/
Tripledcoincidencepointtheoremsforweak Tripledcoincidencepointtheoremsforweak

Tripledcoincidencepointtheoremsforweak - PDF document

lindy-dunigan
lindy-dunigan . @lindy-dunigan
Follow
384 views
Uploaded On 2016-08-15

Tripledcoincidencepointtheoremsforweak - PPT Presentation

RESEARCH OpenAccess contractionsinpartiallyorderedmetricspaces HassenAydi 1 ErdalKarapinar 2 andMihaiPostolache 3 Correspondencehassen aydiisimarnutn 1 InstitutSup ID: 448489

RESEARCH OpenAccess  -contractionsinpartiallyorderedmetricspaces HassenAydi 1* ErdalKarapinar 2 andMihaiPostolache 3 *Correspondence:hassen. aydi@isima.rnu.tn 1 InstitutSup

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Tripledcoincidencepointtheoremsforweak" is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

RESEARCH OpenAccess Tripledcoincidencepointtheoremsforweak  -contractionsinpartiallyorderedmetricspaces HassenAydi 1* ,ErdalKarapinar 2 andMihaiPostolache 3 *Correspondence:hassen. aydi@isima.rnu.tn 1 InstitutSupérieurd ’ Informatique etdesTechnologiesde CommunicationdeHammam Sousse,UniversitédeSousse,Route GP1-4011,HammamSousse, Tunisie Fulllistofauthorinformationis availableattheendofthearticle Abstract Inthisarticle,wepresenttripledcoincidencepointtheoremsfor F : X 3 ® X and g : X ® X satisfyingweak  -contractionsinpartiallyorderedmetricspaces.Wealso providenontrivialexamplestoillustrateourresultsandnewconceptspresented herein.Ourresultsunify,generalizeandcomplementvariousknowncomparable resultsfromthecurrentliterature,BerindeandBorcutandAbbasetal. Fixedpointtheoryhasfascinatedhundredsofresearcherssince1922withthecele- bratedBanach ’ sfixedpointtheorem.Thistheoremprovidesatechniqueforsolvinga varietyofappliedproblemsinmathematicalsciencesandengineering.Thereexistsa lastliteratureonthetopicandthisisaveryactivefieldofresearchatpresent.There aregreatnumberofgeneralizationsoftheBanachcontractionprinciple.Bhaskarand Lakshmikantham[1]introducedthenotio nofcoupledfixedpointandprovedsome coupledfixedpointresultsundercertainconditions,inacompletemetricspace endowedwithapartialorder.Later,Lakshmikanthamand  iri  [2]extendedthese resultsbydefiningthemixed g -monotoneproperty.Moreaccurately,theyproved coupledcoincidenceandcoupledcommonfixedpointtheoremsforamixed g -mono- tonemappinginacompletemetricspaceendowedwithapartialorder.Karap š nar [3,4]generalizedtheseresultsonacompleteconemetricspaceendowedwithapartial order.Forotherresultsoncoupledfixe dpointtheory,weaddressthereadersto [5-13]. Tomakeourexpositionselfcontained,inthissectionwerecallsomepreviousnota- tionsandknownresults. Forsimplicity,wedenotefromnowon X × X ··· X × X    k terms by X k ,where k Î N and X beanon-emptyset. Let( X ,  )beapartiallyorderedset.Accordingto[1],themapping F : X 2 X issaid tohave mixedmonotoneproperty if F ( x,y )ismonotonenon-decreasingin x andis monotonenon-increasingin y ,thatis,forany x,y Î X , x 1  x 2  F ( x 1 , y )  F ( x 2 , y ),for x 1 , x 2  X , y 1  y 2  F ( x , y 2 )  F ( x , y 1 ),for y 1 , y 2  X . Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 ©2012Aydietal;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribution License(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductioninanymedium, providedtheoriginalworkisproperlycited. Anelement( x , y ) Î X 2 issaidtobea coupledfixedpoint ofthemapping F : X 2 ® X if F ( x , y )= x and F ( y , x )= y . Theorem1.1 .