/
THEANATOMYOFTHEBACTERIALSURFACE'M.R.J.SALTONDepartmentofBacteriology,U THEANATOMYOFTHEBACTERIALSURFACE'M.R.J.SALTONDepartmentofBacteriology,U

THEANATOMYOFTHEBACTERIALSURFACE'M.R.J.SALTONDepartmentofBacteriology,U - PDF document

lois-ondreau
lois-ondreau . @lois-ondreau
Follow
368 views
Uploaded On 2017-02-23

THEANATOMYOFTHEBACTERIALSURFACE'M.R.J.SALTONDepartmentofBacteriology,U - PPT Presentation

MRJSALTONFigure1SpirillumserpenscellsautolyzedandtrypsindigestedshowingflagellaattachedtobasalgranulesinsidethecellunpublishedelectronmicrographbyRWHorneandMRJSaltonX60000Thesurfacestru ID: 518986

M.R.J.SALTONFigure1.Spirillumserpenscellsautolyzedandtrypsindigested showingflagellaattachedtobasalgranulesinsidethecell(unpublishedelectronmicrographbyR.W.HorneandM.R.J.Salton).X60 000.Thesurfacestru

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "THEANATOMYOFTHEBACTERIALSURFACE'M.R.J.SA..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

THEANATOMYOFTHEBACTERIALSURFACE'M.R.J.SALTONDepartmentofBacteriology,UniversityofManchester,Manchester,EnglandI.Introduction..........................................................................77II.SurfaceAppendages....................................................................78III.BacterialCapsules......................................................................80A.ChemicalComposition..............................................................80IV.TheCellWall.......................................................................83A.ChemistryofCellWalls.............................................................83V.ProtoplastMembranes.................................................................86A.ChemicalCompositionofMembranes................................................89VI.LocalizationofEnzymesinBacterialCellsandaSummaryoftheComparativeChemicalandBiochemicalAnatomyofGram-positiveandGram-negativeBacteria....................90VII.TheGramStainandtheBacterialSurface................................................91VIII.References............................................................................95I.INTRODUCrIONDespiteitsminutedimensions,thebacterialcellhasbeenquiteamenabletodissectionintoitscomponentpartsand,duringthepasttenorsoyears,agreatdealhasbeenlearnedaboutthechemicalandbiochemicalanatomyofmicro-organisms.Theterm"bacterialanatomy"hasbecomefirmlyentrenchedinourliteratureanditsusagenolongermystifiesoramusesthosebiologistswhoareusedtohandlingthe"coarse"structuresofhigheranimalandplantcells.Thetransitionfromtheolderstudyofbacterialcytologytothemodernfieldofbacterialanatomyhasreallydatedfromtheintroductionoftheelectronmicroscope,theshadow-castingtech-nique,andthedevelopmentofelegantmethodsforslicingupthebacterialcellintoincrediblythinsections.Theseadvanceshaveoccurredatthetimeofatremendousexpansionofourbio-chemicalknowledgeandtheemergenceofawealthofbiochemicalandbiophysicaltechniques1TheOfficeofNavalResearchLectureattheSocietyofAmericanBacteriologistsAnnualMeetingatPhiladelphiain1960withtheabovetitleformedthebasisforthiscontribution.IshouldliketoexpressmysincerethankstotheOfficeofNavalResearchandtheProgramCom-mitteeoftheSocietyformakingthislecturepossible.Thisreviewofarapidlygrowingfieldisnotintendedtobecomprehensivebuthasbeenpreparedinthehopethatitmayfocusattentiononcertainaspectsandperhapsstimulatesomeinterest,toeliminatethelargegapsinourknowl-edge.whichhaveaccompaniedthisperiod.Thusbac-terialanatomyhasbeenconcernednotsolelywiththemicroscopicappearanceofthevariousmorphologicalentitiesofthecell