stanfordedu dph kleinbercscornelledu jurecsstanfordedu ABSTRACT An increasingly common feature of online communities and social media sites is a mechanism for rewarding user achievements based on a system of badges Badges are given to users for part ID: 4620 Download Pdf
cornelledu larscscornelledu kleinbercscornelledu ABSTRACT Tracking new topics ideas and memes across the Web has been an issue of considerable interest Recent work has developed meth ods for tracking topic shifts over long time scales as well as abru
edu Jure Leskovec Stanford University jurecsstanfordedu ABSTRACT Online content exhibits rich temporal dynamics and divers e real time user generated content further intensi64257es this proces s How ever temporal patterns by which online content grow
edu Jure Leskovec Stanford University jurecsstanfordedu ABSTRACT Online content exhibits rich temporal dynamics and divers e real time user generated content further intensi64257es this proces s How ever temporal patterns by which online content grow
edu Jure Leskovec Stanford University jurecsstanfordedu Abstract Nodes in realworld networks organize into densely linked communities where edges appear with high con centration among the members of the community Identifying such communities of nodes
stanfordedu Biomedical Informatics Stanford University plependu nigamstanfordedu ABSTRACT Event sequences such as patients medical histories or users se quences of product reviews trace how individuals progress over time Identifying common patterns o
stanfordedu cristianmpiswsorg Abstract Social media systems rely on user feedback and rating mechanisms for personalization ranking and content 64257ltering However when users evaluate content con tributed by fellow users eg by liking a post or votin
Recently bit minwise hashing has been applied to largescale learning and sublinear time near neighbor search The major drawback of minwise hashing is the expensive pre processing as the method requires applying eg 200 to 500 permutations on the dat
stanfordedu Sergei Vassilvitskii Stanford University Stanford CA sergeicsstanfordedu ABSTRACT The kmeans method is an old but popular clustering algo rithm known for its observed speed and its simplicity Until recently however no meaningful theoretic
stanfordedu Robert West Stanford University westcsstanfordedu Dan Jurafsky Stanford University jurafskystanfordedu Jure Leskovec Stanford University jurecsstanfordedu Christopher Potts Stanford University cgpottsstanfordedu ABSTRACT Vibrant online co
b The rolling shutter used by sensors in these cameras also produces warping in the output frames we have exagerrated the effect for illustrative purposes c We use gyroscopes to measure the cameras rotations during video capture d We use the measure
Published bylindy-dunigan
stanfordedu dph kleinbercscornelledu jurecsstanfordedu ABSTRACT An increasingly common feature of online communities and social media sites is a mechanism for rewarding user achievements based on a system of badges Badges are given to users for part
Download Pdf - The PPT/PDF document "Steering User Behavior with Badges Ashto..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.
levels,thesite'sdesignerscanattempttosteerauser'sactivitiestowardparticularformsofcontribution.Forexample,aquestion-answering(Q&A)sitemayhavearangeofactivitiesthatincludeaskingquestions,answeringquestions,up-votinganddown-votingquestionsandanswers,andothers.OnaQ&Asitewhereeveryonewantstoaskquestionsandfewpeoplewanttoanswerthem,intro-ducingabadgeforuserswhohavecontributedacertainnumberofanswerscansteerthecommunitytowardcontributingtothisun-derrepresentedactiontype.Badgesforvotingcansimilarlytrytosteeruserstowardprovidingenoughfeedbacktomaintainausefulqualitysignalonthecontent.Insummary,badgesprovidearichlanguageforexpressingin-centives,butwithlittleexistingframeworkforreasoningabouttheireffects.Ourworkaddressesasetofquestionsthatcanhelpprovideinsightintobadgesandtheiruse.Inparticular,anaturalrstquestionis:Dobadgeswork?Thatis,canwendconcreteev-idencethatbadgesincreasesiteparticipationorsteeruserstowardstakingactionstheymightnothavetakenotherwise?Ifbadgesdohaveaneffectonusers,howcanwemodeluserbehaviorinthepresenceofbadges?Andtotheextentthatdesignerscanindeedsteeruserbehaviorwithbadges,howshouldtheydenebadgestoachievetheoutcomestheywant?OverviewofResultsOurworkisbasedonthissetofquestions,andcomprisesthreedifferentcomponents.First,wedevelopamodelforuserbehav-iorinthepresenceofbadgesonasitewithmultipletypesofac-tivities.Second,weevaluateourmodelondatafromthepopularquestion-answeringsiteStackOverow,andshowthatthemainqualitativepredictionsofthemodelmatchwhatweobserveintheaggregateuserbehaviorontherealsite.Third,weconsiderhowasitedesignercanusesuchamodeltodenebadgeswiththegoalofachievingadesiredpatternofbehavior.TheoreticalModelofUserBehavior.Giventhediscussionofbadgesthusfar,whatarethebasicingredientsweneedinordertodeneamodelofuserbehaviorwithbadges?Intuitively,wewouldliketohaveamulti-dimensionalspacerepresentingthepos-sibletypesofactionsonthesite;usershaveapreferredmixtureofactivitiesinthisspace,andintroducingbadgescaninducethemtoshifttheirmixtureinparticularways.Ourmodelbringsthesefeaturestogetherinanaturalway.Sinceakeyaspectofbadgesisthewayinwhichdifferentbadgesrewarddifferentactivities,wemodelthesiteashavingndifferentactiontypes;asinourexampleofaQ&Asiteabove,theactiontypescouldcorrespondtoaskingaquestion,answeringaques-tion,votingonaquestionoranswer,andothers.Usersperformactions,choosingfromamongthesetypes;auser'smixofactionsoverhislifetimecanthusbethoughtofasdeningavectorinann-dimensionalspacewhoseithcoordinaterecordsthenumberofactionsoftypeithathehastaken.1Eachbadgeisdenedbyspec-ifyinghowmanyactionsofeachtypemustbeperformedinorderforittobeawarded;inthissense,eachbadgedenesafrontierinthespacethattheuser'svectormustcrossinorderforthebadgetobeawarded.Werefertothisfrontierasthebadgeboundary.Inordertotalkabouttheincentivesthatbadgescreate,wealsoneedamodelofauser'sutility,whichwerepresentintwocom-ponents.First,eachuserhasapreferredmixofactionsonthesite,correspondingtoadistributionoverthepossibleactiontypes;intheabsenceofbadges,hewouldsimplyperformactionsaccordingtothismixturebysamplingfromhisdistributionoverpossibleactiontypes.Samplingactiontypesfromadifferentdistributionincursa 1Throughoutthispaperweusemalepronounstorefertousersofasiteandfemalepronounstorefertositedesigners.costtotheuser,basedonhowfarthedistributionisfromhispre-ferredone.Second,abadgeconfersutilityonceitisawarded,andsoauserhasanincentivetoshifthisdistributionofactivitiessome-whatinordertoachievethebadgemorequickly,whichtradesoffagainstthecostfordeviatingfromthepreferreddistribution.Theuser'sbehavioristhusdeterminedbythesolutiontoanindividual-leveloptimizationproblem,tradingoffthecostofshift-inghisactivitydistributionagainstthevalueofthebadge.Wewillseethatwhenthisoptimizationissolved,theforceoftheincen-tivesfrombadgesclearlyemergesnaturally:theuser'sdistributionofactionsisdeectedinthedirectionofbadges,andthereisanaccelerationeffectinwhichthisdeectionbecomesstrongerastheuserapproachesabadgeboundary.Thusfarthemodelcaptureshowabadgecansteeruserstowardcertaintypesofactions.Atahigherlevel,abadgecanalsoincreasetheoveralllevelofuserparticipationonthesite.Whileitmayini-tiallyseemthatthesearetwodifferentphenomenaparticipationlevelversuschoiceofactionsonthesitewecanunifythemwithinthemodelbyrepresentingtheuser'soff-siteactivitiesviaasingleadditionalactiontype,correspondingtooneextradimensioninthespaceofpossibleactions.Werefertothisadditionalactiontypeasthelife-action,sinceitcorrespondstothesumtotaloftheuser'sac-tivitiesinhislifeoffthesite;theuser'spreferreddistributionofac-tivitieswillincludeaprobabilityassociatedwiththelife-actionaswell.Withthisextendedframework,wecanaskabouttheeffectofabadgeintwodistinctrespects:theextenttowhichitdrawsproba-bilitymassawayfromthelife-action,thusincreasingparticipationonthesite,andtheextenttowhichisshiftsprobabilitymassbe-tweendifferentsiteactions,thussteeringbehaviorwithinthesite.EmpiricalEvaluation.Afterdevelopingthemodel,weinvestigatewhetheritsqualitativepredictionsmatchtheaggregatebehaviorweseeinalarge-scalesettingthatmakesstronguseofbadges.Todothis,weanalyzethebehaviorofseveralmillionusersonStackOverow,alargeandveryactivequestion-answeringsite.OnStackOverow,badgesplayaprominentroletheyaredisplayedalong-sideauser'snamewhereverhepostsonthesite,andtheyaredis-cussedextensivelyonStackOverowforums.WendthatthemainqualitativepredictionsofthemodelmatchthebehaviorweobserveonStackOverowinfourkeyrespects.(i)Ifacertainlevelofactivityofaparticulartypeisrewardedbyabadge,userswillincreasetheiractivityofthistypeastheyapproachthelevelneededforthebadge.Thisisthenotionofsteeringtowardabadgeboundarymentionedabove.(ii)Differentbadgesproducedifferentamountsofsteering.