([1]) Let ( X ,  ) beanorderedsetsuchthatthereexistsametricdonX suchthat ( X , d ) iscomplete.LetF : X 2 ® Xbeacontinuousmappinghavingthemixed monotonepropertyonX.Assumethatthereexistsk Î [0,1) with d ( F ( x , y ), F ( u , v ))  k 2 [ d ( x , u )+ d ( y , v )], forallu  x , y  u . (1 : 1) Ifthereexistx 0 , y 0 Î Xsuchthatx 0  F ( x 0 , y 0 ) andF ( y 0 , x 0 )  y 0 , then,thereexistx, y Î Xsuchthatx = F ( x , y ) andy = F ( y , x ). Recently,SametandVetro[14]introducedthenotionoffixedpointof N -orderas naturalextensionofthatofcoupledfixed pointandestablishedsomenewcoupled fixedpointtheoremsincompletemetricspaces,usinganewconceptof F -invariant set.Later,BerindeandBorcut[15]obtained existenceanduniquenessoftriplefixed pointresultsinacompletemetricspace,endowedwithapartialorder. Again,let( X ,  )beapartiallyorderedset.Inacco rdancewith[15],themapping F : X 3 ® X issaidtohavethe mixedmonotoneproperty ifforany x,y,z Î X x 1 , x 2  X , x 1  x 2  F ( x 1 , y , z )  F ( x 2 , y , z ), y 1 , y 2  X , y 1  y 2  F ( x , y 1 , z )  F ( x , y 2 , z ), z 1 , z 2  X , z 1  z 2  F ( x , y , z 1 )  F ( x , y , z 2 ). Anelement( x , y , z ) Î X 3 iscalleda tripledfixedpoint of F if F ( x , y , z )= x , F ( y , x , y )= y and F ( z , y , x )= z . BerindeandBorcut[15]provedthefollowingtheorem. Theorem1.2 .([15]) Let ( X ,  ) beapartiallyorderedsetand ( X,d ) beacomplete metricspace.LetF:X 3 ® XbeamappinghavingthemixedmonotonepropertyonX. Assumethatthereexistconstantsa,b,c Î [0,1) suchthata + b + c forwhich d ( F ( x , y , z ), F ( u , v , w ))  ad ( x , u )+ bd ( y , v )+ cd ( z , w ) (1 : 2) forallx  u,y   , z  w.Assumeeither ( I ) Fiscontinuous,or ( II ) Xhasthefollowingproperties: ( i ) ifnon-decreasingsequencex n ® x,thenx n  xforalln , ( ii ) ifnon-increasingsequencey n ® y,theny n  yforalln . Ifthereexistx 0 , y 0 , z 0 Î Xsuchthat x 0  F ( x 0 , y 0 , z 0 ), y 0  F ( y 0 , x 0 , y 0 ), andz 0  F ( x 0 , y 0 , z 0 ) thenthereexist x,y,z Î Xsuchthat F ( x , y , z )= x , F ( y , x , y )= y , andF ( z , y , x )= z . Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page2of12 Inthisarticle,weestablishtripledcoincidencepointtheoremsforandsatisfyingnonlinearcontractiveconditions,inpartiallyorderedmetricspaces.Thepresentedtheoremsextendandimprovesomeresultsinlitterature.2MainresultsWeshallstartthissectionbyrecallingthefollowingbasicnotions,introducedby[Abbas,AydiandKarapnar,Tripledcommonfixedpointinpartiallyorderedmetricspaces,submitted].Inthisrespect,letusconsider()apartiallyorderedset,twomappings.Themappingissaidtohavethemixedg-mono-tonepropertyifforanyx,y,z x1,x2X,gx1gx2F(x1,y,z)F(x2,y,z),y1,y2X,gy1gy2F(x,y1,z)F(x,y2,z),z1,z2X,gz1gz2F(x,y,z1)F(x,y,z2). Anelement()iscalledatripledcoincidencepoint ,and while(gx,gy,gz)issaidatripledpointofcoincidenceofmappings.Moreover,x,y,z)iscalledatripledcommonfixedpoint ,and Atlast,mappingsarecalled ))= Inthesamepaper,theyprovedthefollowingresult.Theorem2.1beapartiallyorderedsetandsupposethereisametricdonXsuchthatX,disacompletemetricspace.Assumethereisafunction:[0,+[0,+suchthattforeacht�0.AlsosupposeF:XXandgXaresuchthatFhasthemixedg-monotonepropertyandsupposethereexistp,q,r[0,1)withpsuchthat d(F(x,y,z),F(u,v,wpdgxgu)+qd(gy,gv)+rd(gzgw), foranyx,y,zXforwhichgxgu,ggyandgzSupposeFgiscontinuousandcommuteswithF.SupposeeitherFiscontinuous,orXhasthefollowingproperties:ifnon-decreasingsequencegxrespectively,gzthengxrespectively,gzforallnifnon-increasingsequencegyy,thengyyforallnIfthereexistxXsuchthatgxandgzthenthereexistx,y,zXsuchthat