).ThetheoremthenfollowsfromLemma6.4. WithCorollary3.17,thetheoremimpliesthatwecan k(1)-refuteanyCSP(P)inSOSwhenPisnott-wisesupporting.Corollary6.8.LetPbeapredicatethatdoesnotsupportanyt-wiseuniformdistribution.GivenaninstanceIFP(n;p)ofCSP(P),fx2i=1gi2[n]`maxfk;2tgValI(x)1�2�eO(kt)+ withhighprobabilitywhen m2eO(kt)nt=2log5nandt2.7DirectionsforfutureworkItwouldbeinterestingtoshowanalogousecientrefutationresultsformodelsofrandomCSP(P)inwhichliteralsarenotused.Thiswouldallowforresultson,say,refutingq-colorabilityforrandomk-uniformhypergraphs.Wegiveasimpleresultonrefutingq-colorabilityofrandomhypergraphsinAppendixC,butitfollowsfromrefutationofbinaryCSPsandperhapsastrongerresultcouldbeprovenbystudyingCSPswithlargeralphabets.Forsomepredicates(e.g.,monotoneBooleanpredicates),randomCSPinstancesaretriviallysatis ablewhentherearenoliterals.Howeverforsuchpredicatesonecouldconsidera\Goldreich[Gol00]-style"modelinwhicheachconstraintisrandomlyeitherPor:Pappliedtokrandomvariables.Additionally,itwouldbegoodtoinvestigatewhetherourrefutationalgorithmscanbeextendedfromthepurelyrandomCSP(P)settingtothe\smoothed"/\semi-random"settingofFeige[Fei07],inwhichthemconstraintsscopesareworst-caseandonlythenegationpatternforliteralsisrandom.28 Feigeshowedhowtoecientlyrefuterandom3-SATinstanceswithmeO(n3=2)constraintseveninthismodel.Anothervaluableopendirectionwouldbetoshoreuptheknownproof-complexityevidencesuggestingthate(nt=2)constraintsmightbenecessarytorefuterandomCSP(P)whenPisnott-wisesupporting.ThenaturalquestionhereiswhethertheSOSlowerboundof[BCK15]canbeextendedfromnon-pairwiseuniformsupportingandm=O(n)constraints,tonon-t-wiseuniformsupportingandm=O(nt=2�)constraints.(Ofcourse,itwouldalsobegoodtoeliminatethepruningstepfromtheirrandominstances.)Onemightalsoinvestigatethemorere nedquestionofwhether,forPthatare-farfromt-wisesupporting,onecanimproveon-refutationwhentherearemeO(nt=2)constraints.Followupworkontheveryinterestingpaper[FKO06]ofFeige,Kim,andOfekalsoseemswarranted.Recallthatitgivesanondeterministicrefutationalgorithmforrandom3-SATwhenmO(n1:4)(aswellasasubexponential-timedeterministicalgorithm).Thisraisesthequestionofwhetherthereexistpolynomial-sizerefutationsforrandomCSP(P)instancesthatareneverthelesshardto ndeciently.Finally,wesuggesttryingtorehabilitatethehardness-of-learningresultsin[DLSS14],givenournewknowledgeaboutwhatrandomCSP(P)instancesseemhardtorefute.Asmentioned,thefollowupworkofDanielyandShalev-Shwartz[DSS14]showshardnessofPAC-learningDNFswith!(logn)termsbasedontheveryreasonableassumptionthatrefutingrandomk-SATrequiresnf(k)constraintsforsomef(k)=!(1).SubsequentworkbyDaniely[Dan15]showshardnessofapproximatelyPAC-learninghalfspacesassumingthatrefutingrandomk-XORishardbothwhenm=ncp klogkandwhenkispolylogarithmicinnandm=nckforsomec�0.Onefuturedirectionwouldbetoobtainhardnessresultsforagnosticallylearningintersectionsofhalfspaces.AcknowledgmentsTheauthorswouldliketothankAminCoja{Oghlanforhelpwiththeliterature,andBoazBarakandAnkurMoitraforpermissiontoreprinttheproofofthestrongk-XORrefutationresult.ThelastauthorwouldliketothankAnupamGuptaforseveralhelpfuldiscussions.References[AAK+07]NogaAlon,AlexandrAndoni,TaliKaufman,KevinMatulef,RonittRubinfeld,andNingXie.Testingk-wiseandalmostk-wiseindependence.InProceedingsofthe39thACMSymposiumonTheoryofComputing,pages496{505,2007.3.3[ABI86]NogaAlon,LaszloBabai,andAlonItai.Afastandsimplerandomizedparallelalgo-rithmforthemaximalindependentsetproblem.JournalofAlgorithms,7(4):567{583,1986.5.5[ABW10]BennyApplebaum,BoazBarak,andAviWigderson.Public-keycryptographyfromdi erentassumptions.InProceedingsofthe42ndACMSymposiumonTheoryofComputing,pages171{180,2010.1[Ach09]DimitrisAchlioptas.HandbookofSatis ability,volume185ofFrontiersinArti cialIntelligenceandApplications,chapter8:RandomSatis ability,pages243{268.IOSPress,2009.129 [AGM03]NogaAlon,OdedGoldreich,andYishayMansour.Almostk-wiseindependenceversusk-wiseindependence.Inform.Process.Lett.,88(3):107{110,2003.3.13,4.3[AH09]PerAustrinandJohanHastad.Randomlysupportedindependenceandresistance.InSTOC'09|Proceedingsofthe2009ACMInternationalSymposiumonTheoryofComputing,pages483{492.ACM,NewYork,2009.3.4,3.4[AH13]PerAustrinandJohanHastad.Ontheusefulnessofpredicates.TransactionsonComputationTheory,5(1):1,2013.3.1[Ale03]M.Alekhnovich.Moreonaveragecasevsapproximationcomplexity.InProceedingsofthe44thIEEESymposiumonFoundationsofComputerScience,pages298{307,2003.1[AM09]PerAustrinandElchananMossel.Approximationresistantpredicatesfrompairwiseindependence.ComputationalComplexity,18(2):249{271,2009.2[App13]BennyApplebaum.PersonalCommunication,2013.1[AS04]NogaAlonandJoelHSpencer.Theprobabilisticmethod.JohnWiley&Sons,2004.5.5[Aus08]PerAustrin.ConditionalInapproximabilityandLimitedIndependence.PhDthesis,KTH-RoyalInstituteofTechnology,2008.B.1,B.1,B.1[BB02]EliBen-SassonandYonatanBilu.Agapinaverageproofcomplexity.ElectronicColloquiumonComputationalComplexity(ECCC),(003),2002.1,2.5[BCK15]BoazBarak,SiuOnChan,andPraveshKothari.SumofSquaresLowerBoundsfromPairwiseIndependence.ArXive-prints,January2015.2.2,7[BGMT12]SiavoshBenabbas,KonstantinosGeorgiou,AvnerMagen,andMadhurTulsiani.SDPgapsfrompairwiseindependence.TheoryofComputing,8:269{289,2012.2.2[BJK05]AndreiBulatov,PeterJeavons,andAndreiKrokhin.Classifyingthecomplexityofconstraintsusing