,butalsowiththemoreexcitingandbroaderproblemofinte-gratingboththestructuralandfunctionalpropertiesofthebacterialcell.Thestudentofhumananatomyisonlytoowellawarethatshapeisamostimportantana-tomicalattribute.Thegeneralimportanceofshapeisamplyillustratedbytheanatomicalandaestheticqualitiesofthefemaleform(unfor-tunately,fortechnicalreasons,theslideillus-tratingthispointinthelecturecouldnotbereproducedhere).Sowithbacterialanatomy,theshapeofthecellisofgreatinterestand,asrealizedlongagobyLeeuwenhoek,itisthesurfacestruc-turewhichdeterminesthecharacteristicshapeofthecell.Theelucidationofthesurfacestructureofbacterialcellshasattractedmuchattentioninrecentyearsandfordiversereasons.Thustheimmunologisthasbeeninterestedinthepresenceofspecificantigenicgroupingsonthecellsurface.Thebiochemisthasconcernedhimselfwiththetransportofsubstancesintoandoutofthecellacrossthepermeabilitybarriersandthoseinter-estedinthecontrolofmicroorganismsbyanti-bioticshavebecomeintriguedwiththepossi-bilitiesofkillingbacteriabyinterferingwiththebiosynthesisofsurfacestructures.Theresultsofallthesediverseinvestigationshavebeguntofocusattentiononthebacterialsurfaceandwecannowbegintotalkaboutitsdetailedanatomy.77 M.R.J.SALTONFigure1.Spirillumserpenscellsautolyzedandtrypsindigested,showingflagellaattachedtobasalgranulesinsidethecell(unpublishedelectronmicrographbyR.W.HorneandM.R.J.Salton).X60,000.Thesurfacestructuresofthebacterialcellcanbeconvenientlyclassified(88)assurfaceappend-ages,surfaceadherents,rigidcellwall,andprotoplasmicmembrane.II.SURFACEAPPENDAGESTwomainsurfaceappendagesofbacterialcellsaretheflagella,theorgansoflocomotionofthecell(121),andthefimbriae(27,29).Theflagellahavenowbeenwellcharacterizedchemically(58,121)andthereisgenerallynodifficultyindistinguishingbetweentheappearanceofflagellaandfimbriaeinelectronmicrographsofbacteria,asillustratedinfigures1and2.ThetermfimbriaewasfirstproposedbyDuguidandhiscolleagues(27,29)astheLatinequivalentof"threads,""fibers,"and"filaments"usedinearlierdescriptionsofthesestructures(3,49).ThistermhasgainedwideacceptancealthoughBrinton(13)hassuggestedthewordpili(Latinfor"hair")asasynonym.Theonlyothersurfaceappendagethatshouldbementionedisthaten-counteredintheironbacterium,Gallioniellaferruginea,whichpossesseslongstrandsofmaterialthatareobviouslyverydifferentfromflagellaandfimbriae(113).Allthesesurfacestructuresmayhaveintracellularorigins;78[VOL.25 ANATOMYOFBACTERIALSURFACEFigure2.FimbriaearrangedaroundthecellsurfaceofShigellaflexneri(DuguidandGillies(28)).X45,000.flagellaapparentlypassthroughthewallandareresponsiblefortheadhesivepropertiesofmembraneandterminateinasphericalorganellecertainbacteria(28),thefunctionstheymaylocatedinthebacterialprotoplasm,asillus-conferonthecellhavenotbeenclearlyestab-tratedinfigures1and2.Althoughthefimbriaelished.791961J M.R.J.SALTONIII.BACTERIALCAPSULESCapsuleswereamongthefirstsurfacestruc-turestoberemovedfrombacterialcellsandchemicallycharacterized.Theclassicalinvestiga-tionsofAveryandHeidelberger(seeHeidelberger(43))onthechemistryandimmunochemistryofthepneumococcalcapsularpolysaccharideswerethefirstextensivestudiesgivingussomeconceptofthevarietyofcompoundsformingthesurfacelayersofcertainbacterialcells.Untilcomparativelyrecenttimes,thebacterialcapsulehasgenerallybeenregardedasahomoge-neousaccumulationofviscousmaterialaroundthecell.However,Tomesik's(110)studiescom-biningphase-contrastmicroscopyandantigen-antibodyreactionshaveshownthatthecapsulesofBacillusanthracisandcertainstrainsofBacillusmegateriumarebynomeansofsimplephysicalstructure.Indeed