andF thatis,FandghaveatripledcoincidencepointetalFixedPointTheoryandApplicationshttp://www.fixedpointtheoryandapplications.com/content/2012/1/44Page3of12 Beforestartingtointroduceourresults,letusconsiderthesetoffunctions  = \b  :[0,+  ) \b [0,+  ) |  ( t ) t andlim r \b t +  ( r ) t , t � 0 \t . Ourfirstmainresultisthefollowing: Theorem2.2 . Let ( X ,  ) beapartiallyorderedsetandsupposethereisametricdon Xsuchthat ( X,d ) isacompletemetricspace.SupposeF : X 3 ® Xandg : X ® Xare suchthatFhasthemixedg-monotonepropertyandF ( X 3 )  g ( X ). Assumethereisa function  ÎF suchthat d ( F ( x , y , z ), F ( u , v , w ))+ d ( F ( y , x , y ), F ( v , u , v ))+ d ( F ( z , y , x ), F ( w , v , u ))  3  \n d ( gx , gu )+ d ( gy , gv )+ d ( gz , gw ) 3 , (2 : 2) foranyx,y,z,u,  ,w Î Xforwhichgx  gu,g   gyandgz  gw.AssumethatFis continuous,giscontinuousandcommuteswithF.Ifthereexistx 0 , y 0 , z 0 Î Xsuchthat gx 0  F ( x 0 , y 0 , z 0 ), gy 0  F ( y 0 , x 0 , y 0 ) andgz 0  F ( z 0 , y 0 , x 0 ), (2 : 3) thenthereexistx,y,z Î Xsuchthat F ( x , y , z )= gx , F ( y , x , y )= gy , andF ( z , y , x )= gz , thatis,Fandghaveatripledcoincidencepoint . Proof .Let x 0 , y 0 , z 0 Î X besuchthat gx 0  F ( x 0 , y 0 , z 0 ), gy 0  F ( y 0 , x 0 , y 0 )and gz 0  F ( z 0 , y 0 , x 0 ).Wecanchoose x 1 , y 1 , z 1 Î X suchthat gx 1 = F ( x 0 , y 0 , z 0 ), gy 1 = F ( y 0 , x 0 , y 0 )and gz 1 = F ( z 0 , y 0 , x 0 ). (2 : 4) Thiscanbedonebecause F ( X 3 )  g ( X ).Continuingthisprocess,weconstruct sequences{ x n },{ y n },and{ z n }in X suchthat gx n +1 = F ( x n , y n , z n ), gy n +1 = F ( y n , x n , z n ),and gz n +1 = F ( z n , y n , x n ). (2 : 5) Byinduction,wewillprovethat gx n  gx n +1 , gy n +1  gy n ,and gz n  gz n +1 . (2 : 6) Since gx 0  F ( x 0 , y 0 , z 0 ), gy 0  F ( y 0 , x 0 , y 0 ),and gz 0  F ( z 0 , y 0 , x 0 ),thereforeby(2.4) wehave gx 0  gx 1 , gy 1  gy 0 ,and gz 0  gz 1 . Thus(2.6)istruefor n =0.Wesupposethat(2.6)istrueforsome n �0.Since F hasthemixed g -monotoneproperty,by gx n  gx n +1 , gy n +1  gy n ,and gz n  gz n +1 ,we havethat gx n +1 = F ( x n , y n , z n )  F ( x n +1 , y n , z n )  F ( x n +1 , y n , z n +1 )  F ( x n +1 , y n +1 , z n +1 )= gx n +2 , Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page4of12 gy n +2 = F ( y n +1 , x n +1 , y n +1 )  F ( y n +1 , x n , y n +1 )  F ( y n , x n , y n +1 )  F ( y n , x n , y n )= gy n +1 , and gz n +1 = F ( z n , y n , x n )  F ( z n +1 , y n , x n )  F ( z n +1 , y n +1 , x n )  F ( z n +1 , y n +1 , x n +1 )= gz n +2 . Thatis,(2.6)istrueforany n Î N .Ifforsome k Î N gx k = gx k +1 , gy k = gy k +1 ,and gz k = gz k +1 , then,by(2.5),( x k ,y k ,z k )isatripledcoincidencepointof F and g .Fromnowon,we assumethatatleast gx n \t = gx n +1 or gy n \t = gy n +1 or gz n \t = gz n +1 (2 : 7) forany n Î N .From(2.6)andtheinequality(2.2) d ( gx n +1 , gx n )+ d ( gy n +1 , gy n )+ d ( gz n +1 , gz n ) = d ( F ( x n , y n , z n ), F ( x n Š 1 , y n Š 1 , z n Š 1 ))+ d ( F ( y n , x n , y n ), F ( y n Š 1 , x n Š 1 , y n Š 1 )) + d ( F ( z n , y n , x n ), F ( z n Š 1 , y n Š 1 , x n Š 1 ))  3  \n 1 3 ( d ( gx n , gx n Š 1 )+ d ( gy n , gy n Š 1 )+ d ( gz n , gz n Š 1 ) . Foreach n  1,take  n := 1 3 ( d ( gx n , gx n Š 1 )+ d ( gy n , gy n Š 1 )+ d ( gz n , gz n Š 1 )). (2 : 8) Onecanwrite  n +1   (  n )  n  1. (2 : 9) By(2.7),wehave  n �0.Havinginmind  ( t ) t foreach t �0,sowehave  (  n )  n . From(2.9),weget  n +1 n  n  