nitealgebras.SIAMJournalonComputing,34(3):720{742,2005.1[BKPS99]PaulBeame,RichardKarp,ToniannPitassi,andMichaelSaks.Onthecomplexityofunsatis abilityproofsforrandomk-CNFformulas.InProceedingsofthe30thACMSymposiumonTheoryofComputing,pages561{571.ACM,NewYork,1999.1[BKPS02]PaulBeame,RichardKarp,ToniannPitassi,andMichaelSaks.TheeciencyofresolutionandDavis-Putnamprocedures.SIAMJ.Comput.,31(4):1048{1075,2002.1[BKS13]BoazBarak,GuyKindler,andDavidSteurer.Ontheoptimalityofrelaxationsforaverage-caseandgeneralizedconstraintsatisfactionproblems.InProceedingsofthe4thAnnualInnovationsinTheoreticalComputerScienceconference,2013.1,2.1[BM15]BoazBarakandAnkurMoitra.Tensorprediction,rademachercomplexityandrandom3-xor.CoRR,abs/1501.06521,2015.1,4,2,4.1,4.1,6.2,A.430 [BS14]BoazBarakandDavidSteurer.Sum-of-squaresproofsandthequesttowardoptimalalgorithms.InProceedingsofInternationalCongressofMathematicians,2014.2.2[BSW99]EliBen-SassonandAviWigderson.Shortproofsarenarrow|resolutionmadesimple.InAnnualACMSymposiumonTheoryofComputing(Atlanta,GA,1999),pages517{526(electronic).ACM,NewYork,1999.2.2[Cha13]SiuOnChan.Approximationresistancefrompairwiseindependentsubgroups.InProceedingsofthe45thAnnualACMSymposiumonTheoryofComputing,pages447{456,2013.2.2,3.1[CLP02]AndreaCrisanti,LucaLeuzzi,andGiorgioParisi.The3-SATproblemwithlargenumberofclausesinthe1-replicasymmetrybreakingscheme.JournalofPhysicsA:MathematicalandGeneral,35(3):481,2002.1[COCF10]AminCoja-Oghlan,ColinCooper,andAlanFrieze.Anecientsparseregularityconcept.SIAMJ.DiscreteMath.,23(4):2000{2034,2009/10.1,2,2[COGL04]AminCoja-Oghlan,AndreasGoerdt,andAndreLanka.StrongRefutationHeuristicsforRandomk-SAT.InKlausJansen,SanjeevKhanna,JoseD.P.Rolim,andDanaRon,editors,Approximation,Randomization,andCombinatorialOptimization.AlgorithmsandTechniques,volume3122ofLectureNotesinComputerScience,pages310{321.SpringerBerlinHeidelberg,2004.1,A.4[COGL07]AminCoja-Oghlan,AndreasGoerdt,andAndreLanka.Strongrefutationheuristicsforrandomk-SAT.Combin.Probab.Comput.,16(1):5{28,2007.1,2,2.3,2.3,4.1,C,C.1,C.2,C.3,C[COGLS04]AminCoja-Oghlan,AndreasGoerdt,AndreLanka,andFrankSchadlich.Techniquesfromcombinatorialapproximationalgorithmsyieldecientalgorithmsforrandom2k-SAT.TheoreticalComputerScience,329(1):1{45,2004.1[CS88]VasekChvatalandEndreSzemeredi.Manyhardexamplesforresolution.J.Assoc.Comput.Mach.,35(4):759{768,1988.1,2.2[CW04]MosesCharikarandAnthonyWirth.Maximizingquadraticprograms:extendingGrothendieck'sinequality.InProceedingsofthe45thAnnualIEEESymposiumonFoundationsofComputerScience,pages54{60,2004.A.1,A.1[Dan15]AmitDaniely.Complexitytheoreticlimitationsonlearninghalfspaces.CoRR,abs/1505.05800,2015.2.1,2.1,7[DLSS13]AmitDaniely,NatiLinial,andShaiShalev-Shwartz.Moredataspeedsuptrainingtimeinlearninghalfspacesoversparsevectors.InAdvancesinNeuralInformationProcessingSystems,volume26,pages145{153.2013.1,2.1[DLSS14]AmitDaniely,NatiLinial,andShaiShalev-Shwartz.Fromaveragecasecomplexitytoimproperlearningcomplexity.InProceedingsofthe46thAnnualACMSymposiumonTheoryofComputing,pages441{448,2014.1,2.1,2.1,2.1,5,5.1,5.1,5.2,5.5,7,D[DSS14]AmitDanielyandShaiShalev-Shwartz.ComplexitytheoreticlimitationsonlearningDNFs.CoRR,abs/1404.3378,2014.1,2.1,2.1,731 [DSS15]JianDing,AllanSly,andNikeSun.Proofofthesatis abilityconjectureforlargek.InProceedingsofthe47thAnnualACMSymposiumonTheoryofComputing,2015.1[Fei02]UrielFeige.Relationsbetweenaveragecasecomplexityandapproximationcomplexity.InProceedingsofthe34thACMSymposiumonTheoryofComputing,pages534{543,2002.1[Fei07]UrielFeige.Refutingsmoothed3CNFformulas.InProceedingsofthe48thAnnualIEEESymposiumonFoundationsofComputerScience,pages407{417,2007.7[FG01]JoelFriedmanandAndreasGoerdt.Recognizingmoreunsatis ablerandom3-SATinstanceseciently.InAutomata,languagesandprogramming,volume2076ofLectureNotesinComput.Sci.,pages310{321.Springer,Berlin,2001.1,3,2[FGK05]JoelFriedman,AndreasGoerdt,andMichaelKrivelevich.Recognizingmoreunsat-is ablerandomk-SATinstanceseciently.SIAMJ.Comput.,35(2):408{430,2005.1[FK81]Z.FurediandJ.Komlos.Theeigenvaluesofrandomsymmetricmatrices.Combina-torica,1(3):233{241,1981.2[FKO06]UrielFeige,JeongHanKim,andEranOfek.Witnessesfornon-satis abilityofdenserandom3CNFformulas.InProceedingsofthe47thAnnualIEEESymposiumonFoundationsofComputerScience,pages497{508.IEEE,2006.1,7[FO04]UrielFeigeandEranOfek.Easilyrefutablesubformulasoflargerandom3CNFfor-mulas.InAutomata,languagesandprogramming,volume3142ofLectureNotesinComput.Sci.,pages519{530.Springer,Berlin,2004.1[FO05]UrielFeigeandEranOfek.Spectraltechniquesappliedtosparserandomgraphs.RandomStructures&Algorithms,27(2):251{275,2005.1[FP83]JohnFrancoandMarvinPaull.ProbabilisticanalysisoftheDavisPutnamprocedureforsolvingthesatis abilityproblem.DiscreteAppliedMathematics,5(1):77{87,1983.2.2[FPV14]VitalyFeldman,WillPerkins,andSantoshVempala.SubsampledPowerIteration:aUni edAlgorithmforBlockModelsandPlantedCSP's.CoRR,abs/1407.2774,2014.2[FPV15]VitalyFeldman,WillPerkins,andSantoshVempala.OntheComplexityofRan-domSatis abilityProblemswithPlantedSolutions.InProceedingsofthe47thACMSymposiumonTheoryofComputing,2015.2,2.2[Fu96]XudongFu.Onthecomplexityofproofsystems.PhDthesis,UniversityofToronto,1996.1[GJ02]AndreasGoerdtandTomaszJurdzinski.Someresultsonrandomunsatis