/
A NOTE ON TOPOLOGICAL AMENABILITY NICOLAS MONOD Abstra A NOTE ON TOPOLOGICAL AMENABILITY NICOLAS MONOD Abstra

A NOTE ON TOPOLOGICAL AMENABILITY NICOLAS MONOD Abstra - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
405 views
Uploaded On 2015-04-28

A NOTE ON TOPOLOGICAL AMENABILITY NICOLAS MONOD Abstra - PPT Presentation

A simple characterisation of topological amenability in terms of bounded coho mology is proved following Johnsons formulation of amenability The connection to injective Banach modules is established 1 Introduction 1A Motivation According to JohnsonR ID: 55740

simple characterisation

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "A NOTE ON TOPOLOGICAL AMENABILITY NICOLA..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

2NICOLASMONODamenability.Thisre ectsthefactthatnotall(G;X)-modulesaremodulesfortheunderlyingcrossedproductalgebraintroducedbelow.AnalysingonlytheC(X)-structurealone,wecanhoweverisolatearelevantconceptinspiredbyKakutani'sclassicalwork[19,20]:De nition1.WesaythataC(X)-moduleEisoftypeMifforallu2Eand'i2C(X)with'i0onehas(M)k'1uk++k'nukk'1++'nkkuk:WesaythatEisoftypeCifforallui2Eand'i0onehas(C)k'1u1++'nunkk'1++'nkmaxikuik:(Thesenotionsaremutuallydual,yetbothtypesincludemodulesthatarenotdual.Thefunda-mentalexamplesmotivatingtheterminologyaremodulesofmeasures,respectivelyofcontinuousfunctions.)Wenowhavethecriterionthatwesought:Proposition(Conciseversion).LetGbeagroupactingonthecompactspaceX.Thefollowingareequivalent.(i)TheG-actiononXistopologicallyamenable.(ii)H1b(G;E)=0forevery(G;X)-moduleEoftypeM.(iii)Hnb(G;E)=0forevery(G;X)-moduleEoftypeMandeveryn1.1.C.Injectivemodulesandmeans.OurcohomologicalcharacterisationextendstoafurtheraspectnotcoveredbyJohnson{Ringrose,namelyinjectivemodules(seex2.A).Bywayofmotiva-tion,werecalltheanalogoussituationinergodictheory:Formeasurespaces,amenableactionsinZimmer'ssense[27]arecharacterisedbytherelativeinjectivityofthecorrespondingmodulesofL1-maps[6,23].Weshallprovideasimilarstate-mentfortopologicalamenability.However,thenotionof\boundedmeasurablemaps"becomesproblematicwhenXisnon-metrisable,asitwillde nitelybeforapplicationstoexactnesswhereXistheCech{Stonespace G.Wesubmitthatagoodanalogueisprovidedincompletegener-alitybythedualofthespaceI(C(X);W)ofintegraloperatorsvaluedinanyBanachspaceW(inthesenseofGrothendieck[13,x2]forabstractintegraloperatorsbetweenarbitraryBanachspaces).Hencethestatements(iii)and(vii)below.Asitturnsout,thiscriterionappliestoalldualmodulesoftypeC,see(viii).Finally,asintheJohnson{Ringrosecriterion,wetransitthroughacharacterisationofamenabil-ityintermsofinvariantmeans.Theequivalenceofthiswiththede nitionofamenabilityisroutine,butwederiveitforcompleteness,see(ix)and(x)below.ThesummationconditionthereinmeansthatthecanonicalimageinC(X)oftheinvariantelementisthebidualoftheconstantfunction1X2C(X).Proposition(Fullversion).LetGbeagroupactingonthecompactspaceX.Thefollowingareequivalent.(i)TheG-actiononXistopologicallyamenable.(ii)Hnb(G;C(X;V))=0foreveryBanachG-moduleVandeveryn1.(iii)Hnb(G;I(C(X);W))=0foreveryBanachG-moduleWandeveryn1.(iv)Hnb(G;E)=0forevery(G;X)-moduleEoftypeMandeveryn1.(v)Anyofthepreviousthreepointsholdsforn=1.(vi)C(X;V)isrelativelyinjectiveforeveryBanachG-moduleV.(vii)I(C(X);W)isrelativelyinjectiveforeveryBanachG-moduleW.(viii)Everydual(G;X)-moduleoftypeCisarelativelyinjectiveBanachG-module.(ix)ThereisaG-invariantelementinC(X;`1G)summingto1X.(x)ThereisanormonepositiveG-invariantelementinC(X;`1G)summingto1X.Remarks.(a)Theproofshowsthatitsucesin(ix)and(x)thatthesummationbeanyfunctionthatnevervanishes.Thenormconditionin(x)isredundant. 4NICOLASMONODA-normofsuchanelementis Xg'g g A= Xgj'gj C(X)The(G;X)-structureturnsAintoaBanachalgebrathatwecalltheBanachcrossedproductofGandX,nottobeconfusedwiththeC*-algebraiccrossedproduct.Explicitly,theproductis(' g)( h)='g ghonelementarytensorswithg;h2Gand'; 2C(X).Thenaturalalgebraicinvolution' g7!g�1' g�1doesnotingeneralextendtoA(Example9),andthereisindeedafundamentaldi erencebetweenrightandleftA-modules,asweshallsee.Proposition5.LetGbeagroupactingonthecompactspaceXandletEbea(G;X)-module.LetA=C(X;`1G).(i)IfEisoftypeC,thenitisnaturallyaleftA-module.