(iii)Theextentofsteeringdependsonhowclosetheuseristothebadgeboundaryanaccelerationeffectinwhichausersteersparticularlystronglytowardabadgewhentheyareclosetoachievingit.(iv)Steeringinvolvesbothshiftsinthemixtureofactionstheuserperformsonthesite,aswellasintheiroveralllevelofparticipationonthesite.Whatwendpromisingabouttheseresultsisthateachof(i)-(iv)arisesnaturallyasapredictionofourmodelingframework,despitethefactthatwedidnotbuildinanyofthem.Rather,themodelgeneratesthesebehaviorsbysimplypositinguserswhoacttomaximizeutility.TheBadgePlacementProblem.Finally,havingproposedamodelofuserbehaviorinthepresenceofbadgesandshowingthatitsmainpredictionsareconsistentwithempiricaldata,wereturntothemodelandexploreitfromthesitedesigner'sperspective.Supposethesitedesignerhasadesiredmixtureofactionsqoverthefulluserpopulation,shewouldliketoseetheactiontypesperformed isverygeneral,andcanbeeasilygeneralizedtoincorporatericheruserutilitiesthatmaydependextensivelyontheuser'sstate.Twoexamplesincludeauserwho:(a)wantstomaintaintheproportionsinthevectorpgloballyoverhisentirelifetime(thatis,hewantstochooseadistributionatagivenvectorathattriestobringhimbacktowardapointwheretheproportionofactiontypesperformedsofarisbalancedaccordingtothecoordinatesofp),and(b)valuesbadgesdifferentlydependingonwhichotherbadgeshehasalreadyreceivedthiscouldbeincorporatedintothevaluefunctionV.Nextweconsidertheutilityassociatedwithbadges.WeuseBtodenotethesetofallbadgesonthesite.Abadgeb2BconfersavalueVbtoauserineachstepafterhereceivesit.(Alternately,thevalueofbcouldbeconferredentirelyinalump-sumpaymentinthestepwhentheuserreceivesb;thiswouldleadtoamodelthatisformallyequivalent,butexpressingthevalueasbeingconferredineachstepafterthebadgeisreceivedisaneasierformalismtoworkwith.)Inkeepingwiththefactthatbadgesproducegenuineincentivesonthesiteunderconsideration,wetreatthenotionofabadge'svalueasaprimitiveinthemodel.Thebroaderquestionofwhatabadge'svaluemeansisaninterestingissuethatwereturntointhediscussionattheendofthepaper.Inadditiontotheincentivetoachieveabadge,wealsowanttocapturetheideathatitisbettertoreceiveabadgesoonerratherthanlater.Wedothisbythestandardapproachofdiscountingthefuture:wesaythatauserhasaxedexogenousprobability0thathepermanentlyleavesthesystemaftereachaction,andwrite=1forthecorrespondingprobabilitythathesurvivestoper-formanotherstep.Theuserceasestoreceiveutilityonceheleavesthesystem.Inthisway,underaplanthatinvolvesreceivingabadgesomedistanceintothefuture,thevalueofthebadgeisdiscountedbytheprobabilitythathesurviveslongenoughinthesystemtoactuallyreachthebadge.2Weemphasizethattheparametercon-trolsanexogenousprocessbywhichtheuserleavesthesystem,inthesensethatitoperatesindependentlyoftheuser'schoices.Thereisaseparateendogenouswayfortheusertostopperformingactionsonthesite,whichissimplytochooseadistributionxoveractionsthatplacesaprobabilitymassof1onthelife-action.Intuitively,atacurrentvectora,auserthereforeneedstochooseadistributionxsoastotradeoffbetweenremainingclosetopandachievingbadgesmorequickly.Thisisthetrade-offthatleadsausertosteertowardabadgeboundary.Auser'spolicy.Letussupposethatauserhasdecided,foreachpossibleactionvectora,whichdistributionxaovernextactionshewilluseshouldhendhimselfatvectora.WecallthischoiceofdistributionsX=fxagtheuser'spolicy.Wecanwritetheutilitytheuserinstateareceivesfrompolicyxa,asfollows.U(xa)=Xb2BIb(a)Vb+n+1Xi=1xiaU(xa+ei)g(xa;p)(1)Therstsumontheright-handsideistheuser'svaluefromallthebadgesheholdsatvectora.Thesecondsumistheexpectedvaluearisingfromthevectortheuserreachesaftersamplingaccordingtoxa:withprobabilityxiatheusermovestoa+ei,wherehewillusedistributionxa+eiandhenceobtainutilityU(xa+ei).Thissecondsumisdiscountedby,sincetheuseronlyreachesthisnextstepwithprobability.Thethirdtermisthecostfromthedifferencebetweentheactualactiondistributionxaandthepreferredp. 