ablek-Satinstancesandapproximationalgorithmsappliedtorandomstructures.InMathematicalFoundationsofComputerScience2002,volume2420ofLectureNotesinComput.Sci.,pages280{291.Springer,Berlin,2002.3,1,5.1232 [GJ03]AndreasGoerdtandTomaszJurdzinski.Someresultsonrandomunsatis ablek-Satinstancesandapproximationalgorithmsappliedtorandomstructures.Combin.Probab.Comput.,12(3):245{267,2003.Combinatorics,probabilityandcomputing(Oberwolfach,2001).1,2.5,5.12[GK01]AndreasGoerdtandMichaelKrivelevich.Ecientrecognitionofrandomunsatis ablek-SATinstancesbyspectralmethods.InSTACS2001(Dresden),volume2010ofLectureNotesinComput.Sci.,pages294{304.Springer,Berlin,2001.1[GL03]AndreasGoerdtandAndreLanka.Recognizingmorerandomunsatis able3-SATinstanceseciently.ElectronicNotesinDiscreteMathematics,16:21{46,2003.1,3.1[Gol00]OdedGoldreich.CandidateOne-WayFunctionsBasedonExpanderGraphs.InElectronicColloquiumonComputationalComplexity(ECCC),volume7,2000.1,2.2,7[Gol11]OdedGoldreich.ThreeXOR-lemmas|anexposition.InStudiesincomplexityandcryptography,volume6650ofLectureNotesinComput.Sci.,pages248{272.Springer,Heidelberg,2011.3.13,B.3[Gri01]DimaGrigoriev.LinearlowerboundondegreesofPositivstellensatzcalculusproofsfortheparity.TheoreticalComputerScience,259(1-2):613{622,2001.1[GV01]DimaGrigorievandNicolaiVorobjov.ComplexityofNull-andPositivstellensatzproofs.AnnalsofPureandAppliedLogic,113(1{3):153{160,2001.FirstSt.Peters-burgConferenceonDaysofLogicandComputability.2.2,6.1[Hua13]SangxiaHuang.Approximationresistanceonsatis ableinstancesforpredicateswithfewacceptinginputs.InProceedingsofthe45thACMSymposiumonTheoryofCom-puting,pages457{466.ACM,2013.2.1,5.2,5.2[Kho06]SubhashKhot.RulingoutPTASforGraphMin-Bisection,Densek-Subgraph,andBipartiteClique.SIAMJournalonComputing,36(4):1025{1071,2006.3.1[KL96]IliaKrasikovandSimonLitsyn.OnintegralzerosofKrawtchoukpolynomials.JournalofCombinatorialTheory,SeriesA,74(1):71{99,1996.5.3[KLP96]ViggoKann,JensLagergren,andAlessandroPanconesi.ApproximabilityofMaximumSplittingofk-setsandsomeotherAPX-completeproblems.Inf.Proc.Lett.,58(3):105{110,1996.1[Kra29]MikhailKrawtchouk.Surunegeneralisationdespolynomesd'Hermite.ComptesRen-dus,189:620{622,1929.5.3[Las00]JeanB.Lasserre.Optimisationglobaleettheoriedesmoments.C.R.Acad.Sci.ParisSer.IMath.,331(11):929{934,2000.2.2,6.1[Las01]JeanB.Lasserre.GlobalOptimizationwithPolynomialsandtheProblemofMoments.SIAMJ.Optim.,11(3):796{817,2001.6.1[Lau09]MoniqueLaurent.Sumsofsquares,momentmatricesandoptimizationoverpolyno-mials.InEmergingapplicationsofalgebraicgeometry,volume149ofIMAVol.Math.Appl.,pages157{270.Springer,NewYork,2009.6.133 [MS77]F.J.MacWilliamsandN.J.A.Sloane.Thetheoryoferror-correctingcodes.I.North-HollandPublishingCo.,Amsterdam,1977.North-HollandMathematicalLibrary,Vol.16.5.5[MWW15]RyuheiMori,OsamuWatanabe,andDavidWitmer.ImprovedSDPintegralitygapsforrandomCSPs.Inprogress,2015.2.2[O'D14]RyanO'Donnell.AnalysisofBooleanFunctions.CambridgeUniversityPress,2014.3.3,B.1[OW14]RyanO'DonnellandDavidWitmer.Goldreich'sPRG:Evidencefornear-optimalpolynomialstretch.InProceedingsofthe29thIEEEConferenceonComputationalComplexity,2014.2.2[OZ13]RyanO'DonnellandYuanZhou.Approximabilityandproofcomplexity.InProceedingsoftheTwenty-FourthAnnualACM-SIAMSymposiumonDiscreteAlgorithms,pages1537{1556.SIAM,Philadelphia,PA,2013.2.2,6.1,A.3,A.3[Par00]PabloParillo.StructuredSemide niteProgramsandSemialgebraicGeometryMethodsinRobustnessandOptimization.PhDthesis,CaliforniaInstituteofTechnology,2000.2.2,6.1[Rag09]PrasadRaghavendra.ApproximatingNP-hardproblems:ecientalgorithmsandtheirlimits.PhDthesis,UniversityofWashington,2009.1[Rao07]AnupRao.AnExpositionofBourgain's2-SourceExtractor.InElectronicColloquiumonComputationalComplexity(ECCC),2007.B.3[SAT]http://satcompetition.org/2014/certunsat.shtml.1[Sch08]GrantSchoenebeck.LinearLevelLasserreLowerBoundsforCertaink-CSPs.InProceedingsofthe49thIEEESymposiumonFoundationsofComputerScience,pages593{602,2008.1,2.2[Sho87]N.Z.Shor.Classofglobalminimumboundsofpolynomialfunctions.Cybernetics,23(6):731{734,1987.6.1[Tao12]TerenceTao.Topicsinrandommatrixtheory,volume132ofGraduateStudiesinMathematics.AmericanMathematicalSociety,Providence,RI,2012.A.1,A.4[Tul09]MadhurTulsiani.Cspgapsandreductionsinthelasserrehierarchy.InProceedingsofthe41stACMSymposiumonTheoryofComputing,pages303{312,2009.2.2[TW13]MadhurTulsianiandPratikWorah.LS+lowerboundsfrompairwiseindependence.InProceedingsof28thIEEEConferenceonComputationalComplexity,2013.2.2[Val84]LeslieValiant.Atheoryofthelearnable.CommunicationsoftheACM,27(11):1134{1142,November1984.5[Vaz86]UmeshVazirani.Randomness,adversariesandcomputation(randompolynomialtime).PhDthesis,UniversityofCalifornia,Berkeley,1986.B.3[Wig55]EugeneP.Wigner.Characteristicvectorsofborderedmatriceswithin nitedimen-sions.Ann.ofMath.