(ii)IfEisoftypeM,thenitisnaturallyarightA-module.Example6.The(G;X)-moduleC(X)^ `1G,where^ istheprojectivetensorproduct,isnotanA-moduleunlesseitherGorXis nite.ThisisaspecialcaseoftheDvoretzky{RogersTheorem[10]sinceC(X)^ `1G=`1(G;C(X)).InparticularitisnotoftypeC;inaddition,itisnotoftypeMeitherunlessXisapoint.ProofofProposition5.Thecondition(C)preciselyshowsthatfor nitesums =Pg g gandu2Ewehavek ukE= Xg g(gu)  Xgj gj C(X)maxgkgukE=k kAkukEandthustheleftmultiplicationextendstoA.IfEisoftypeM,wede neu :=Xg�(g�1 g) g�1u=Xgg�1( gu);whichisarightmodulestructureover nitesums.Wethencarryoutasimilarcomputationusingtheinequality(M).3.AmenableactionsTheactionofagroupGonacompactspaceXiscalledtopologicallyamenableifthereisanetfjgj2JinC(X;`1G)suchthateveryj(x)isaprobabilitymeasureonGandlimj2J gj�j C(X;`1G)=0(8g2G):NoticethatifGiscountable,thenetcanbereplacedbyasequence;thisdoesnotrequireXtobemetrisableandhenceappliesforinstancetotheCech{Stonecompacti cationofacountablegroup.Noticealsothatthecontinuityofj:X!`1Gcanbereplacedbyweak-*continuitysincebothtopologiescoincideonprobabilitymeasures.BycompactnessofX,onecanassumethatthesupportofj(x)isina nitesetdependingonlyonj.Finally,weobservethat,asexpected,amenabilityisan\approximateproperness"withjbeinganapproximateBruhatfunction.Backgroundreferencesare[1,4];werecallthattheamenabilityoftheactionisequivalenttothenuclearityoftheC*-algebraicreducedcrossedproduct,andthusinturntoitsamenability,seeConnes[7]andHaagerup[15].3.A.Proofs.Inordertotakeadvantageofsomesimpleimplications,theproofwillnotfollowasinglecycleofimplications.Theheartofthematteristhefollowingimplication,whichstillholdsforGlocallycompactsecondcountablewiththede nitionsof[1,x2]and[23,x4.1]. 6NICOLASMONOD(i))(x)isobtainedbychoosingaweak-*accumulationpointandkeepinginmindthepropertiesofBanachlatticesrecalledabove.Since(x))(ix)istautological,thiscompletestheproof.4.ExactgroupsandfurtherremarksThede nitionofexactgroupsgoesbacktoKirchberg{Wassermann[21];itisequivalenttothestatementthatthereducedC*-algebraofthegroupisexactforspatialtensorproducts.Ozawa[26]andAnantharaman-Delaroche[1]provedthatthegroupGisexactifandonlyifitsactionontheCech{Stonecompacti cation Gisamenable.Higson{Roe[16]establishedthatthelatterconditionisequivalenttoYu'sPropertyA.Exactnesshasdeepimplicationsforthegroupbutatthesametimeitisnotoriouslydiculttoproduceanynon-exactgroup;Gromovsucceededin[12]usingtherelationtouniformembeddingsintoHilbertspaces.Inviewoftheequivalencewithamenabilityoftheactionon G,thepropositionsoftheintro-ductioncharacteriseexactgroups.Inthisspecialcase,C( G)=`1G,allowingsomeadditionalidenti cations.Forinstance,(G; G)-modulesareparticularlyconcreteandcanbethoughtofasmodulesovertheinvolutiveBanach{Hopfalgebra`1G.Example7.LetVbeaBanachG-module.AnyG-invariant`1G-submoduleof`1(G;V)isa(G; G)-moduleoftypeC.ItisgenerallynotoftheformC( G;V).ThisexampleprovidesalinktotheworkofDouglas{Nowak[9].Anotherarticleinvestigatingcohomologicalcharacterisationsofexactnessis[3].Anotherobviousexampleof(G; G)-moduleisprovidedbythevarious`pG.Example8.LetGbeanon-Abelianfreegroup.ThentheG-actiononX:= Gisamenable.Ontheotherhand,H2b(G;`1G)isnon-trivial,eventhough`1Gisadual(G;X)-module.Infact,itisoftypeMandisthedualofthe(G;X)-modulec0(G)oftypeC.Moregenerally,H2b(G;`pG)isnon-trivialforallp1usingtheargumentof[25].ThealgebraA:=C( G;`1G)=`1G `1G=ucG[`1G];whichcoincideswiththe\uniformalgebra"`uGof[9],alsoadmitsadditionalrealizationssincenowanyelementcanbeviewedasakernelonGG.We ndthus:A=C(`1G)=Lw*/w(`1G);whereCdenotescompactoperatorsandLw*/wtheweak-*-to-weakcontinuousoperators(whicharenecessarilycompact),comparep.90{91inGrothendieck[14].(Theproduct,meanwhile,remainsG-twisted).Example9.TheinvolutionfamiliarfromC*-crossedproductsisnotA-bounded:ifSGisa niteset,thediagonalPg2Sg ghasunitnormbutitsimagee Pg2Sg�1hasnormjSj.ReturningtoG-actionsongeneralcompactspacesX,weconcludewithsuggestionsforfurtherinvestigation.Question10.LetEbea(G;X)-module.InthespiritofKakutani[19,20],giveaconcreteexpressionoftheintrinsicpropertiesCandM.Questions11.(a)CharacterisetheamenabilityofA:=C(X;`1G).(b)Characterise(andde ne!)theco-amenabilityofthesubalgebra`1GinA:=C(X;`1G),embeddedbytensoringwith1X.Anaturalcandidateforthede nitionofco-amenablesubalgebrasis:TheinclusionmorphisminducesaninjectiverestrictionmorphismatthelevelofBanachalgebracohomology,foralldualmodulesoverthetarget.(ThisisthefaithfultranslationofProp.3in[24].)