2Wefocusonthisbasicformofdiscountingforsimplicity;withoutmuchmodicationonecanalsoformulatethemodelusingmoresophisticatedtypesofdiscountingofthekinddevelopedinthebe-havioraleconomicsliterature[11],andtheresultsinthiscasearequalitativelyunchanged.2.2TheUser'sOptimizationProblemHavingfullyspeciedoursetting,wecannowaskhowauserwillbehaveunderthemodelinthepresenceofasetofbadgesB.Formally,wewillassumethattheuserchoosesapolicyX=fxagtomaximizehisutilityU(x0)startingfromtheorigin(i.e.,beforeperforminganyactions).Aswithanymodelofthisform,theun-derlyingoptimizationproblemisintendedtorepresentanabstrac-tionofarealuser'sdecision-making,whenhetradesoffthetermsinEquation(1),balancingdelitytohispreferreddistributionpagainstthelong-rangeprospectofobtainingbadges.Wenotethattheuser'soptimizationproblemcanbecastastheoptimumofaMarkovdecisionprocess(MDP),butthisobserva-tiondoesn'tdirectlyhelpussinceMDPscanbecomputationallyexpensivetosolveevenforinstanceswithstatesetsandactionsetsofmoderatesize,andourmodelhereproducesinstanceswithacountablyinnitestatesetandacontinuumofpossibleactions.Infactwewillbeabletodevelopanefcientalgorithm,butitrequiresmakinguseoftheinherentstructureoftheproblemasitarisesfromourmodel,ratherthaninvokingageneralclassofresults.Formostofthesection,wewillfocusonthresholdbadges,whichrewardacertainnumberofactionsofaparticulartype.Con-cretely,athresholdbadgecanbedescribedbyapair(k;i),specify-ingthatauserisawardedthebadgeassoonashehastakenatleastkactionsoftypeAi(thatis,Ib(a)=1ifandonlyifaik).Wesaythatathresholdbadgedescribedby(k;i)targetsdimensioni.Indevelopingthealgorithm,wefocusonthresholdbadgesthattargetoneortwodimensions;wewillseethatsuchbadgesillustratetherangeofprincipalbehaviorsthatwesubsequentlyobserveinthedataaswell.Attheendofthesection,wediscusstheextensiontogeneralbadges.OnetargeteddimensionFromEquation(1),weseethattheuser'sutilityatanactionvec-toradependsonhisutilityateachofthevectorsa+ei.Wethere-foreapproachtheproblemusingdynamicprogramming,withthevectorsaasthestatesofthedynamicprogram.Forsimplicity,wewillconsiderthecasen=2,sothereisoneadditionalsiteactionplusthelife-action,butthealgorithmtriviallyextendstolargern.IfwewanttosetupthedynamicprogrammingrecurrencebasedonEquation(1),thenweneedtoinitializeit.Wemustdothiscare-fully,sinceeachstatedependsonastateassociatedwithavectoroflargernorm.Wehandlethisviathefollowingtwoobservations.First,notethatwhentheusertakeshiskthactionoftypeA1heachievesthebadge,andafterthisthereisnofurtherbadgeutilitytobegained.Hence,foranystateathatispastthebadgeboundary,theutilityfromxadependsentirelyonthecostg(xa;p),andsointheoptimalpolicywehavexa=pforallsuchstates.Second,ifaand~ahavethesamecoordinateindimension1,thenasequenceofactionsstartingatacrossesthebadgeboundaryifandonlyifthesamesequencestartingat~acrossesthebadgeboundary.Thus,weeffectivelyhaveaone-dimensionalproblem,inwhichthevalueofcoordinate1inthecurrentvectoristheonlyvariablethatmatters.TheutilityfunctionU()canthereforebeexpressedsimplyasafunctionofa1,thenumberofA1actionstheuserhastaken.Abus-ingnotationslightlytowriteUintermsofbothvectorsandthecoordinateinthisonetargeteddimension,wehaveU(a1)=3Xj=1xjaU(xa+ej)g(xa;p)=[x1aU(xa+e1)+x2aU(xa)+x3aU(xa)]g(xa;p) Figure4:Electoratebadge.Giventhatuserhastakenxquestion-votesandyanswer-votes,whatistheprobabilitythatnextactionwillbeaquestionvote.Top:Rawprobability.Bot-tom:Relativechangeinprobabilityofquestion-voting.Noticetheeffectsofturningtowardsthebadgeboundary.Tosummarize,theaboveexperimentsdemonstratethatbadgescansteeruserbehaviorinamannerconsistentwithourmodel.First,weobserveusersiteactivityincreasesasusersapproachthebadgeandthussiteactivityincreasesattheexpenseofthelife-action.Andsecond,weobservethatusersalsoshifttheireffortonthesitetowardsactionsthatleadthemtobadges.Toourknowl-edge,thisistherstconcreteevidenceofuserschangingtheirbe-haviorineitherofthesetwodistinctwaysinresponsetobadges.4.THEBADGEPLACEMENTPROBLEMHavingseenthatourmodelmatchesupwellwithreal-worldbe-haviorforthresholdbadgesonStackOverow(badgesthatareawardedonceauserhastakenaspeciednumberofactionsofcertaintypes)wenowinvestigatehowourmodelcanhelpprovideinsightsintothedesignofbadgesforonlinecommunities.Inpartic-ular,thesitedesignerhastheabilitytodecideontheconditionsforobtainingbadges;withinourmodelwethinkofthisasplacingthebadgeboundarieswithinthespaceofactionvectors.Wearein-terestedinaddressingthefollowingquestions:(1)Howmuchusersteeringdodifferentbadgeplacementsprovide?(2)Howmightsitedesignerplacebadgestobestachievedesireduserbehavior?