(2),62:548{564,1955.234 AProofofTheorem4.1WerestateTheorem4.1:Theorem4.1.Fork2andpn�k=2,letfw(T)gT2[n]kbeindependentrandomvariablessuchthatforeachT2[n]k,E[w(T)]=0(24)Pr[w(T)6=0]p(25)jw(T)j1:(26)ThenthereisanecientalgorithmcertifyingthatXT2[n]kw(T)xT2O(k)p pn3k=4log3=2n:(27)forallx2Rnwithkxk11withhighprobability.Theproofofthistheoremconstitutestheremainderofthissection.ItwilloftenbeconvenienttoconsiderT2[n]ktobe(T1;T2)2[n]k1[n]k2withk1+k2=k.Insuchsituations,wewillwritew(T)=w(T1;T2).Forintuition,thereadercanthinkofthespecialcaseofw(T)2f�1;0;1gforallTandy2f�1;1gn.Undertheseadditionalconstraints,PT2[n]kw(T)xTisOpt(I)�1 2forarandomk-XORinstanceIsowearecertifyingthatarandomk-XORinstancedoesnothavevaluemuchbiggerthan1 2.A.1TheevenaritycaseWhenkiseven,wecanthinkofPT2[n]kw(T)xTasaquadraticform:XT2[n]kw(T)xT=XT1;T22[n]k=2w(T1;T2)yT1yT2;(28)whereyU=xU.WegivetwomethodstocertifythatthevalueofthisquadraticformisatmostOk(p pn3k=4logn).The rstmethodusesanSDP-basedapproximationalgorithmandworksonlyforx2f�1;1gn.Thesecondmethodusesideasfromrandommatrixtheoryandworksforanyxwithkxk11.ApproximationalgorithmsapproachIfx2f�1;1gn,wecanapplyanapproximational-gorithmofCharikarandWirth[CW04]forquadraticprogramming.Theyprovethefollowingtheorem:TheoremA.1.[CW04,Theorem1]LetMbeanynnmatrixwithalldiagonalelements0.Thereexistsanecientrandomizedalgorithmthat ndsy2f�1;1gnsuchthatE[y�My] 1 lognmaxx2f�1;1gnx�Mx:ByMarkov'sInequality,thisstatementholdswithprobabilityatleast1=2.WecanrunthealgorithmO(logn)timestogetahighprobabilityresult.ToapplyTheoremA.1,weseparateoutthediagonaltermsof(28),rewritingitasXT16=T22[n]k=2w(T1;T2)yT1yT2+XU2[n]k=2w(U;U)y2U:(29)35 WecancertifythateachofthetwotermsinthisexpressionisatmostO(p pn3k=4logn).Forthe rstterm,wewillneedthefollowingclaim.ClaimA.2.Withhighprobability,itholdsthatXT1;T22[n]k=2w(T1;T2)yT1yT2O(p pn3k=4):ThisfollowsfromapplyingBernstein'sInequality(Theorem4.12)for xedyandthentakingaunionboundoverally2f�1;1gnk=2.Usingtheclaim,weseethatTheoremA.1allowsustocertifythatthevalueofthe rsttermin(29)isatmostO(p pn3k=4logn).Wewillusethenextclaimtoboundthesecondtermof(29).ClaimA.3.Withhighprobability,itholdsthatXU2[n]k=2jwU;UjO(p pn3k=4):SincethejwTj1andPr[wT6=0]p,theclaimfollowsfromtheCherno Bound.Thesecondtermof(29)isupperboundedbyPU2[n]k=2jwU;UjandwecancomputethisquantityinpolynomialtimetocertifythatitsvalueisatmostO(p pn3k=4).RandommatrixapproachObservethat(28)isy�ByforamatrixBindexedbyU2[n]k=2sothatBU1;U2=w(U1;U2).Theny�BykBkkyk2.Tocertifythaty�Byissmall,wecomputekBk.WeneedtoshowthatkBkissmallwithhighprobability.First,notethatkBkisequaltothenormofthe2nk=22nk=2symmetricmatrix~B=0BB�0Forexample,thisappearsas(2.80)in[Tao12].Theuppertriangularentriesof~Bareindependentrandomvariableswithmean0andvarianceatmostpbythepropertiesofthewS's.Wecanthenapplyastandardboundonthenormofrandomsymmetricmatrices[Tao12].PropositionA.4.[Tao12,Proposition2.3.13]LetMbearandomsymmetricmatrixnnwhoseuppertriangularentriesMijwithijareindependentrandomvariableswithmean0,varianceatmost1,andmagnitudeatmostK.Then,withhighprobability,kMk=O(p nlognmaxf1;K=p ng):Let~B0=1 p p~B.Theuppertriangularentriesof~B0areindependentrandomvariableswithmean0,varianceatmost1,andmagnitudeatmost1=p p.ApplyingPropositionA.4to~B0showsthatkBk=Oknk=4p plognmaxn1;1 p pnk=4owithhighprobability.Sincekyk11byassumption,kyk2nk=2and(28)isatmostO(kp pn3k=4logn)withhighprobabilitywhenpn�k=2.36 A.2TheoddaritycaseFixanassignmentx2[�1;1]n.Fori2[n],themonomialscontainingxicancontributeatmostWi:= PT2[n]k�1w(T;i)xT totheobjectiveifxiissetoptimally.ByCauchy-Schwarz,XT2[n]kw(T)xTXi2[n]Wip ns Xi2[n]W2i;(30)soitsucestoboundPi2[n]W2i.Wewillwritethisasaquadraticpolynomialandthenbounditusingspectralmethods:Xi2[n]W2i=XT;U2[n]k�1Xi2[n]w(T;i)w(U;i)xTxU=XT01;T02;U01;U022[n]k�1 2Xi2[n]w(T01;U01;i)w(T02;U02;i)x(T01;T02)x(U01;U02):(31)De nethenk�1nk�1matrixAindexedby[n]k�1:A(i1;i2);(j1;j2)=(P`2[n]w(i1;j1;`)w(i2;j2;`)if(i1;j1)6=(i2;j2)0otherwise;(32)wherewehavedividedtheindicesofAinto2blocksofk�1 2coordinateseach.De nex k�12R[n]k�1sothatx k�1(T)=xT.Then(31)isequalto(x k�1)�Ax k�1+XT;U2[n]k�1 2(xT)2(xU)2Xi2[n]w(T;U;i)2:(33)The rsttermisatmostkAknk�1sincethevariablesarebounded.WecancomputekAktocertifythis.Withhighprobability,kAkisnottoobig.LemmaA.5.Letk3andpn�k=2.Letfw(T)gT2[n]kbeindepedentrandomvariablessatisfyingconditions(6),(7),and(8)above.LetAbede nedasin(32).Withhighprobability,kAk2O(k)pnk=2log3n:Wecanthereforecertifythatthe rsttermis2O(k)pn3k=2�1log3n.WewillprovethelemmainAppendixA.4.Thesecondtermof(33)isatmostPT2[n]kw(T)2.WecaneasilycomputethisandtheCherno Boundimpliesthatitsvalueisatmostpn3k=2�1withhighprobability.Sofar,withhighprobabilitywecancertifythatPi2[n]W2i=2O(k)pn3k=2�1log3n.Pluggingthisboundinto(30)concludestheproof.RemarkA.6.ItwouldhavebeenmorenaturaltohavewrittenPi2[n]W2i=(x k�1)�A0x k�1forA0suchthatA0T;U=Pi2[n]w(T;i)w(U;i).However,kA0kcouldbetoolargebecauseofthecontributionofthesecondtermin(33).Weusetheadditionalassumptionthatkxk11togetaroundthisissue.RemarkA.7.Wehavede nedAsothatA(i1;i2);(j1;j2)=P`2[n]w(i1;j1;`)w(i2;j2;`),notAi;j=P`2[n]w(i;`)w(j;`).Thereducesthecorrelationamongentriesw(b;c)andw(b;c0)forc6=c0.Intuitively,Alooksmorelikearandommatrixwithindependententries,sowecanbounditsnormusingthetracemethod.SeetheproofofLemmaA.5inAppendixA.4.37 A.3AnSOSversionInthissection,wewillprovetheSOSversionofTheorem4.1.Theorem6.2.Fork2andpn�k=2,letfw(T)gT2[n]kbeindependentrandomvariablessuchthatforeachT2[n]k,E[w(T)]=0Pr[w(T)6=0]pjw(T)j1:Then,withhighprobability,fx2i1gi2[n]`2kXT2[n]kw(T)xT2O(k)p pn3k=4log3=2n:Ratherthanwritingoutthefullproof,wewillindicatethesmallchangesrequiredtoconverttheaboveproofofTheorem4.1intoSOSform.EvenarityTherandommatrixprooffortheevencasecaneasilybeconvertedintoanSOSproofwithdegreek.WhenO(kp pnk=4logn)I�B0,thereexistsamatrixMsuchthatM�M=O(kp pnk=4logn)I�B.ThenO(kp pnk=4logn)kyk2�y�By=(My)�(My)=XT2[n]k=20@XU2[n]k=2MT;UyU1A2sofx2i1gi2[n]`kXT2[n]kw(T)xTO(kp pn3k=4logn):OddarityAcoupleofadditionalissuesariseintheoddcase.Firstofall,thesquarerootin(30)isnoteasilyexpressedinSOS,soweinsteadprovethesquaredversion0@XT2[n]kw(T)xT1A22O(k)n3k=2log3n:(34)Byasimpleextensionof[OZ13,Fact3.3],(34)implies(27)inSOS:FactA.8.X2b2`2Xb:Proof.1 2b(b2�X2)+1 2b(b�X)2=b 2�1 2bX2+b 2�X+1 2bX2=b�X: Secondly,wedonotknowhowtoprovetheCauchy-Schwarzinequality(30)inSOS.However,O'DonnellandZhoushowthataverysimilarinequalitycanbeprovedinSOS[OZ13,Fact3.8]:FactA.9.