1, thatis,thesequence{  n }isnon-negativeanddecreasing.Therefore,thereexists some   0suchthat lim n \b +   n =lim n \b +  1 3  d ( gx n , gx n Š 1 )+ d ( gy n , gy n Š 1 )+ d ( gz n , gz n Š 1 )  =  + . (2 : 10) Weshallprovethat  =0.Assume,onthecontrary,that  �0.Thenbyletting n ® +  in(2.9)wehave 0 =lim n \b +   n +1  lim n \b +   (  n )=lim r \b  +  ( r ) , whichisacontradiction.Thus,  =0,andby(2.10),weget lim n \b +   n =0. (2 : 11) Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page5of12 Wenowprovethat{ gx n },{ gy n },and{ gz n }areCauchysequencesin( X,d ). Suppose,onthecontrary,thatatleastoneof{ gx n },{ gy n },and{ gz n }isnotaCauchy sequence.So,thereexists  �0forwhichwecanfindsubsequences{ gx n (k) },{ gx m (k) }of { gx n },{ gy n ( k ) },{ gy m (k) }of{ gy n },and{ gz n ( k ) },{ gz m ( k ) }of{ gz n }with n ( k �) m ( k )  k suchthat d ( gx n ( k ) , gx m ( k ) )+ d ( gy n ( k ) , gy m ( k ) )+ d ( gz n ( k ) , gz m ( k ) )   . (2 : 12) Additionally,correspondingto m ( k ),wemaychoose n ( k )suchthatitisthesmallest integersatisfying(2.12)and n ( k �) m ( k )  k .Thus, d ( gx n ( x ) Š 1 , gx m ( k ) )+ d ( gy n ( k ) Š 1 , gy m ( k ) )+ d ( dz n ( k ) Š 1 , gz m ( k ) ) . (2 : 13) Byusingtriangleinequalityandhavinginmind(2.12)and(2.13)   t k = d ( gx n ( k ) , gx m ( k ) )+ d ( gy n ( k ) , gy m ( k ) )+ d ( gz n ( k ) , gz m ( k ) )  d ( gx n ( k ) , gx n ( k ) Š 1 )+ d ( gx n ( k ) Š 1 , gx m ( k ) )+ d ( gy n ( k ) , gy n ( k ) Š 1 ) + d ( gy n ( k ) Š 1 , gy m ( k ) )+ d ( gz n ( k ) , gz n ( k ) Š 1 )+ d ( gz n ( k ) Š 1 , gz m ( k ) ) d ( gx n ( k ) , gx n ( k ) Š 1 )+ d ( gy n ( k ) , gy n ( k ) Š 1 )+ d ( gz n ( k ) , gz n ( k ) Š 1 )+  . (2 : 14) Letting k ®  in(2.14)andusing(2.11) lim k \b t k =lim k \b d ( gx n ( k ) , gx m ( k ) )+ d ( gy n ( k ) , gy m ( k ) )+ d ( gz n ( k ) , gz m ( k ) )=  . (2 : 15) Againbytriangleinequality, t k = d ( gx n ( k ) , gx m ( k ) )+ d ( gy n ( k ) , gy m ( k ) )+ d ( gz n ( k ) , gz m ( k ) )  d ( gx n ( k ) , gx n ( k )+1 )+ d ( gx n ( k )+1 , gx m ( k )+1 )+ d ( gx m ( k )+1 , gx m ( k ) ) + d ( gy n ( k ) , gy n ( k )+1 )+ d ( gy n ( k )+1 , gy m ( k )+1 )+ d ( gy m ( k )+1 , gy m ( k ) ) + d ( gz n ( k ) , gz n ( k )+1 )+ d ( gz n ( k )+1 , gy m ( k )+1 )+ d ( gz m ( k )+1 , gz m ( k ) )   n ( k )+1 +  m ( k )+1 + d ( gx n ( k )+1 , gx m ( k )+1 )+ d ( gy n ( k )+1 , gy m ( k )+1 ) + d ( gz n ( k )+1 , gz m ( k )+1 ). (2 : 16) Since n ( k �) m ( k ),then gx n ( k )  gx m ( k ) , gy n ( k )  gy m ( k ) , gz n ( k )  gz m ( k ) . (2 : 17) Take(2.17)in(2.2)toget d ( gx n ( k )+1 , gx m ( k )+1 )+ d ( gy n ( k )+1 , gy m ( k )+1 )+ d ( gz n ( k )+1 , gz m ( k )+1 ) = d ( F ( x n ( k ) , y n ( k ) , z n ( k ) ), F ( x m ( k ), y m ( k ) , z m ( k ) ) + d ( F ( y n ( k ) , x n ( k ) , y n ( k ) ), F ( y m ( k ) , x m ( k ) , y m ( k ) ) + d ( F ( z n ( k ) , y n ( k ) , x n ( k ) ), F ( z m ( k ) , y m ( k ) , x m ( k ) ))  3  \n 1 3 [ d ( gx n ( k ) , gx m ( k ) )+ d ( gy n ( k ) , gy m ( k ) )+ d ( gz n ( k ) , gz m ( k ) )] =3  \n t k 3 . Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page6of12 Combiningthisin(2.16),weobtainthat t k   n ( k )+1 +  m ( k )+1 + d ( gx n ( k )+1 , gx m ( k )+1 )+ d ( gy n ( k )+1 , gy m ( k )+1 ) + d ( gz n ( k )+1 , gz m ( k )+1 )   n ( k )+1 +  m ( k )+1 +3  \n t k 3 . Letting k ®  andhavinginmind(2.11)and(2.15),weget   3lim k \b +   \n 1 3 t k =3lim r \b \f 1 3 t \r +  ( r ) 3 \n 1 3  =  , whichisacontradiction.Thisshowsthat{ gx n },{ gy n },and{ gz n }areCauchysequences in(X, d ). Since X iscomplete,thereexist x,y,z Î X suchthat lim n \b +  gx n = x ,lim n \b +  gy n = y andlim n \b +  gz n = z . (2 : 18) From(2.18)andthecontinuityof g . lim n \b +  g ( gx n )= gx ,lim n \b +  g ( gy n )= gy ,andlim n \b +  g ( gz n )= gz . (2 : 19) Fromthecommutativityof F and g ,wehave g ( gx n +1 )= g ( F ( x n , y n , z n ))= F ( gx n , gy n , gz n ), g ( gy n +1 )= g ( F ( y n , x n , y n ))= F ( gy n , gx n , gy n ), g ( gz n +1 )= g ( F ( z n , y n , x n ))= F ( gz n , gy n , gx n ). (2 : 20) Nowweshallshowthat gx = F ( x,y,z ), gy = F ( y,x,y ),and gz = F ( z,y,x ). Supposethat F iscontinuous.Letting n ® +  in(2.20),thereforeby(2.18)and (2.19),weobtain gx =lim n \b +  g ( gx n +1 )=lim n \b +  F ( gx n , gy n , gz n ) = F  lim n \b +  gx n ,lim n \b +  gy n ,lim n \b +  gz n  = F ( x , y , z ), gy = lim n \b +  g ( gy n +1 )=lim n \b +  F ( gy n , gx n , gy n ) = F  lim n \b +  gy n ,lim n \b +  gx n ,lim n \b +  gy n  = F ( y , x , y ), and gz =lim n \b +  g ( gz n +1 )=lim n \b +  F ( gz n , gy n , gx n ) = F  lim n \b +  gz n ,lim n \b +  gy n ,lim n \b +  gx n  = F ( z , y , x ). Wehaveprovedthat F and g haveatripledcoincidencepoint. Corollary2.3 . Let ( X ,  ) beapartiallyorderedsetandsupposethereisametricdon Xsuchthat ( X,d ) isacompletemetricspace.SupposeF : X 3 ® Xandg : X ® Xare suchthatFhasthemixedg-monotonepropertyandF ( X 3 )  g ( X ). Assumethereexists a Î [0,1) suchthat Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page7of12 d ( F ( x , y , z ), F ( u , v , w ))+ d ( F ( y , x , y ), F ( v , u , v ))+ d ( F ( z , y , x ), F ( w , v , u ))   ( d ( gx , gu )+ d ( gy , gv )+ d ( gz , gw )), foranyx,y,z,u,  ,w Î Xforwhichgx  gu,g   gy,andgz  gw.AssumethatFis continuous,giscontinuousandcommuteswithF.Ifthereexistx 0 , y 0 , z 0 Î Xsuchthat gx 0  F ( x 0 , y 0 , z 0 ), gy 0  F ( y 0 , x 0 , y 0 ),and gz 0  F ( z 0 , y 0 , x 0 ), thenthereexistx,y,z Î Xsuchthat F ( x , y , z )= gx , F ( y , x , y )= gy , andF ( z , y , x )= gz , thatis,Fandghaveatripledcoincidencepoint . Proof .Itfollowsbytaking  ( t )= a t inTheorem2.2. Inthefollowingtheorem,weomitthecontinuityhypothesisof F .Weneedthefol- lowingdefinition. Definition2.1 . Let ( X ,  ) beapartiallyorderedsetanddbeametriconX.Wesay that ( X , d ,  ) isregularifthefollowingconditionshold : (i) ifanon-decreasingsequence ( x n ) issuchthatx n ® x,thenx n  xforalln , (ii) ifanon-increasingsequence ( y n ) issuchthaty n ® y,theny  y n foralln . Theorem2.4 . Let ( X ,  ) beapartiallyorderedsetanddbeametriconXsuchthat ( X,d ,  ) isregular.Supposethatthereexist  ÎF andmappingsF : X 3 ® Xandg : X ® Xsuchthat (2.2) holdsforanyx,y,z,u,  ,w Î Xforwhichgx  gu,g   gyandgz  gw.Supposealsothat ( g ( X ), d ) iscomplete,Fhasthemixedg-monotonepropertyand F ( X 3 )  g ( X ). Ifthereexistx 0 , y 0 , z 0 Î Xsuchthatgx 0  F ( x 0 , y 0 , z 0 ), gy 0  F ( y 0 , x 0 , y 0 ), andgz 0  F ( z 0 , y 0 , x 0 ), thenthereexistx,y,z Î Xsuchthat F ( x , y , z )= gx , F ( y , x , y )= gy , andF ( z , y , x )= gz , thatis,Fandghaveatripledcoincidencepoint . Proof .ProceedingexactlyasinTheorem2.2,wehavethat( gx n ),( gy n ),and( gz n )are Cauchysequencesinthecompletemetricspace( g ( X ), d ).Then,thereexist x,y,z Î X suchthat gx n ® gx,gy n ® gy ,and gz n ® gz .Since( gx n )and( gz n )arenon-decreasing and( gy n )isnon-increasing,usingtheregularityof( X,d ,  ),wehave gx n  gx,gz n  gz , and gy  gy n forall n  0.If gx n = gx,gy n = gy ,and gz n = gz forsome n  0,then gx = gx n  gx n +1  gx = gx n ,gz = gz n  gz n +1  gz = gz n ,and gy  gy n +1  gy n = gy ,which impliesthat gx n = gx n +1 = F ( x n ,y n ,z n ), gy n = gy n +1 = F ( y n ,x n ,y n ),and gz n = gz n +1 = F ( z n ,y n ,x n ),thatis,( x n ,y n ,z n )isatripledcoincidencepointof F and g .Then,wesup- posethat( gx n ,gy n ,gz n )  ( gx,gy,gz )forall n  0.Usingthetriangle inequality,(2.2) andtheproperty  ( t ) t forall t �0, d ( gx , F ( x , y , z ))  d ( gx , gx n +1 )+ d ( gx n +1 , F ( x , y , z )) = d ( gx , gx n +1 )+ d ( F ( x , y , z ), F ( x n , y n , z n ))  d ( gx , gx n +1 )+3  \n 1 3 [ d ( gx n , gx )+ d ( gy n , gy )+ d ( dz n , gz )] d ( gx , gx n +1 )+ d ( gx n , gx )+ d ( gy n , gy )+ d ( gz n , gz ). (2 : 21) Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page8of12 intheaboveinequalityweobtainthatx,y,z))=0,soy,zAnalogously,wefindthat F(y,x,y)=gy,F(z,y,x)=gz thus,wehaveprovedthathaveatripledcoincidencepoint.Corollary2.5beapartiallyorderedsetandsupposethereisametricdonXsuchthatisregular.SupposeF:XXandgXaresuchthatFhasthemixedg-monotonepropertyandFAssumethereexistsists)such ))+))+ foranyx,y,z,u,Xforwhichgxgu,ggy,andgzgw.Supposealsothatiscomplete.IfthereexistxXsuchthat )and thenthereexistx,y,zXsuchthat andF thatis,Fandghaveatripledcoincidencepoint.ItfollowsbytakinginTheorem2.4.Now,weshallprovetheexistenceandtheuniquenessofatripledcommonfixedpointtheorem.Foraproductofapartialorderedset(),wedefineapartialorderinginthefollowingway:Forall(x,y,z),( (x,y,z)(u,v,r)\nxu,yvandzr. Wesaythat(x,y,z)and()arecomparableif )or( Also,wesaythat(x,y,z)isequalto()ifandonlyifu,yTheorem2.6InadditiontohypothesisofTheoremsupposethatforallx,y,zandinXthereexistsa,b,cinXsuchthata,b,cb,a,bc,b,aiscomparabletox,y,zF(y,x,yz,y,x,u,)).Also,assumethatisnon-decreasing.Then,Fandghaveauniquetripledcommonfixedpointx,y,zthatis andz Proof.DuetoTheorem2.2,thesetoftripledcoincidencepointsofandisnotempty.Assumenow,that(x,y,z)and()aretwotripledcoincidencepointsof,thatis, ,and,and Weshallshowthat(gx,gy,gz)and(gu,g,gr)areequal.etalFixedPointTheoryandApplicationshttp://www.fixedpointtheoryandapplications.com/content/2012/1/44Page9of12 Byassumption,thereis( a,b,c )in X 3 suchthat( F ( a,b,c ), F ( b,a,b ), F ( c,b,a ))is comparableto( F ( x,y,z ), F ( y,x,y ), F ( z,y,x ))and( F ( u,  ,r ), F (  ,u,v ), F ( r,  ,u )). Definethesequences{ ga n },{ gb n },and{ gc n }suchthat a = a 0 , b = b 0 , c = c 0 and ga n = F ( a n Š 1 , b n Š 1 , c n Š 1 ), gb n = F ( b n Š 1 , a n Š 1 , b n Š 1 ), gc n = F ( c n Š 1 , b n Š 1 , a n Š 1 ), forall n .Further,set x 0 = x,y 0 = y,z 0 = z and u 0 = u,  0 =  ,r 0 = r ,andsimilar definethesequences{ gx n },{ gy n },{ gz n }and{ gu n },{ g  n },{ gr n }.Then, gx n = F ( x , y , z ), gu n = F ( u , v , r ), gy n = F ( y , x , y ,), gv n = F ( v , u , v ), gz n = F ( z , y , x ), gr n = F ( r , v , u ,), (2 : 23) forall n  1.Since( F ( x,y,z ), F ( y,x,y ), F ( z,y,x ))=( gx 1 , gy 1 , gz 1 )=( gx,gy,gz )is comparableto( F ( a,b,c ), F ( b,a,b ), F ( c,b,a ))=( ga 1 , gb 1 , gc 1 ),thenitiseasytoshow that( gx,gy,gz )  ( ga 1 , gb 1 , gc 1 ).Recursively,wegetthat ( gx , gy , gz )  ( ga n , gb n , gc n )forall n  0. (2 : 24) By(2.24)and(2.2),wehave d ( gx , ga n +1 )+ d ( gb n +1 , gy )+ d ( gz , gc n +1 )= d ( F ( x , y , z ), F ( a n , b n , c n )) + d ( F ( b n , a n , b n ), F ( y , x , y ))+ d ( F ( z , y , x ), F ( c n , b n , a n )  3  \n d ( gx , ga n )+ d ( gy , gb n )+ d ( gz , gc n ) 3 . (2 : 25) Set \b n = d ( gx , ga n )+ d ( gy , gb n )+ d ( gz , gc n ) 3 From(2.25),wededucethat g n +1   ( g n ).Since  isnon-decreasing,itfollows \b n   n ( \b 0 ). Fromthedefinitionof F ,weget lim n \b +   n ( t )=0 .Then,wehave lim n \b +  \b n =0 .Thus, lim n \b d ( gx , ga n )=0,lim n \b d ( gy , gb n )=0,lim n \b d ( gz , gc n )=0. (2 : 26) Byanalogy,weshowthat lim n \b d ( gu , ga n )=0,lim n \b d ( gv , gb n )=0,lim n \b d ( gr , gc n )=0. (2 : 27) Combining(2.26)and(2.27)yieldsthat( gx,gy,gz )and( gu,g  ,gr )areequal. Since gx = F ( x,y,z ), gy = F ( y,x,y ),and gz = F ( z,y,x ),bythecommutativityof F and g ,wehave g ( gx )= g ( F ( x , y , z ))= F ( gx , gy , gz ), g ( gy )= g ( F ( y , x , y ))= F ( gy , gx , gy ), g ( gz )= g ( F ( z , y , x ))= F ( gz , gy , gx ). Denote gx = x ’ ,gy = y ’ ,and gz = z ’ .Fromtheprecedentidentities, gx = F ( x , y , z ), gy = F ( y , x , y ),and gz = F ( z , y , x ), Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page10of12 thatis,( x ’ ,y ’ ,z ’ )isatripledcoincidencepointof F and g .Consequently,( gx ’ ,gy ’ ,gz ’ ) and( gx,gy,gz )areequal,thatis, gx = gx ’ ,gy = gy ’ ,and gz = gz ’ . Wededuce gx ’ = gx = x ’ ,gy ’ = gy = y ’ ,and gz ’ = gz = z ’ .Therefore,( x ’ ,y ’ ,z ’ )isa tripledcommonfixedof F and g .ItsuniquenessfollowsfromTheorem2.2. 3Examples RemarkthatTheorem2.2ismoregeneralthanTheorem2.1,sincethecontractive condition(2.2)isweakerthan(2.1),afactwhichisclearlyillustratedbythefollowing example. Example3.1 .Let X =  with d ( x,y )=| x - y |andnaturalorderingandlet g : X ® X , F : X 3 ® X begivenby g ( x )= n +1 n x , n =1,2, ... , x  X ; F ( x , y , z )= x ,( x , y , z )  X 3 . Itisclearthat F iscontinuousandhasthemixed g -monotoneproperty.Wenow take  ( t )= n n +1 t .Weshallshowthat(2.2)holdsforall gx  gu,gy  g  ,and gz  gw . Let x,y,z,u,  ,and w suchthat gx  gu,gy  g  ,and gz  gw ,andbydefinitionof g , itmeansthat x  u,y   and z  w ,sowehave d ( F ( x , y , z ), F ( u , v , w ))+ d ( F ( y , x , y ), F ( v , u , v ))+ d ( F ( z , y , x ), F ( w , v , u )) = | x Š u | +   y Š v   + | z Š w | =3  \n d ( gx , gu )+ d ( gy , gv )+ d ( gz , gw ) 3 . whichisthecontractivecondi tion(2.2).Ontheotherhand, x 0 =0, y 0 =0, z 0 =0 satisfy(2.3).AllthehypothesesofTheorem2.2areverified,and(0,0,0)isatripled coincidencepointof F and g . Ontheotherhand,assumethat(2.1)holds.Then,thereexist p,q,r  0suchthat p + 2 q + r 1and  satisfying  ( t ) foreach t �0.If x � u,z = w and y =  ,wehave 0 | x Š u | = d ( F ( x , y , z ), F ( u , v , w ))   ( pd ( gx , gu )+ qd ( gy , gv )+ rd ( gz , gw )) =  \n n +1 n p | x Š u | n +1 n p | x Š u | , whichimplies p � n n +1 forany n  1,andletting n ® +  ,weget p  1,thatisa contradiction.Thus,Theorem2.1isnotapplicableinthiscase. FollowingexampleshowsthatTheorem2.2ismoregeneralthanTheorem1.2. Example3.2 . LetX =  beendowedwiththeusualorderingandtheusualmetric. Considerg : X ® XandF : X 3 ® Xbegivenbytheformulas g ( x )= x , F ( x , y , z )= 3 x Š 6 y +3 z 16 , forallx , y , z  X Take  :[0,  ) ® [0,  ) begivenby  ( t )= 3 t 4 forallt Î [0,  ). ItisclearthatallconditionsofTheorem2.2aresatisfied.Moreover ,(0,0,0) isa tripledcoincidencepoint(alsoacommonfixedpoint)ofFandg . Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page11of12 Now,forx = u,z = wand  � y,wehave d ( F ( x , y , z ), F ( u , v , w )= 3 8 ( v Š y ) � 1 3 ( v Š y )  k 3 [ d ( x , u )+ d ( y , v ) d ( z , w )], foranyk Î [0,1), thatistheresultofBerindeandBorcut [15] givenbyTheorem1.2is notapplicable ( fora = b = c = k 3 ) . Authordetails 1 InstitutSupérieurd ’ InformatiqueetdesTechnologiesdeCommunicationdeHammamSousse,UniversitédeSousse, RouteGP1-4011,HammamSousse,Tunisie 2 DepartmentofMathematics,At õ l õ mUniversity,Incek,Ankara06836,Turkey 3 UniversityPolitehnicaofBucharest,FacultyofAppliesSciences,313SplaiulIndependen  ei,Romania Authors ’ contributions Allauthorscontributedequallyandsignificantlyinwritingthisarticle.Allauthorsreadandapprovethefinal manuscript. Competinginterests Theauthorsdeclarethattheyhavenocompetinginterests. Received:13November2011Accepted:21March2012Published:21March2012 References 1.Bhaskar,TG,Lakshmikantham,V:Fixedpointtheoryinpartiallyorderedmetricspacesandapplications.NonlinearAnal. 65 ,1379 – 1393(2006).doi:10.1016/j.na.2005.10.017 2.Lakshmikantham,V,  iri  ,LjB:Coupledfixedpointtheoremsfornonlinearcontractionsinpartiallyorderedmetric spaces.NonlinearAnal. 70 ,4341 – 4349(2009).doi:10.1016/j.na.2008.09.020 3.Karap õ nar,E:Couplefixedpointonconemetricspaces.GaziUnivJSci. 24 (1):51 – 58(2011) 4.Karap õ nar,E:Coupledfixedpointtheoremsfornonlinearcontractionsinconemetricspaces.ComputMathAppl. 59 (12):3656 – 3668(2010).doi:10.1016/j.camwa.2010.03.062 5.Aydi,H,Mujahid,A,Postolache,M:Coupledcoincidencepointsforhybridpairofmappingsviamixedmonotone property.JAdvMathStudies. 5 (1):118 – 126(2012) 6.Aydi,H:Somecoupledfixedpointresultsonpartialmetricspaces.IntJMathMathSci 2011 ,11(2011).ArticleID 647091 7.Aydi,H,Samet,B,Vetro,C:Coupledfixedpointresultsinconemetricspacesfor  -compatiblemappings.FixedPoint TheoryAppl. 2011 ,27(2011).doi:10.1186/1687-1812-2011-27 8.Aydi,H,Damjanovi  ,B,Samet,B,Shatanawi,W:Coupledfixedpointtheoremsfornonlinearcontractionsinpartially ordered G -metricspaces.MathComputModel. 54 ,2443 – 2450(2011).doi:10.1016/j.mcm.2011.05.059 9.Aydi,H,Shatanawi,W,Postolache,M:Coupledfixedpointresultsfor(  ,  )-weaklycontractivemappingsinordered G - metricspaces.ComputMathAppl. 63 ,298 – 309(2012).doi:10.1016/j.camwa.2011.11.022 10.Choudhury,BS,Metiya,N,Kundu,A:Coupledcoincidencepointtheoremsinorderedmetricspaces.AnnUnivFerrara. 57 ,1 – 16(2011).doi:10.1007/s11565-011-0117-5 11.Choudhury,BS,Kundu,A:Acoupledcoincidencepointresultinpartiallyorderedmetricspacesforcompatible mappings.NonlinearAnal. 73 ,2524 – 2531(2010).doi:10.1016/j.na.2010.06.025 12.Luong,NV,Thuan,NX:Coupledfixedpointsinpartiallyorderedmetricspacesandapplication.NonlinearAnal. 74 , 983 – 992(2011).doi:10.1016/j.na.2010.09.055 13.Samet,B:CoupledfixedpointtheoremsforageneralizedMeirKeelercontractioninpartiallyorderedmetricspaces. NonlinearAnal. 74 (12):4508 – 4517(2010) 14.Samet,B,Vetro,C:Coupledfixedpoint, f -invariantsetandfixedpointof N -order.AnnFunctAnal. 1 (2):46 – 56(2010) 15.Berinde,V,Borcut,M:Tripledfixedpointtheoremsforcontractivetypemappingsinpartiallyorderedmetricspaces. NonlinearAnal. 74 (15):4889 – 4897(2011).doi:10.1016/j.na.2011.03.032 doi:10.1186/1687-1812-2012-44 Citethisarticleas: Aydi etal .: Tripledcoincidencepointtheoremsforweak  -contractionsinpartiallyordered metricspaces. FixedPointTheoryandApplications 2012 2012 :44. Aydi etal . FixedPointTheoryandApplications 2012, 2012 :44 http://www.fixedpointtheoryandapplications.com/content/2012/1/44 Page12of12

Related Contents


Next Show more