(3)Whatisthespaceofuserbehaviorsxedbadgescanelicit?Wepresentourresultsorganizedaroundthesethreecentralques-tions.First,wendthattheeffectivenessofabadgeisgenerallymaximizedataninternaloptimumthatissurprisinglyhigh,andweexplorehowtheeffectivenessvarieswiththesetting.Second,theeffectivenessofmultiplebadgesworkingtogetherismaximizedwhentheyareofequalvalueandarespacedroughlyevenlyapart.Finally,weexplorethefeasibleregionofuserbehaviorsthede-signercanelicitwithaxedsetofbadgesandndittobeahighlycomplexandcounterintuitivestructureworthyoffuturestudy.WearrivedattheseresultsbyrunningexperimentsonourmodeldevelopedinSection2.Byrepeatingthesimulationsusingmanydifferentparametersettings,wefoundthatthepresentedresultsallholdforawiderangeofparametervaluesandthusillustratebroaderprinciplesofthebadgeplacementproblem.Moreover,weusedthesameg()asbefore:g(x;p)=kxpk22.Throughoutthissection,werefertothetotalfractionofactionsonatargetedaction(overtheuser'slifetime)thatresultsfromaparticularsetofbadgeplacementsastheyieldofthosebadges.Wealsodenegaintobethedifferencebetweentheyieldandthede-faultfractionofactionstheusertakesintheabsenceofanybadges.OptimallocationandyieldwithonebadgeWestartourinvestigationswiththecaseinwhichthesitede-signerhasasinglebadgeatherdisposalandwishestomaximizetheyieldonasingledimension,whichwetaketobeA1withoutlossofgenerality.Thissetting,whilesimple,isofbothconceptualandpracticalvalue,sincetheeffectsofplacingasinglebadgearemosteasilyseenwhenthebadgeistheonlyinuenceoveruserbe-havior,andinpracticeitisoftendesirableforthedesignertolimitherselftoasinglebadge.Placingabadgeofxedprespeciedvalueonasingledimensionrequiresstrikingtherightbalancebetweentwomutuallycompet-ingforces.First,ifthebadgeistohaveaneffectonmanyactions,itsthresholdshouldbesethighenoughsothatittakesmanystepstoachieveit.However,ifitsthresholdissettoohigh,thenevensurvivinglongenoughonthesitetoachievethebadgebecomesalow-probabilityeventandthususerswillnotbesufcientlyin-centivizedtosteerstronglytowardsit.Thesolutiontothebadgeplacementproblemisthereforeingeneralaninternaloptimumbe-tweenthesetwogoals.Figure5showshowthefractionofactionsonthetargeteddi-mensionA1(theyield)variesasafunctionofwherethebadgeofxedvalueisplaced.Weplotthisforvariouschoicesofp=(x;0:5x;0:5),x2f0:05;:::;0:45g(whilekeepingallotherparametersxed).Noticethateachcurvehasauniqueinter-nalmaximum.WecanalsoseethattheresultingfractionofA1actionsishigherforlargervaluesofp1,whichintuitivelymakessensesincetheuserisincreasinglypredisposedtotakeA1actions.Moresubtle,however,isthattheoptimalbadgelocationalsoin-creaseswithp1:forp1=0:05itisA1=75,whereasforp1=0:45itisA1=90.Anotherinterestingobservationisthatthisoptimallocationissurprisinglyhigh:since=0:99inthisexample,p1=0:05impliesthattheuserwouldonlytake5A1actionsintheabsenceofbadges,yettheoptimalbadgelocationisfarbeyondthispoint,atA1=75.Theseresultssuggestinterestingrelationshipsbetweenthemodelparametersettingsandtheamountofsteeringinducedbythebadge.Forexample,wejustsawthattheyieldincreaseswithp1,andthatthebadgegetsplacedfurtherawayfromtheoriginasp1increases.InFigure6,weplottheyieldattheoptimalbadgelocationasafunctionofp1,Vb,andtheuser'sexpectedlifetime1=(1).Weobservethattherelationshipfollowsadifferentfunctionalformforeachsetting:theyieldincreasesapproximatelylinearlyinp1(butthegaindecreaseslinearly),increaseswithdi-minishingreturnsinVb,andsurprisinglydecreasesintheexpectedlifetimeoftheuser.Thedecreasingrelationshipsareparticularlyinteresting;theyimplythatthedesignercansteerusersmoreontheactionstheydislike(i.e.,lowp1)thanthosetheylike,andthatbadgeshavestrongereffectswhenusers'lifetimesareshorter.Twoprinciplesforplacingmultiplebadges Figure5:Theresultingfractionofactionsonthetargeteddi-mension(hereA1)asafunctionofwherethebadgeisplaced.Thedifferentcurvesshowhowtherelationshipvariesastheuser'spreferencespchange. Figure6:Howoptimalyieldvarieswithsettingparameters.Sofarwehaveestablishedthatasinglebadgeisoptimallyplacedatanidealmiddleground(whichissurprisinglyhigh)andexploredhowtheoptimalyielddependsonthesetting.Nowweinvestigatehowoneshouldplaceusemultiplebadgesinconcertwitheachother(i.e.,targetthesamedimension).Exploringoptimalplace-mentsforpairsofbadges(ratherthanindividualbadges)uncoverstwoadditionalbasicprinciplesthatwenowdiscuss.Optimalspacing.Wendthatyieldonasingletargeteddimensionismaximizedbytwobadgeswhentheyarespacedroughlyevenlyapart.InFigure7,eachpoint(x;y)representsplacingthetwobadgesatxandyA1actions,respectively,andthecolorindicatestheresultingyield(i.e.,thecumulativeactivityonbothtargetedactions).Moreeffectivebadgeplacementsarecoloredred,whilelesseffectiveplacementsarecoloredblue.Duetosymmetrytheplotisnaturallymirroredbelowthediagonal.Thesalientqualitativeobservationisthattheoptimalsetofbadgelocationsisoffthemaindiagonal,indicatingthatitisbettertoplacethetwobadgesatdistinctlocationsthantocombinethemintoasinglelargebadgeatanysinglelocation.Infact,thisobservationisconsistentwiththesolutionoftheuser'soptimizationprobleminSection2.2inthecaseofmulti-plebadgesonthesamedimension,wherewesawthatthelastbadgeexertsinuenceovernotonlytheregionafterthesecond-lastboundary,butalsoovertheearlierregionsaswell.There,oncewesolvedtheuser'soptimaldirectionforthelastbadge,solvingthesecond-lastbadgeregionbecameequivalenttotheone-badgecasewithabadgevalueequaltothesecond-lastbadgevalueplustheexpectedutilityfrompotentiallywinningthelastbadge.Wefurthernotethatintheoptimalsetofplacements,badgesarespacedapproximatelyevenlyapart.Iftherstbadgeisata1=x,thesecondbadgeisata1=2xforsomesmall.Thereasonfortheisthatthesecondbadgeisplacedalittleclosertotheoriginthanitwouldbeplacedinaone-badgeproblemstartingata1=xsinceitnotonlysteersbehaviorfora1xbutalsohasaslighteffectontheuserfora1x. Figure7:Yieldasafunctionofwheretwobadgesareplacedonthesametargeteddimension.Everycell(x;y)correspondstoplacingonebadgeata1=xactionsandanotherata1=yactions,andthecolorofthecellindicatestheresultingyield. Figure8:Howtheoptimalyieldachievablewithtwobadgesdependsonhowaxedamountofutilityissplitacrossthetwobadges.Themoreeventhesplit,thehighertheyield.Yieldismaximizedwithbadgesofequalvalue.Inthepreviouscase,thetwobadgestargetedthesameactionbutbothhadsomexedequalvaluez.Nowweallowthetwobadgestotakedif-ferentvalueswhiletheirtotalvalueisheldconstant.Assumetherstbadgehasvaluexandthesecond2zx.Nowxzandthequestionis:whatistheoptimalwaytosplitthevalueof2zamongthetwobadgestogainmaximumyield?Figure8plotstheyieldasafunctionofx.Noticetheeffectivenessofthetwobadgesismaximizedwhenthebadgeshaveequalvalue(x=z).Thisresultsuggeststhatthedesignershouldcreatebadgesinsuchawaythattheyhaveaboutequalvalue.TargetingtwodimensionsWejustestablishedhowyieldononetargeteddimensionismax-imizedbyasinglebadgeandwhentwobadgesareactingtogether.Theyieldofasetofbadgeswasanaturalobjectivefunction,sinceitexpresseshowmuchofthegivenactioncanbeinducedbythebadge(s).Withbadgesthatcantargetdifferentdimensions,thereisamorecomplexsetoftrade-offs,sinceweneedtodecidehowwewanttobalanceincreasesinthevolumeofonesiteactionwithincreasesinanother,whenbotharetargetedbybadges.Moregen-erally,weask:whatisthesetofallpossiblebehaviorsthatcanbeinducedusingbadgestargetingmultipledimensions?Forsimplicityweconsiderthescenarioinwhichthedesignerhastwothresholdbadgesthatshecanplacehowevershewants.ShecanputthembothonA1,bothonA2,oroneoneachaction.Figure9plotstheallpossiblebehaviorsthatcanbeinducedusingtwothresholdbadges.Thegeneralcontouroftheplotismaintainedacrossawiderangeofmodelparametersettings.(Forexample,thecontourgrowsastheuser'sexpectedlifetimegetslonger.)Theopacityofeach(x;y)cellreectshowmanydistinctplace-mentsoftwobadgesproduceayieldofxonA1andayieldofyonA2.Thedarkoutlinesoftheblueandredregions(wherethede-signertargetsthesamedimensionwithbothbadges)indicatethatit'seasier(inthesensethattherearemoreuniqueplacements)to Figure9:Thefeasibleregionofwhatyieldsareachievablewithtwobadgesofxedvalue(hereVb1=Vb2=200andp=(0:1;0:1;0:8)).Abluecellat(x;y)indicatesthatthede-signercanhavebothbadgestargetA1actionsandelicitx%ofA1actionsandy%ofA2actions;redcellsaresimilarbutfortheA2dimension;andyellowcellsindicatewhatisachievablebyputtingonebadgeoneachdimension.Thecellopacitycor-respondstohowmanydifferentpairsofbadgelocationselicitthatparticularyield.elicityieldontheborderthaninthemiddleofthesewing-shapedregions.Ifweconsidertheblueregionasanexample,theupperoutline,nearthey=10line,isdarkbecauseitcorrespondstousingonebadgenearlyoptimallyandessentiallydiscardingtheotherone(byplacingitsofarfromtheoriginthatitdoesn'tshapeuserbehavior),whereasthelowerdarkoutline(smoothlyvaryingfrom(10%;10%)to(40%;2%))correspondstousingbothbadgesinconcert.Therearesimilarrecurringveinsinthegoldregion,indicatingthatsomeparameterizedlinesthroughthefeasiblere-gionareimplementedbymorebadgeplacementsthanothers.Themaximumyieldonasingledimensionnaturallyoccurswhenthedesignerplacesbothbadgesonthatdimension,andthemid-dlegroundwhereboththeyieldishighonbothdimensionsoc-curswhensheplacesonebadgeoneachdimension.However,notethatthefeasibleregionisinterestinglynon-convexbetweenthesetwocases.Thismeansthatdesignercannotinducecertainbehav-iorsregardlessofhowsheplacesthebadges.Forexample,thedesignercanelicit(5%;70%)yieldusingtwobadgesonA2and(15%;50%)usingonebadgeoneach,butshecannotelicitthein-termediate(10%;60%)usinganycombinationoftwobadges.5.RELATEDWORKAsnotedintheintroduction,theuseofbadgesisagrowingtrendinthedesignofonlinecommunities,socialcomputingapplications,andelectroniccommerce(e.g.see[19]),andresearchershavebe-guntostudytherolethatbadgesplayinthesesites.AntinandChurchill[1]presentaconceptualorganizationfordifferenttypesofbadges,considering,amongotherthings,themotivationtheyprovidefromasocial-psychologicalviewpoint.Oktayetal.