/
2SIDDHARTHAGADGILMoregenerally,weshallgluesocalledhandlebodiesalongthe 2SIDDHARTHAGADGILMoregenerally,weshallgluesocalledhandlebodiesalongthe

2SIDDHARTHAGADGILMoregenerally,weshallgluesocalledhandlebodiesalongthe - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
387 views
Uploaded On 2015-10-30

2SIDDHARTHAGADGILMoregenerally,weshallgluesocalledhandlebodiesalongthe - PPT Presentation

4SIDDHARTHAGADGILToconstructnonorientable3manifoldsonegluesnonorientablehandlebodiesofthesamegenusalongtheirboundariesAfundamentaltheoremassertsthattheseconstructionsgiveall3manifoldsTheorem2E ID: 176974

4SIDDHARTHAGADGILToconstructnon-orientable3-manifolds onegluesnon-orientablehandlebodiesofthesamegenusalongtheirboundaries.Afundamentaltheoremassertsthattheseconstructionsgiveall3-manifolds.Theorem2.E

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "2SIDDHARTHAGADGILMoregenerally,weshallgl..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2SIDDHARTHAGADGILMoregenerally,weshallgluesocalledhandlebodiesalongtheirboundaries.Weshallseethatallclosed3-manifoldscanbeobtainedinthismanner.First,welookmorecloselyatthesimplestofthesehandlebodiestogetournextexample.2.Abasicexample2.1.Thesolidtorus.ThesolidtorusistheproductD2S1.Itisusefultolookatitfromacoupleofotherpointsofview.Firstly,onecanobtainasolidtorusfromB3byattachinga1-handle.Namely,toapairofdisjointdiscsinS2=@B3,gluetheboundaryf0;1gD2of[0;1]D2,insuchawayastoobtainanorientablemanifold.ThereisanotherwaytoobtainthesolidtorusfromB3.Takeadiameter inthesolidtorus.Deletetheinteriorofaregularneighbourhoodofthisarc.ItiseasytoseethatB3nint(N( ))=D2S1.Moregenerally,wecantakeanyproperly-embeddedunknottedarc B3,i.e.,anarc suchthatthereexistsanarc embeddedinS2=@B3andanembeddeddiscEB3suchthat@E= [ .Ondeletingtheinteriorofaneighbourhoodofthisarc,wegetasolidtorus.Boththesedescriptionsplayakeyroleinwhatfollows.2.2.S3oncemore.WenowgetamoreinterestingexampleofaHeegardsplitting.Namely,asbeforeS3=B1[B2,wheretheBiare3-ballsgluedtogetheralongtheirboundaries.Nowlet beanunknottedproperlyembeddedarcinB1.LetH1=B1nint(N( ))andH2=B2[N( ).SinceH1istheresultofdeletinganopenneighbourhoodofanunknottedarcfroma3-ball,itisasolidtorus.Ontheotherhand,H2isobtainedbyaddinga1-handletoa3-ball,andishencealsoasolidtorus.Thus,S3istheunionoftwosolidtori,gluedalongtheirboundary.ThisisanotherexampleofaHeegardsplittingofS3.IfonethinksofS3astheone-pointcompacti cationofR3,thenH1isjusttheregularneighbourhoodofanunknot,andH2istheclosureofitscomplement.Itisoftenuseful,in3-manifoldtopology,tothinkofS3astheunitballinC2.Onecanseetheabovedecompositionformthispointofview.Exercise2.LetHiS3C2,i=1;2,begivenbyHi=f(z1;z2)2S2:jzij21=2g.ShowthatthisisadecompositionofS3intosolidtori.Wecanalsogluesolidtoritogetheralongotherdi eomorphismsoftheirbound-aries.OneobtainsinthismannerS2S1aswellasthelensspaces.Weshalltreattheseindetaillater. 4SIDDHARTHAGADGILToconstructnon-orientable3-manifolds,onegluesnon-orientablehandlebodiesofthesamegenusalongtheirboundaries.Afundamentaltheoremassertsthattheseconstructionsgiveall3-manifolds.Theorem2.Everytriangulated3-manifoldMhasaHeegardsplitting.Proof.LetMbea3-manifoldwithagiventriangulationT.ThetwohandlebodiesW1andW2intheHeegardsplittingweconstructwillberegularneighbourhoodsofthe1-skeletonTandthe1-skeletonofitsdualtriangulationT0.Consideraregularneighbourhoodofthe1-skeleton�,andcallitsboundaryF.ThenFseparatesMintotwopieces.Oneoftheseisaregularneighbourhoodofthe1-skeleton,andhenceisahandlebody.ByconsideringtheintersectionofFwitheachtetrahedron,itiseasytoseethattheothermanifoldobtainedisaregularneighbourhoodofthe1-skeletonofthedualtriangulation,andhenceisalsoahandlebody.ThuswehaveaHeegardsplitting.Remark3.ByatheoremofMoiseandBing,all3-manifoldshavetriangulations.Thustheaboveresultholdsforall3-manifolds.Example4.1.