`2YZ1 2Y2+1 2Z2:38 UsingthisfactinsteadofCauchy-Schwarztoprovethesquaredversionof(30),wecanfollowtheargumentabovetoshowthatfx2i1gi2[n]`2k0@XT2[n]kw(T)xT1A2nx k�1�Ax k�1+nXT2[n]kw(T)2:ThenormboundcanbeproveninSOSexactlyasintheevencase.A.4ProofofLemmaA.5Werestatethede nitionofthematrixAandthestatementofthelemma.LemmaA.5.Letk3andpn�k=2.Letfw(T)gT2[n]kbeindepedentrandomvariablessatisfyingconditions(6),(7),and(8)above.LetAbethe[n]k�1[n]k�1indexedby[n]k�1thatisde nedasfollows:A(i1;i2);(j1;j2)=(P`2[n]w(i1;j1;`)w(i2;j2;`)if(i1;j1)6=(i2;j2)0otherwise:Thenwithhighprobability,kAk2O(k)pnk=2log3n:Theproofcloselyfollowstheargumentsof[COGL04,Lemma17]and[BM15,Section5].Bothproofsusethetracemethod:ToboundthenormofasymmetricrandommatrixM,itsucestoboundE[tr(Mr)]forlarger.Fornon-symmetricmatrices,wecaninsteadworkwithMM�.Inourparticularcase,wehavethefollowing.ClaimA.10.IfE[tr((AA�)r)]nO(k)2O(r)r6rp2rnkr,thenkAk2O(k)pnk=2log3nwithhighprobability.Proof.ObservethatkAk2rtr((AA�)r).ByMarkov'sInequality,Pr[kAkB]E[tr((AA�)r)] B2r.Wegettheclaimbyplugginginr=(logn)andsettingconstantsappropriately. RemarkA.11.Wecangetarbitrarilysmall1=poly(n)probabilityoffailure:ThisproofshowsthatkAkK2O(k)pnk=2log3nwithprobabilityatmostn�logK.Inthetheremainderofthissection,wewillboundE[tr((AA�)r)].LemmaA.12.UndertheconditionsofLemmaA.5,E[tr((AA�)r)]nO(k)2O(r)r6rp2rnkrwithhighprobability.Proof.RecallthatweindexAbyelementsofnk�1dividedintotwoblocksofk�1 2coordinateseach.First,notethattr((AA�)r)=Xi1;:::;i2r2[n]k�1 2(AA�)(i1;i2);(i3;i4)(AA�)(i3;i4);(i5;i6)(AA�)(i2r�1;i2r);(i1;i2):Expandingthisoutusingthede nitionofAandsettingwT=w(T),wegetthattr((AA�)r)=Xwi1;j1;`1wi2;j2;`1wi3;j1;`2wi4;j2;`2wi2r�1;j2r�1;`2r�1wi2r;j2r;`2r�1wi1;j2r�1;`2rwi2;j2r;`2r;39 wherethesumisover`1;:::;`2t2[n]andi1;:::;i2t;j1;:::;j2t2[n]k�1satisfying(is;js)6=(is+1;js+1)for1s2r�1(35)(is+2;js)6=(is+3;js+1)for1s2r�3(36)(i1;j2r�1)6=(i2;j2r):(37)Let bethesetofall(i1;:::;i2r;j1;:::;j2r)2([n]k�1 2)4rsatisfying(35),(36),and(37).ThenforJ2 andL=(`1;:::;`2r)2[n]2r,de nePJ;L=wi1;j1;`1wi2;j2;`1wi3;j1;`2wi4;j2;`2wi2r�1;j2r�1;`2r�1wi2r;j2r;`2r�1wi1;j2r�1;`2rwi2;j2r;`2r:(38)LetjJj=jfi1;:::;i2r;j1;:::;j2rgjbethenumberofdistinctelementsof[n]k�1 2inJandde nejLj=jf`1;:::;`2rgjsimilarly.WethenhaveE[tr((AA�)r)]=XJ2 XL2[n]2rE[PJ;L]=4rXa=12rXb=1XJ2 jJj=aXL2[n]2rjLj=bE[PJ;L]:Toboundthissum,wewillstartbyboundingE[PJ;L].Wewillneedtwoclaims.ClaimA.13.Thenumberofdistinctwi;j;`factorsinPJ;Lisatleast2jLj.Proof.Foreach`2L,(38)showsthatPJ;Lcontainsapairoftheformwis;js;`wis+1;js+1;`orwis+2js;`wis+3;js+1;`.SinceJ2 ,weknowthat(is;js)6=(is+1;js+1)or(is+2;js)6=(is+3;js+1),soeachofthesepairsmusthavetwodistinctwi;j;`factors.Wethenhaveatleast2jLjdistinctwi;j;`factors. ClaimA.14.Thenumberofdistinctwi;j;`factorsinPJ;LisatleastjJj�2.Proof.ConsiderlookingoverthefactorsofPJ;Lfromlefttorightintheorderof(38)untilwehaveseenallelementsofJ.The rstpairwi1;j1;`1wi2;j2;`1containsatmostfourpreviously-unseenelementsofJ.Everysubsequentpairoffactorswis;js;`swis+1;js+1orwis+2js;`s+1wis+3;js+1;`s+1inPJ;LsharestwovariablesofJwithitsprecedingpair.EachsuchpaircanthencontainatmosttwonewelementsofJ.Afterseeinguwi;j;`'s,wehavethereforeseenatmost4+2�u�2 2distinctelementsofJ.TogetalljJjelementsofJ,wemusthaveseenatleastjJj�2wi;j;`'sandthesemustbedistinct. SincePr[wi;j;`6=0]p,E[PJ;L]p#fdistinctwi;j;`factorsinPJ;Lg.ItthenfollowsthatE[PJ;L]pmaxf2jLj;jJj�2g:Thetwoclaimsalsoimplytwootherfactswewillneedbelow.ClaimA.15.IfjLj�r,thenE[PJ;L]=0.Proof.WewillshowthatifjLj�r,thereisanwi;j;`factorinPJ;Lthatoccursexactlyonce.SinceE[wi;j;`]=0,thisprovestheclaim.AssumeforacontradictionthatjLj�randeverywi;j;`factoroccursatleasttwice.Sincethereareatleast2jLjdistinctwi;j;`'s,theremustbeatleast4jLj�4rtotalwi;j;`'s.However,lookingat(38),PJ;Lhasatmost4rwi;j;`factors. 