[18]usequasi-experimentaldesignstosupportcausalclaimsinthecon-textofbadges.Theuseofbadgescanbeviewedaspartofthegrow-ingphenomenonofgamication[9],inwhichelementstradition-allyassociatedwithcomputergamesareusedtomotivatepeopleinotherdomains.Ourworkcontributestothisliteraturebypropos-ingaformalframeworkforreasoningabouttheeffectsbadgeswillhave,whichcanpotentiallybeusedforthebadgedesigninbothcurrentandnewcontexts.Badgesandbadge-likerecognitionshavebeenproposedinoff-linedomainsaswell.Thereisagrowingmovementtowardus-ingsystemsofbadgesineducationalsettings;asoneexample,theBadgesforLifelongLearningCompetitionhasmadeuseoftheMozillaOpenBadgesproject[10,16]forthispurpose.Thusfarsuchinitiativesineducationhaveusedbadgesprimarilyasaformofcredentialing,butmovingbeyondthistowardsengagingandmo-tivatingstudentsisanotherkeyopportunitywithbadgesinthisset-ting.Theadvantagesofbadgesinsuchcontextsisathemethathasbeenadvocatedinearlierresearchineducationaswell[4].Rewardsforcumulativeefforthavebeenconsideredinseveraldomains.Forexample,onecaninterpretcustomerloyaltypro-gramsascontainingbadge-likeincentives,suchasthedifferentstatusmilestonesinairlinefrequentierprograms,andresearcheconomicsandmarketinghasstudiedtheeffectofsuchprogramsoncustomerbehavior[14,15].Inadifferentdirection,Zhangetal.considerplacinglimitedamountsofrewardinaMarkovdecisionprocess,asaninstanceofwhattheytermenvironmentdesign[20].Finally,ourworkisrelatedtothemoregeneralquestionofin-centivesforcontributioninsocialmedia.Thisisaverybroadarea,encompassinganumberofapproachesbeyondjusttheuseofbadgesforexpressingincentives.Asnotedintheintroduction,twomethodologiesthathavebeenbroughttobearonthisquestioninthecomputingliteratureare(i)social-psychologicalperspec-tivesonthenotionofengagementandsocialmotivators[5,6,17];and(ii)algorithmicgame-theoreticandeconomicapproaches,in-cludingincentivesforrecruitment,contributionquality,andcrowd-sourcedeffort[2,7,8,12,13].6.CONCLUSIONBadgesystemsareanincreasinglywidespreadfeatureofonlinesocialmediasites,andtheycanproducestrongincentiveeffectsontheusersinthesedomains.Ourworkhasproposedamethod-ologyforreasoningabouttheseincentives,startingwithamodelofuserswhooptimizetheirbehaviorgivenopportunitiestoreceivebadges.ThemainqualitativepredictionsofourmodelareborneoutbyananalysisofuserbehaviorinthepresenceofbadgesonStackOverow,andwehaveseenhowthemodelprovidesusefulqualitativeinsightsintotheproblemofplacingbadgestooptimizetheirincentiveeffects.Weseeanumberofimportantdirectionsinwhichfurtherworkcouldbepursued.First,thenotionofabadge'svaluehasbeentakenasaprimitivedenitioninthiswork,butasdiscussedearlier,itisinterestingtothinkaboutthemechanismsbywhichbadgesac-quire(non-monetary)value,andtheextenttowhichasitedesignercaninuencethevalueofabadge.Moregenerally,ourmodelsug-geststhatinoptimizingasystemofbadges,certainparametersnotjustthebadges'valuesbutalsothestructureofthepossibleactions,users'preferencesfortheseactions,andusers'expectedlifetimesallcanplayapotentialroleintheprocess.Develop-ingmethodsofestimatingtheseparametersforuseinthedesignofbadgesystemsisaninterestingdirectionforfurtherresearch.Incentivizinguserstoincreasetheiractivitynaturallybringsupthequestionofhowthisaffectsthequalityoftheiractions.Forex-ample,wendonStackOverowthatusers'votesonquestionsaresignicantlymorepositivebeforetheyreceivetheElectoratebadgethanafterit.Developingprincipledwaysofincorporatingactionqualityintomodelsofuserbehaviorinthepresenceofbadgesisanexcitingdirectionforfuturework. Now,clearlyan_-badgeisamonotonebadge.Butthereisalsoanon-trivialconversetothisobservation,asfollows.