,theseinvestigationshaverevealedthepresenceoflocalizedpatchesofacapsularpolysaccharideinagelofcapsularglutamylpeptide.TheelectronmicroscopicstudybyLabawandMosley(59)hasestablishedaverycomplexphysicalstateforthecapsuleoftheLisbonnestrainofEscherichiacoli.Macro-molecularcomponentswereembeddedinastructurelessgelformingthecapsuleofthisorganism.StainedpreparationsusuallygivetheimpressionthatthecapsularsurfaceissmoothandcontinuousbutafurtherphysicalcomplexityIabwasbroughttolightwhenIvanovicsandHor-vath(55)detectedfairlyregularindentationsalongthesurfaceofthecapsuleofaBacillusmegateriumstrain.Thereisprobablylittledoubtthatthecapsulesofmanybacteriaarephysicallyhomogeneousstructuresofonetypeofpolymericsubstance,butwithrefinedmethodsofstudyingtheanatomyofthebacterialsurface,someofthemorecomplicatedstructures,illustrateddia-gramaticallyinfigure3,havenowbecomewellestablished.Therelationshipofthecapsulestotherigidcellwallhasbeenofgreatinterestandtheisola-tionofspecificcapsule-degradingenzymes(6,23)hasbeenoftheutmostvalueinstudyingthesur-faceanatomyofbacteria.Thereisnowavarietyofenzymesorenzymesystemsavailablefortheselectiveremovalofbacterialcapsules,leavingtheviabilityofthedecapsulatedcellsunim-pairedaswellastheabilitytosynthesizethecapsularmaterial.Encapsulatedpneumococci(6,23),klebsiellae(1),streptococci(63,67),andBacillusspp.possessingy-glutamylpeptides(112)havebeenenzymicallydecapsulated,thusestablishingtheanatomicalrelationshipsofthecapsulesandwallsoftheseorganisms.A.ChemicalCompositionChemically,bacterialcapsulesarepolymericsubstancesofeitherpolysaccharideorpolypep-cdFigure3.Adiagrammaticrepresentationofthetypesofcapsularstructure(takenfromreference88):(a)capsuleformingcontinuouslayeraroundcell;(b)capsularlayerwithbandedfibrils(59);(c)complexcapsulewithlocalizedpatchesofpolysaccharideandpolypeptide(10);(d)discontinuitiesincapsularsurface(55).80[VOL.25 ANATOMYOFBACTERIALSURFACETABLE1ChemicalnatureofbacterialcapsularsubstancesOrganismGram-positive:BacillusanthracisBacillusmegateriumBacilluscirculansPneumococciStreptococciGroupsAandCRumenspeciesGram-negative:AcetobactercapsulatumHaemophilusinfluenzaeAerobacter-KlebsiellagroupEscherichiacoliClassofSubstanceandProductsofAcidHydrolysisPolypeptide:-y-D-glutamylpeptidePolypeptide:-y-glutamylpeptidePolysaccharides:aminosugars;sugarsPolysaccharide:glucose,mannose,uronicacidPolysaccharides:sugars,aminosugars,uronicacids,ribitolphosphatePolysaccharide:hyaluronicacid-glucosamine,glucuronicacidPolysaccharide:galactose,rhamnose,uronicacidPolysaccharide:dextrin-glucosePolyribophosphatePolysaccharides:complexpolyuronides-glucose,fucose,glucuronicacidPolysaccharide:fucose,galactose,hexuronicacidDatasummarizedfromreferences88(givingoriginalreferences),42,78,127.tidenature.SofarasIamaware,heteropolymerscontainingpolysaccharideandpeptideresiduescovalentlylinked(asinbacterialwalls)havenotbeenencounteredascapsularsubstances.Ofallthebacterialcapsularpolysaccharidesstudied,thoseofthepneumococcihavebeeninvestigatedingreatestdetailandthechemicalstructureofanumberofdifferenttypeshasbeendetermined(43).Bothaminosugarsanduronicacidsarewidelydistributedincapsularpolysaccharidesfrombothgram-positiveandgram-negativebacteria.Thecapsularpolysaccharidesofgram-negativebacteriamustnotofcoursebeconfusedwiththepolysaccharidemoietiesoftheprotein-lipid-polysaccharidecomplexesconstitutingthemacromolecularcomponentsofthewallorenvelope.Thevarietyofmaterialsformingbac-terialcapsules(brieflysummarizedbySalton(88))isillustratedintable1andincludeshyal-uronicacid,polyuronides