40 ClaimA.16.IfjJj�2r+2,thenE[PJ;L]=0.Thiscanbeprovedinexactlythesamemanner.Next,observethatthenumberofchoicesofJwithjJj=aisatmostna(k�1) 2a4rna(k�1) 2(4r)4r.ThenumberofchoicesofLwithjLj=bisatmostnbb2rnb(2r)2r.Alltogether,wecanwriteE[tr((AA�)r)]2r+2Xa=1rXb=1210rr6rna(k�1) 2+bpmaxf2b;a�2g:Weboundeachtermofthesum.ClaimA.17.na(k�1) 2+bpmaxf2b;a�2gnkr+k�1p2r:Proof.If2b�a�2,na(k�1) 2+bpmaxf2b;a�2gn(2b+2)(k�1) 2+bpmaxf2b;a�2g=nk�1(nkp2)b:If2ba�2,na(k�1) 2+bpmaxf2b;a�2gna(k�1) 2+a 2�1pa�2=nk�1(nkp2)a=2�1:Recallthatweassumednkp21.Sincea2r+2andbr,theclaimfollows. Toconclude,observethatE[tr[(AA�)r]]2r+2Xa=1rXb=1210rr6rnkr+k�1p2rnO(k)2O(r)r6rp2rnr RemarkA.18.Ifwedidnothaveconditions(35),(36),and(37),wewouldonlyhavebeenabletoshowthatjLj2r.ThiswouldhaveledtoaweakerboundofO(p n).BExtensiontolargeralphabetsB.1PreliminariesCSPsoverlargerdomainsWebeginbydiscussingCSPsoverdomainsofsizeq�2.WeprefertoidentifysuchdomainswithZq,soourpredicatesareP:Zkq!f0;1g.Theextensionsofthede nitionsandfactsfromSection3.1arestraightforward;theonlyslightlynonobviousnotionisthatofaliteral.Wetakethefairlystandard[Aus08]de nitionthataliteralforvariablexiisanyxi+cforc2Zq.Thustherearenowqkpossible\negationpatterns"cforaP-constraint.WedenotebyFq;P(n;p)thedistributionoverinstancesofCSP(P)inwhicheachoftheqknkconstraintsisincludedwithprobabilityp;theexpectednumberofconstraintsistherefore m=qknkp.WehavethefollowingslightvariantofFact3.6.FactB.1.LetIFq;P(n;p).Thenthefollowingstatementsholdwithhighprobability.1.m=jIj2 m1Oq logn m.2.Opt(I) P1+Oq logq Pn m.3.IisOq qklogqn m-quasirandom.41 FourieranalysisoverlargerdomainsLetUqistheuniformdistributionoverZq.Wecon-siderthespaceL2(Zq;Uq)offunctionsf:Zq!Requippedwiththeinnerproducthf;gi=EzUq[f(z)g(z)]anditsinducednormkfk2=EzUq[f(z)2]1=2.Fixanorthonormalbasis0;:::;q�1suchthat0=1.NowletL2(Zkq;Ukq)bethespaceoffunctionsf:Zkq!R,whereUkqistheuniformdistributionoverZkqandwehavetheanalogousinnerproductandnorm.Then,for2Zkq,de ne:Zkq!Rsuchthat(x)=Yi2[k]i(xi):Thesetfg2ZkqformsanorthonormalbasisforL2(Zkq;Ukq)[Aus08,Fact2.3.1]andwecanwriteanyfunctionf:Zkq!Rintermsofthisbasis:f(x)=X2Zkqbf()(x):OrthonormalityonceagaingivesusPlancherel'sTheoreminthissetting:TheoremB.2.hf;gi=X2Zkqbf()bg():For2Zkq,de nesupp()=fi2[k]ji6=0gandjj=jsupp()j.Thenwede nethedegreeofftobemaxfjjjbf()6=0g.Notethatthisisthedegreeoffwhenitiswrittenasapolynomialinthea'sfora2Zq.Givenak-tupleTand2Zkq,weuseT()todenotethejj-tupleformedbytakingtheprojectionofTontothecoordinatesinsupp().Similarly,useT( )todenotethe(k�jj)-tupleformedbytakingtheprojectionofTontocoordinatesin[k]nsupp().See[O'D14,Aus08]formorebackgroundonFourieranalysisoverlargerdomains.B.2ConversiontoBooleanfunctionsTomoreeasilyapplyouraboveresults,wewouldliketorewriteafunctionf:Zkq!RasaBooleanfunctionfb:f0;1gk0!Rforsomek0.Itwillactuallybemoreconvenienttode nefbonasubsetoff0;1gk0.Inparticular,considertheset k=fv2f0;1g[k]ZqjPa2Zqv(i;a)=18i2[k]g.NotethereisabijectionbetweenZkqand k:Forz2Zkq,((x))(i;a)=1fzi=ag.Intheotherdirection,givenv2 kset�1(v)i=Pa2Zqav(i;a).Forafunctionf:Zkq!R,wecanthende neitsBooleanversionfb: k!Rasfb(v)=X 2Zkqf( )Yi2[k]v(i; i);Observethatf(z)=fb((z))forz2Zkq.Also,notethatiff(z)=g(z)forallz2Zkq,fb=gboverallRkbyconstruction.fbisamultilinearpolynomialanditsdegreeisde nedinthestandardway.Thedegreeoffisde nedasintheprevioussection.ClaimB.3.Thedegreeoffbisequaltothedegreeoff.42 Proof.Abbreviatesupp()ass()anddenotesupp()'scomplementwithrespectto[k]ass( ).Applyingthede nitionandwritingf'sFourierexpansion,weseethatfb(v)isequaltoX 2ZkqX2Zkqbf()( )Yi2[k]v(i; i)=X2Zkqbf()X 02Zjjq( 0)jjYi=1v(s()i; 0i)X 002Zk�jjqk�jjYi=1v(s( )i; 00i):NowobservethatX 002Zk�jjqk�jjYi=1v(s( )i; 00i)=k�jjYi=1Xa2Zqv(s( )i;a)=1bytheassumptionthatv2 k.Thedegreeoffbisthereforejj. B.3QuasirandomnessandstrongrefutationToprovequasiandomnessandstrongrefutationresultsforCSPsoverlargeralphabets,weproceedexactlyasinthebinarycase.Weusedthet=kcaseofLemma3.13(theVaziraniXORLemma[Vaz86,Gol11])tocertifyquasirandomnessforbinaryCSPs.AgeneralizationofthiscaseholdsforAbeliangroups[Rao07,Lemma4.2].LemmaB.4.LetGbeanAbeliangroupandletUGbetheuniformdistributionoverG.Also,letfg2GbeanorthonormalbasisforL2(G;UG)andletD:G!RbeadistributionoverG.IfbD()forall2G,thendTV(D;UG)1 2jGj3=2.ViewingtheinduceddistributiondensityDI;x()asafunctionofx2Znqfor xed2Zkq,wewillconsiderDbI;y(): n!R.Asbefore,wecancertifythatDbI;yhassmallFouriercoecients.LemmaB.5.Let2Zkqsuchthat6=0andjj=s.Thereisanalgorithmthatwithhighprobabilitycerti esthat dDbI;y() qO(k)maxfns=4;p nglog5=2n p mforally2f0;1g[n]Zqwhen mmaxfns=2;ng.Proof.TheproofisessentiallyidenticaltotheproofofLemma4.3.Wehighlightthedi erences.Firstofall,wecanwritedDbI;y()=Xx2Znq[DI;x()Yi2[n]y(i;xi)=1 mXT2[n]kXc2Zkq1f(T;c)2IgXx2Znq(xT+c)Yi2[n]y(i;xi):Sinceonlydependsoncoordinatesinsupp(),wecanrearrangeandusethefactthatPa2Zqyi;a=1togetdDbI;y()=1 mX 2ZjjqXU2[n]jjjjYi=1y(Ui; i)XT2[n]kT()=Uw; (T);wherew; (T)=Pc2Zkq1f(T;c)2Ig( +c()).ObservethatE[w; (T)]=0andPr[w; (T)6=0]qkp.Sincekk=1,observethattheCauchy-SchwarzInequalityimpliesthatjjqk=2forall.Thenjw; (T)jq3k=2forall and.Forevery ,wecanthenapplyLemma4.4justasintheproofofLemma4.3. 43 Thesetwolemmasthenimplythelargeralphabetversionsofthequasirandomnesscerti cationandstrongrefutationresultsabove.TheoremB.6.Thereisanecientalgorithmthatcerti esthataninstanceIFq;P(n;p)ofCSP(P)is -quasirandomwithhighprobabilitywhen mqO(k)nk=2log5n 2.TheoremB.7.Thereisanecientalgorithmthat,givenaninstanceIFq;P(n;p)ofCSP(P),certi esthatOpt(I) P+ withhighprobabilitywhen mqO(k)nk=2log5n 2.B.4Refutationofnon-t-wisesupportingCSPsWewillshowthatthedualpolynomialcharacterizationofbeingfarfromt-wisesupportingdescribedinSection3.4generalizestolargeralphabets.Weextendthede nitionsoft-wisesupportingand-separatingpolynomialstotheZqcaseinthenaturalway.LemmaB.8.ForP:Zkq!f0;1gand01,thereexistsapolynomialQ:Zkq!Rofdegreeatmosttthat-separatesPifandonlyifPis-farfromsupportingat-wiseuniformdistribution.Proof.TheproofusesthefollowingduallinearprogramsexactlyasintheproofofLemma3.16.minimizeXz2Zkq(1�P(z))D(z)(39)s.t.Xz2ZkqD(z)(z)=qkbD()=082Zkq0jjt(40)Xz2ZkqD(z)=1D(z)08z2Zkq