(HeegardsplittingsofS3)S3hasHeegardsplittingsofallgenera.Namely,we rstexpressS3=B1[B2.Takegproperlyembeddedarcs 1;1iginB1thatareunknottedandunlinked.LetH1=B1n[gi=1int(N( i))andH2=B2[[gi=1N( i).ThenH1andH2arehandlebodies.TheseHeegardsplittingsofS3arecalledthestandardHeegardsplittingsofS3.ItisnaturaltoaskwhetherthereareanyHeegardsplittingsofS3di erentfromthese.ThenaturalequivalenceonHeegardsplittingsisisotopy.WesaythattwoHee-gardsplittingsofS3areisotopicifthecorrespondingHeegardsurfacesareisotopic.AtheoremofWaldhausenclassi esHeegardsplittingsofS3.Fortheproof,wereferto?Theorem4(Waldhausen).AnyHeegardsplittingofS3isisotopictoastandardone.Exercise7.ShowthatthestandardHeegardsplittingdoesnotdepend,uptoiso-topy,onthechoiceofthearcs i. 6SIDDHARTHAGADGILNotethatifF:W1!W1isahomeomorphismofthehandlebody,thentheimageofaHeegarddiagramunderFgivesanotherHeegarddiagramforthesamemanifold.Aparticularlyusefulsuchhomeomorphismistheso-calledDehntwist.IfDisaproperlyembeddeddiscinahandlebodyW,thenthisisthemapwhichisequaltotheidentityoutsideaneighbourhoodofD,andconsistsofafulltwistinaneighbourhoodofD.De nition5.1.SupposeDisaproperlyembeddeddiscinahandlebodyW.ThenaDehntwistaboutWisahomeomorphismthatistheidentityoutsideaneighborhoodD2[�1;1]ofD2andisisotopicto(z;t)7!(ze(t+1);t)onthisneighborhood.Example5.2.InthecaseofthesolidtorusD2S1,aDehntwistabouttheproperlyembeddeddiscD2f1g xesthemeridianandmaps7!1.Nowconsiderthegenus1HeegarddiagramforS3,withacurveboundingadiscgivenby.ByapplyingDehntwists,weseethatotherHeegarddiagramsofthespherearegivenbyattachingadisctothecurve+k;k2Z.Similarly,manyoftheHeegarddiagramsconstructedabovecorrespondtothesamelensspace.Exercise8.ShowthatL(p;q)=L(p;q+kp)Sofar,wehavenotevenshownthatthelensspacesarenotallS3.Todothis,wecomputethefundamentalgroupintermsofaHeegarddiagram.Recallthatthefundamentalgroupofahandlebodyofgenusgisafreegrouponggenerators i.EachofthecurvesinaHeegarddiagramrepresentawordriinthesegenerators,wellde neduptoconjugation.Proposition6.Apresentationof1(M)isgivenbyh 1;:::; g;r1;:::;rgi.Proof.BytheSeifert-VanKampentheorem,attachinga3-balldoesnotalterthefundamentalgroup.Thus,itsucestoconsiderthemanifold^M=MnB3.Themanifold^Misobtainedbyattachingtoaballg1-handlesandg2-handles.Itiseasytoseethat^Mdeformationretractsintoa2-complex,withauniquevertexcorrespondingtotheball,andedgeforeach1-handleanda2-cellforeachdisc.Thevertexandedgesformawedgeofgcircles,andthushaveasfundamentalgroupthefreegrouponggenerators.Each2-cellgivesarelation.itiseasytoseethattherelationsareasabove.Thefollowingimmediatecorollaryimplies,forinstance,thatZ4isnota3-manifoldgroup(see[3]or[1]). 8SIDDHARTHAGADGILfromauniqueminimalHeegardsplitting,i.e.,onethatcannotbeobtainedbystabilisingaHeegardsplittingoflowergenus.ItwasunknowntillfairlyrecentlywhethereverymanifoldhasauniquesuchHeegardsplitting.ThiswasshownnottobesobyCassonandGordon.Theorem10(Casson-Gordon).Thereisa3-manifoldMwhichhasnon-isotopic,minimalHeegardsplittings.ItturnsoutthattheseHeegardsplittingsbecomeisotopicafterasinglestabili-sation.Indeed,thereisnoknowncasewheremorethanonestabilisationisneeded.Thisshouldnotberegardedasanindicationofwhatistrue,butratherofourignorance.Inthecaseofsocallednon-Hakenmanifolds,thereisaboundonthenumberofstabilisationsrequired,linearinthegeneraoftheHeegardsplittings,byatheoremofRubinsteinandScharlemann.AnotherinterestingquestionistheminimumgenusamongHeegardsplittingsofagivenmanifoldM.SinceaHeegarddiagramgivesapresentationof1(M),weseethatthismustbeatleasttherankof1(M).BoileauandZieschanghaveshownthattherearemanifoldswhoseHeegardgenusisgreaterthantherankof1(M).6.MoreonlensspacesWeconcludebytakinganotherlookatlensspaces.Exercise11.AmoresuccinctdescriptionofthelensspaceL(p;q)isasthequotientofS32C2bytheactiongeneratedby(z1;z2)7!(z1e2i=p;z2e2iq=p).ShowthatthesolidtoriHi=f(z1;z2)2S2:jzij21=2gareinvariantunderthisaction,andtheirimagesgiveaHeegardsplittingforL(p;q).Exercise12.Showthat(z1;z2)7!(z2;z1)isahomeomorphismbetweenL(p;q)andL(p;q�1),whereqq�11(modp)Exercise13.AswithS3,lensspaceshaveuniqueminimalHeegardsplittings.Thus,iff:L(p;q)!L(p0;q0)isahomeomorphism,thentheimageofaHeegardsurfaceunderfisisotopictoaHeegardsurface.Usethistoshowthatasorientedmanifolds,L(p;q)=L(p0;q0)i p=p0andq0q1(modp).References[1]Epstein,D.B.A.Finitepresentationsofgroupsand3-manifoldsQuart.J.Math.OxfordSer.(2)12(1961),205{212.[2]Hempel,J.P.(1976)3-manifolds,Ann.ofMath.Stud.86,PrincetonUniversityPress.

Related Contents


Next Show more