(3)Abadgeismonotoneifandonlyifitisan_-badge.Sinceonedirectioniseasy,thecruxofproving(3)istoshowthatanymonotonebadgeisan_-badge.Toprovethis,letbbeamonotonebadge.SinceSbisamonotonesubsetofNm,Dickson'sLemmasaysthatithasonlynitelymanyminimalelements;wedenotealltheminimalelementsofSbbyc1;c2;:::;ck.Letb0bethe_-badgewithgeneratorsetc1;c2;:::;ck.Weclaimthatbandb0arethesamebadge,inthesensethatSb=Sb0.ClearlySb0Sb,sinceci2Sbforalli,andSbismonotone.Conversely,consideranya2Sb;theremustexistaminimalele-mentciofSbforwhichcia.Itfollowsthata2Sb0,andsinceawasarbitrary,wehaveSbSb0.ThusSb=Sb0,andthisproves(3).Now,consideramonotonebadgeb,withageneratorsetc1;c2;:::;ck.Supposethatallcoordinatesofallvectorsciareupper-boundedbythenaturalnumberw,andletwbethevectorinNmallofwhosecoordinatesarew.ThekeyconstructionistodivideupNmbythinkingofwastheorigin,andlookingatthe2mregionsdenedbywhethereachco-ordinateislargerorsmallerthanw.Specically,let[m]denotethesetofdimensionsf1;2;:::;mg;foraset[m],letTNmdenotethesetofvectorsa=(a1;a2;:::;am)suchthataiwifandonlyifi2.NoticethatT[m]isaniteset,andallotherTfor6=[m]areinnite.ThesetT[m]hasthepropertythatallgeneratorsofSblieinT[m].ThisleadstothefollowingcrucialpropertyofourdecompositionintothesetsT.(4)Leta;~a2Tagreeonallcoordinatesin,andletb2Nm.Thena+b2Sbifandonlyif~a+b2Sb.Supposebywayofcontradictionthatthereexista,~a,andbasinthestatementof(4)suchthata+b62Sbbut~a+b2Sb.Leta0bethecoordinatewisemaximumofaand~a;bymonotonicity,a0+b2Sb.Now,wereducea0+btoaminimalelementofSbviathepro-ceduredescribedbeforeStatement(2),usingapermutationinwhichwereduceallcoordinatesinthecomplementofbeforeanycoordinatein.Letadenotethevectorwereachatthemo-mentwhenallthecoordinatesinthecomplementhavejustbeencompleted.Itcannotbethecasethataa+b,sincea2Sbwhilea+b62Sb.Butaanda+bagreeonallcoordinatesin,andsoitfollowsthatai(a+b)iforsomecoordinatei62.Finally,(a0+b)i=ai,sincetheremainderoftheproceduretoproduce(a0+b)fromanevermodiescoordinateiagain,andhence(a0+b)i(a+b)i.Butsincei62,wehaveaiwandhence(a+b)iw.ThiscontradictsthedenitionofwallminimalelementsofSbhaveallcoordinatesboundedbywandhencethiscompletestheproofof(4).Using(4),wecannowdescribeourdynamicprogrammingap-proachtotheuser'soptimizationprobleminthepresenceofbadgeb,consistingofachoiceofxaforeacha2Nm.Westartbysettingxa=pforalla2Sb;sinceTSb,thisincludesalla2T.Wethendeterminethevaluesofxafora2Tbyinduc-tiononthecardinalityof:wecanstartwith=asthebasecase,usingxa=pforalla2T.Ingeneral,consideraset[m],andsupposewehavedeter-minedthevaluesofallxa2T forall thatarepropersubsetsof.Thekeypointisthatifa;~a2Tagreeonallcoordinatesin,then(4)impliesthatxa=x~a,sinceanysequenceofactionsstartingataresultsinthebadgeifandonlyifthesamesequenceofactionsstartingat~aresultsinthebadge.Giventhis,fora2T,letf(a)bethevectorinTthatagreeswithaonallcoordinatesin,andinwhichallcoordinatesnotinhavebeensetequaltow+1.LetT=ff(a):a2Tg.Wehavexf(a)=xa,andsoitisenoughtodeterminexajustforalla2T.ThesetTisnite,sinceeachcoordinateofavectora2Tisboundedbyw+1.Wedeterminethevaluesofxaforalla2Tbybackwardinductiononthesumofcoordinatesina.Whenwegettoavectorainthiscomputation,wecanevaluatetheutilityofchoosingavectorxainstateaviatherecurrenceU(xa)=Ib(a)Vb+mXi=1xiaU(xa+ei)g(xa;p)Ofthetermsontheright-handside,therstisaconstantandthethirdhasaclosed-formexpression.Inthesumthatformsthesec-ondterm,eachsummandxiaU(xa+ei)involvesavectora+eisuchthatf(a+ei)satisesoneofthreepossibleproperties:(i)itbelongstoT forsome thatisapropersubsetof;(ii)itbelongstoTandhaslargercoordinatesumthanf(a);or(iii)f(a+ei)=f(a).Inthersttwocaseswecanllinthevalueofthesummandbyinduction;inthethirdcase,wehavexa=xa+eiintheoptimalsolution,andsowecanbringthesesummandsovertheleft-handside.Inthisway,wecansolveamaximizationprob-leminthecoordinatesofxatondtheoptimalchoiceofxa.Workingbackwardbyinductioninthisway,wecanthuscom-putetheoptimalchoiceofxaforallstatesa2Nm.B.OPTIMIZATIONPROBLEMSInSection2.2,weclaimedthattheuser'soptimizationproblemintwotargeteddimensionscanbeefcientlysolved.Whereasanaive,approximatesolutiontotheproblemrequiressolvingmanyquadraticprograms,hereweshowhowtoefcientlyndtheexactsolutionviaareductiontoaone-variableoptimizationproblem.(Thetechniqueforsolvingtheoptimizationprobleminonetargeteddimensionissimilarafterasuitablechangeofvariables.)Wewishtosolvethefollowingoptimizationproblem:maximizexPnj=1Cjxjkxpk22 1xn+1subjecttoxj0;j=1;2;:::;n+1;n+1Xj=1xj=1LetC=[C1C2:::Cn]TbethevectorofconstantsCjforj=1;2;:::;n,andlet~x=[x1x2:::xn]Tand~p=[p1p2:::pn]Tbetheprojectionsofxandpontotherstndimensionsrespectively.Ifweconsiderxingxn+10forthemoment,thisproblemcanberecastasthefollowingminimizationproblem:minimizexk~p~xk22CT~xsubjectto~xj0;j=1;2;:::;n;nXj=1xj=1xn+1Firstweaddtheequalityconstrainttotheobjectivefunctionf(~x)withaLagrangemultiplier:
© 2021 docslides.com Inc.
All rights reserved.