maximizes.t.X2Zkq0jjtc(S)(z)1�P(z)�8z2Zkq: ToproveLemma3.16,weneededtoshowinthebinarycasethatfeasiblesolutionstotheprimalLP(1)weret-wiseuniform.Wenowarguethattheconstraint(40)isasucientconditionfort-wiseuniformityofDintheq-arycase.ForadistributionDoverZkqandS[k],de neDStobethemarginaldistributionofDon(Zkq)S,i.e.,DS(z)=Pz02Zkq;z0S=zD(z0).Weneedtoshowthat(40)impliesthatDS=UjSjqforallS[k]with1jSjt.FixsuchanSandletjSj=s.Considerthebasisf g 2Zsq.LemmaB.4impliesthatitsucestoshowthatEzUsq[DS(z) (z)]=0forall 2Zsq.ObservethatEzUsq[DS(z) (z)]=Ez0Ukq[D(z0)(z0)]for2Zkqsuchthati= ifori2Sandi=0otherwise.SincejSjt,weknowthatjjtand(40)impliesEz0Ukq[D(z0)(z0)]=0.Therestoftheproofisexactlyasinthebinarycase. 44 Wecanagainusetheseseparatingpolynomialstoobtainalmost-refutationforpredicatesthatare-farfromt-wisesupporting.TheoremB.9.LetPbe-farfrombeingt-wisesupporting.Thereexistsanecientalgorithmthat,givenaninstanceIFq;P(n;p)ofCSP(P),certi esthatOpt(I)1�+ withhighprobabilitywhen mqO(k)nt=2log5n 2andt2.TheproofisessentiallyidenticaltoProof2ofTheorem4.9.Corollary4.11alsoextendstolargeralphabets.CorollaryB.10.LetPbeapredicatethatdoesnotsupportanyt-wiseuniformdistribution.Thenthereisanecientalgorithmthat,givenaninstanceIFq;P(n;p)ofCSP(P),certi esthatOpt(I)1�2�eO(qtkt)withhighprobabilitywhen m2eO(qtkt)nt=2log5nandt2.ThisfollowsdirectlyfromTheoremB.9andthefollowingextensionofCorollary3.17tolargeralphabets.CorollaryB.11.SupposeP:Zkq!f0;1gisnott-wisesupporting.Thenitisinfact-farfromt-wisesupportingfor=2�eO(qtkt).TheproofisessentiallyidenticaltotheproofofCorollary3.17:ObservethattheLP(39)hasatmostqtktvariablesandproceedexactlyasbefore.B.5SOSproofsHerewegiveSOSversionsofourrefutationresultsforlargeralphabets.CertifyingFouriercoecientsaresmallTogiveanSOSproofthatFouriercoecientsofDbI;yaresmall,weagainneedtode neaspeci cpolynomialrepresentationofdDbI;y().dDI;y()poly=1 mXT2[n]kXc2Zkq1f(T;c)2IgX 2Zjjq( +c())jjYi=1y(T()i; i):LemmaB.12.Let06=2Zkqwithjj=s.Thenfy(i;a)21gi2[n]a2Zq`maxf2s;kgdDI;y()polyqO(k)maxfns=4;p nglog5=2n m1=2fy(i;a)21gi2[n]a2Zq`maxf2s;kgdDI;y()poly�qO(k)maxfns=4;p nglog5=2n m1=2:withhighprobability,assumingalsothat mmaxfns=2;ng.Proof.IntheproofofLemmaB.5,wecertifythatjdDI;y()jissmallbycertifyingthat dDI;y()poly issmall.TheproofofLemmaB.5reliesonlyonLemma4.4;wecanreplacethiswithitsSOSversionLemma6.3. RemarkB.13.Westatedthelemmawiththeweakersetofaxiomsfy(i;a)21gi2[n];a2Zq.Sincey(i;a)2=y(i;a)impliesy(i;a)21indegree-2SOS,thelemmaholdswiththeaxiomsfy(i;a)2=y(i;a)gi2[n];a2Zqaswell.45 Strongrefutationofanyk-CSPFromourSOSproofthattheFouriercoecientsdDbI;y()aresmall,wecangetSOSproofsofstrongrefutationforanyk-CSP.Todothis,weneedtode neaspeci cpolynomialrepresentationofValbI(y)foraninstanceIofCSP(P):ValI(y)poly=1 mXT2[n]kXc2Zkq1f(T;c)2IgX 2ZkqP( +c)Yi2[k]y(Ti; i):TheoremB.14.GivenaninstanceIFq;P(n;p)ofCSP(P),fy(i;a)2=y(i;a)gi2[n]a2Zq[8:Xa2Zqy(i;a)=19=;i2[n]`2kValI(y)poly P+ withhighprobabilitywhen mqO(k)nk=2log5n 2.Proof.First,usetheFourierexpansionofPtowriteValI(y)poly=1 mXT2[n]kXc2Zkq1f(T;c)2IgX 2ZkqX2ZkqbP()( +c)Yi2[k]y(Ti; i):ForeachT2[n]k,c2Zkq,and2Zkq,wehaveatermoftheformP 2Zkq( +c)Qi2[k]y(Ti; i).Notethatonlydependsonthecoordinatesinsupp().Wecanthenwritethisas0B@X 2Zjjq( +c())jjYi=1y(T()i; i)1CA0@k�jjYi=1Xa2Zqy(T( )i;a)1AUsingtheaxiomsPa2Zqyi;a=1,thesecondtermisequalto1andwehave8:Xa2Zqy(i;a)=19=;i2[n]`kX 2Zkq( +c)Yi2[k]y(Ti; i)=X 2Zjjq( +c())jjYi=1y(T()i; i):SummingoverallT,c,and,weobtainthefollowing.8:Xa2Zqy(i;a)=19=;i2[n]`kValI(y)poly=1 mXT2[n]kXc2Zkq1f(T;c)2IgX2ZkqbP()X 2Zjjq( +c())jjYi=1y(T()i; i):Thisisequalto P+X06=2ZkqbP()dDI;y()poly:SincejP(z)j1andj(z)jqO(k),P2ZkqjbP()jqO(k).WecanthenapplyLemmaB.12foreachtocompletetheproof. 46 SOSrefutationofnon-t-wisesupportingCSPsTheoremB.15.LetPbe-farfrombeingt-wisesupporting.Then,givenaninstanceIFq;P(n;p)ofCSP(P),y(i;a)2=y(i;a) i2[n]a2Zq[fy(i;a)y(i;b)=0gi2[n]a6=b2Zq[8:Xa2Zqy(i;a)=19=;i2[n]`maxfk;2tgValI(y)poly1�+ :withhighprobabilitywhen mqO(k)nt=2log5n 2andt2.Toprovethistheorem,weneedaversionofClaim6.7forlargeralphabets.ClaimB.16.Letf:Zkq!Rsuchthatf(z)0forallz2Zkqandletfb(v)=P 2Zkqf( )Qi2[k]v(i; i).Thenv(i;a)2=v(i;a) i2[k]a2Zq[fvi;avi;b=0gi2[k]a6=b2Zq`kfb(v)0:Proof.Sincef(z)0forallz2Zkq,thereexistsafunctiong:Zkq!Rsuchthatg2(z)=f(z)forallz2Zkq.Wethenwritegb(v)=P 2Zkqg( )Qi2[k]v(i; i).Usingv(i;a)2=v(i;a),itfollowsthatgb(v)2=X 2Zkqg( )2Yi2[k]v(i; i)+X 06= 002Zkqg( 0)g( 00)Yi2[k]v(i; 0i)v(i; 00i)The rsttermisequaltofb().Forthesecondterm,notethateachoftheproductsQi2[k]v(i; 0i)v(i; 00i)mustcontainfactorsv(i;a)v(i;b)witha6=bsince 06= 00.Wehavetheaxiomv(i;a)v(i;b)=0,sothesecondtermis0.Thenfb=(gb)2andtheclaimfollows. Withthisclaim,theproofofthetheoremexactlyfollowsthatofTheorem4.9.ProofofTheoremB.15.ClaimB.16impliesthatv(i;a)2=v(i;a) i2[k]a2Zq[fv(i;a)v(i;b)=0gi2[k]a6=b2Zq[8:Xa2Zqv(i;a)=19=;i2[k]`kPb(v)�(1�)Qb(v)Summingoverallconstraints,wegetthatA`kmValI(y)poly�m(1�)XT2[n]kXc2Zkq1f(T;c)2IgX 2ZkqQ( +c)kYi=1y(i; i)whereA=y(i;a)2=y(i;a) i2[n]a2Zq[fy(i;a)y(i;b)=0gi2[n]a6=b2Zq[nPa2Zqy(i;a)=1oi2[n].UsingtheFourierexpansionofQ,weseethattheright-handsideoftheinequalityisXT2[n]kXc2Zkq1f(T;c)2IgX 2ZkqX2ZkqbQ()( +c)kYi=1y(Ti; i)JustasintheproofofTheoremB.14,wecanrewritethisindegree-kSOSasXT2[n]kXc2Zkq1f(T;c)2IgX2ZkqbQ()X 2Zjjq( +c())jjYi=1y(T()i; i):47 WethenrearrangetogetX06=2ZkqbQ()dDI;y()poly:SinceE[Q]=0andQ�1,weknowthatjQjqO(k)andthereforejbQ()jqO(k).WecanthenapplyLemmaB.12foreachtocompletetheproof. CCertifyingthatrandomhypergraphshavesmallindependencenumberandlargechromaticnumberFirst,werecallsomestandardde nitions.LetH=(V;E)beahypergraph.WesaythatSisanindependentsetofHifforalle2E,itholdsthate=2S.Theindependencenumber (H)isthenthesizeofthelargestindependentsetofH.Aq-coloringofHisafunctionf:V![q]suchthatf�1(i)isanindependentsetforeveryi2[q].Thechromaticnumber(H)isthethesmallestq2Nforwhichthereexistsaq-coloringofH.Wede neH(n;p;k)tobethedistributionovern-vertex,k-uniform(unordered)hypergraphsinwhicheachofthe�nkpossiblehyperedgesisincludedindependentlywithprobabilityp.Let mbetheexpectednumberofhyperedgesp�nk.Coja-Oghlan,Goerdt,andLankausedCSPrefutationtechniquestoshowthefollowingresults[COGL07]:TheoremC.1.(Coja-Oghlan{Goerdt{Lanka[COGL07,Theorem3]).ForHH(n;p;3),thereisapolynomialtimealgorithmcertifyingthat (H)nwithhighprobabilityforanyconstant&#x-431;0when m�n3=2ln6nand m=o(n2).TheoremC.2.(Coja-Oghlan{Goerdt{Lanka[COGL07,implicitinSection4]).ForHH(n;p;4),thereisapolynomialtimealgorithmcertifyingthat (H)nwithhighprobabilityforanyconstant&#x-278;0when mOn2 4.TheoremC.3.(Coja-Oghlan{Goerdt{Lanka[COGL07,Theorem4]).ForHH(n;p;4),thereisapolynomialtimealgorithmcertifyingthat(H)�withhighprobabilityforconstantwhen mO(4n2).Wegeneralizetheseresultstok-uniformhypergraphs:TheoremC.4.ForHH(n;p;k),thereisapolynomialtimealgorithmcertifyingthat (H) withhighprobabilitywhen mOkn5k=2log3n 2k,assumingthat n3=4logn.TheoremC.5.ForHH(n;p;k),thereisapolynomialtimealgorithmcertifyingthat(H)�withhighprobabilitywhen mOk�2knk=2log3n,assumingthatn1=4 logn.Theproofsaresimpleextensionsofthek=3andk=4casesfrom[COGL07].Wewill rstproveTheoremC.4usingTheorem4.1andthiswillalmostimmediatelyimplyTheoremC.5.ProofofTheoremC.4.RecallthatTheorem4.1dealswithk-tuples,notsetsofsizek.Itiseasytoexpressahypergraphintermsofk-tuplesratherthansetsofsizek.ForasetSandt2Z0,recallthenotation�St=fTSjjTj=tg.Foreachpossiblehyperedgee2�[n]k,weassociateanarbitrarytupleTefromamongthek!tuplesin[n]kcontainingthesamekelements.TodrawfromH(n;p;k),weincludeeachTeindependentlywithprobabilitypandincludeallotherT2[n]kwithprobability0.48 ForT2[n]k,wede netherandomvariablew(T)asfollows:w(T)=(p�1fe2EgifT=Teforsomee2�[n]k0otherwise.Letx2f0;1gnbetheindicatorvectorofanindependentsetIsothatxT=1ifTIandxT=0otherwise.First,observethatXT2[n]kw(T)xT=pXS2([n]k)xS�Xe2([n]k)1fe2Egxe=pjIjk;wherethesecondtermis0becauseIisanindependentset.Thew(T)'ssatisfyconditions(6),(7),and(8)andkxk11,soTheorem4.1implieswecancertifythatpjIjk=XT2[n]kw(T)xT2O(k)p pn3k=4log3=2nwithhighprobability.Simplifying,weseethatwecancertifyjIjOk n5=4log3 2kn m1 2k!andplugginginthevalueof mfromthestatementofthetheoremcompletestheproof. ProofofTheoremC.5.ForacoloringofahypergraphH,eachcolorclassisanindependentsetofH.If(H),thenthereexistsacolorclassofsizeatleastn andtherefore (H)n .Wecanthencertifythat (H)n usingTheoremC.4. DSimulatingFP(n;p)witha xednumberofconstraintsThesettingof[DLSS14] xesthenumberofconstraintsinaCSPinstance,whereasthemodeldescribedinSection3includeseachpossibleconstraintintheinstancewithsomeprobabilityp.Hereweshowthatresultsfromoursettingeasilyextendtothatof[DLSS14]bygivinganalgorithmthatsimulatesthebehaviorofourmodelwhenthenumberofconstraintsis xed.RecallthataninstanceIFP(n;p)isgeneratedasfollows.ForeachS2[n]kandeachc2f�1;1gk,constraint(c;S)isincludedwithprobabilityp,sotheexpectednumberofconstraintsisp(2n)k.Inthemodelwherethenumberofconstraintsis xed,theinstanceisguaranteedtohavemdistinctconstraintsforsomevalueofm.TheinstanceJischosenuniformlyfromallsubsetsoff�1;1gk[n]kwithsizeexactlymTheoremD.1.SupposethereexistsanecientalgorithmRthat,onagivenCSPinstanceIFP(n;p),forallppmin,certi esthatOpt(I)forsome01withhighprobability.ThenthereexistsanecientalgorithmAthatcerti esthatarandominstanceJofCSP(P)withconstraintshasOpt(J)+2��1ln1=2withhighprobabilitywhen1���1ln1=2(2n)kpmin.49 Algorithm1 AlgorithmA1:p (1�d)(2n)�k.2:drawmBinomial�p;(2n)k3:ifm�orm(1�2d)then4:return\fail."5:I J6:fori=m+1:::do7:RemovearandomconstraintfromIchosenuniformly8:RunRonI9:ifRcerti esthatOpt(I)then10:return\Opt(J)+2d."11:else12:return\fail." Proof.Onarandominstancewithconstraints,wecangenerateaninstanceIthatsimulatesthisbehaviorbychoosinganappropriatevalueforp,drawingmBinomial�p;(2n)kandthendiscarding�moftheconstraints.Forbrevity,letd=��1ln1=2:Algorithm1describesthebehaviorofA.Thefractionofremovedconstraintsisatmost2d,soevenifalloftheremovedconstraintswouldhavebeensatis ed,theircontributiontoOpt(J)isatmost2d.Consequently,Awillneverincorrectlyoutput\Opt(J)+2d."Furthermore,theprobabilityoffailingtorefuteaninstancewithvalueatmost1�+2dduetoexitingatstep2isok;t(1).Wetreatmasasumof(2n)kindependentBernoullivariableswithprobabilitypanddenoteE[m]by m.ApplyingaCherno boundyieldsthefollowing.Pr[m�]=Pr[m� m=(1�d)]=Pr[m� m(1+d 1�d)]exp��1ln(1�(ln)�1=2) 3exp(�(ln))=1=poly():Similarly,Pr[m(1�2d)]=Pr[m m(1�d 1�d)]exp(�(ln))=1=poly():If(1���1ln1=2)(2n)kpmin,thenppminandRwillbeabletocertifyOpt(I)withhighprobability. 50