,variouspolysac-charides,andthey-glutamylpeptides.Thelistofcapsularsubstancespresentedintable1isbynomeanscomprehensive.Itdoesnotinclude,forexample,otherinterestingsurfacepolymerssuchastheaminouronicacidformingtheViantigen(16),theMproteinsofstreptococci(60),andothercomponentsthatarenotdemonstrablebythemethodsusuallyemployedfordetectingcapsules(26).Ingeneral,thereislittlechemicalrelationshipbetweencapsularsubstancesandthecell-wallstructures,therebeingdistinctivecompoundsinthewallenablingustodifferentiateonefromtheother.However,Naturehaspreventedusfromputtingeverythingintotightlittlecompartmentsandtherearenowtwoinstancesinwhichcapsularsubstanceshavebeenfoundtocontaincom-poundsthatwehavecometoregardasexclu-sivelywallsubstances.Anextremelyinterestingexampleofthissituationhasarisenfromthediscoveryofribitolphosphateinthespecificpolysaccharideoftype6pneumococcusbyRebersandHeidelberger(78).Uptothetimeofthisreport,ribitolphosphatecompoundsinpoly-mericformhadbeenfoundonlyintheteichoicacidsofthebacterialwall,discoveredbyBaddileyandhiscolleagues(4,9).Thesecondexampleofamaterialofcapsularorigincontainingawallsubstance,probablythecell-wallaminosugar,muramicacid,isthepolysaccharidederivedfromBacillusmegateriumbyGuex-HolzerandTomcsik(42).Thismaterialappearedtobeimmunologi-callyidenticaltothecell-wallsubstanceanduponisolationthecapsularpolysaccharidewasfoundtocontainglucosamine,galactosamine,andanunknownaminosugarpresumedtobemuramicacid.Whetherthismaterialshouldberegardedasatruecapsularpolysaccharide,orwhetheritrepresentsalocalaccumulationofwallmaterialbeing"over-produced"bythedividingcell,couldonlybedecidedbyfurtherinvestigation.Atleastthesetwocasesillustrate8119611 M.R.J.SALTON[o400450500WAVELENGTH(MP)550600Figure4.AbsorptionspectraoftheproductsofDische(22)reactionsonAerobacter(Klebsiella)aerogenesstrainA3untreatedwalls(0-0);wallsafterextractionofcapsularpolysaccharide(AA);andthehot-waterextractablepolysaccharide(E).E,cmfor0.45mgeachfraction(89).thepointthattheremaybeagreaterchemicaloverlapbetweencapsularsubstancesandwallsthanwehadhithertosuspected.AlthoughboththecellwallsandthecapsularpolypeptidesfromBacillusanthracisandBacillusmegateriumcon-taintheD-isomerofglutamicacid(52,54,84),thecapsularpeptideisasimplepolymer,whereasinthewalltheD-glutamicacidischemicallylinkedinamorecomplexmucopeptide.Theretentionofcapsularandsurfacesub-stancesonthecellwallduringitsisolationpre-sentsaprobleminestablishingthechemicalanatomyofthesurfacestructures.ThustheMproteinwasretainedonisolationofthewallsofagroupAstreptococcusanditcouldberemovedenzymaticallyfromthewallsbydigestionwithtrypsin(80).FurtherstudieswithacapsulatedstrainofAerobacter(Klebsiella)aerogeneshavealsoshownthatduringwallisolationsomeofthepolysaccharideisretainedand,onhydrolysisofthe"wall"fractions,monosaccharidescharacter-isticofthecapsularsubstancearealsopresent.Fortunatelywiththisstrainitispossibletodis-tinguishbetweenconstituentsofthecapsule(127)andthewallpolysaccharidecomponents,forDudmanandWilkinson(25)hadshownthatthepolysaccharidecouldbeextractedfromintactcellswithhotwater.Whenthe"wall"fractionswereextractedinthisway,thefucoseanduronicacidofthecapsularpolysaccharidewerefoundinthewater-solublefractions,leavingtheinsolublewallfractiondevoidofthesesugars(89).TheDische(22)reactionformethylpentosecanbeusedtofollowthedistributionofthesesugarsin"wall"andcapsularpolysaccharidefractionsasillustratedinfigure4.Themonosac-charideconstituentsdetectedin"wall"fractionsofencapsulated,slime-producing,andnonen-1.00.90.80.70.60.5Uw0.40.3a0.20.1082[VOL.257wwAll-..AAA4"A-AAAAm=- ANATOMYOFBACTERIALSURFACETABLE2Monosaccharideconstituentsof"walls"ofen-capsulated,slime-producing,andnonencapsulatedstrainsofAerobacter(Klebsiella)aerogenesStrainPreparationMonosaccharidesA3capsulatedCellwallsGalactose,glu-cose,fucose,uronicacidWallextractedGalactose,glu-withhotcosewaterExtractedGalactose,glu-capsularcose,fucose,polysac-uronicacidcharideA3(S)slime-WallsGalactoseproducingA3(0)non-WallsGalactoseslime,non-capsularReference89.capsulatedstrainsofAerobacter(Klebsiella)aerogenesaresummarizedintable2.Theseresultsemphasizetheneedforspecificremovalofcapsularsubstanceswhenadifferentiationofwallandcapsularpolysaccharidesisbeingsought.IV.THECELLWVALLThemajorstructuralcomponentofthebac-terialcellistherigidwall,whichmayaccountforabout10to40percentoftheweightofthecell(88).TheexcellentstudiesofShockman,Kolb,andToennies(100)havedemonstratedhowthewallcontributiontotheweightofthecelldependsonthegrowthphase,risingfrom27percentintheexponentialphaseto35percentinthestationaryphaseoftheorganism,Strepto-coccusfaecalis.Furthermore,thenutritionalstatusoftheorganismcanalsoinfluencetheamountofcell-wallsubstanceformed,asshownintheaminoaciddepletionstudiesbyShockman(99)-Theisolationandcharacterizationofbacterialcellwallshasinrecentyearspresenteduswithsomefascinatingdetailsofthecomparativeanatomyandchemistryofgram-positiveandgram-negativebacteria.Fromthevarietyofwallsexaminedintheelectronmicroscope,itisnowapparentthat,ingeneral,thewallsofgram-negativebacteriaarephysicallymorecomplexthanthoseofgram-positiveorganisms(90).ThepresenceofsphericalmacromoleculesinacellwallwasfirstreportedbyHouwink(48).Sincethenanumberofspirillaandothergram-negativebacteriahavebeenshowntopossessfinestructureinthewalls(seeSalton(90)).Layersofhexag-onallypackedsphericalmacromoleculeshavebeenencounteredmostfrequently.AlthoughtheisolatedwallofEscherichiacolihasahomoge-neousappearanceonexaminationofshadowedpreparationsintheelectronmicroscope(48,93),itisevidentfromthebeautifulthinsections,preparedbyKellenbergerandRyter(57)andpresentedinfigure5,thatthewallismulti-layered.ThestudiesofWeidelandhiscolleaguesarenowbeginningtocorrelatethephysicalandchemicalcomplexityofthewallofthisorganism(125).Atypeoffinestructuredifferingfromthatcommonlyfoundinmanyofthegram-negativebacteriahasbeenobservedinthecomplexwallor"envelope"oftheorganism,Lampropediahyalina.ThismacromolecularstructureobservedindependentlybyJ.A.ChapmanandM.R.J.Salton(unpublishedobservations)andR.G.E.Murray(unpublishedobservations)isillustratedinfigure6.A.ChemistryofCellWallsThefirstattempttodiscoverthechemicalcompositionofabacterialcellwallwasmadeaslongagoas1887byVincenzi(116).Apartfromfindingsubstantialamountsofnitrogenanddeducingthatthewallwasnotcomposedofcellulose,Vincenzi(116)wasunabletosuggestanythingofamoredefinitenature.However,duringthepasttenyearsagreatdealofinforma-tiononthechemicalcompositionofbacterialcellwallshasbecomeavailableandseveralout-standingfeatureshaveemerged.Thewallsofgram-negativebacteriawerefoundtobechemi-callymorecomplexthanthoseofgram-positiveorganisms(81).Wallsofgram-positivebacteriacontainedasmallvarietyofaminoacids,aminosugar,andsugarcomponents(81).Itwasthusapparentthatthewallsofgram-positivebacteriaweremadeupofanewstructuralclassofpoly-mersdifferingfromthestructuralpolysac-charidescommonlyencounteredinthewallsoffungiandhigherplants.Thestudyofthechemistryofbacterialcellwallshasattractedmanyinvestigatorsinthepastdecadeandonlythebriefestaccountcanbegivenofsomeoftheessentialfeatures.Several1961]83 4M.R.J.SALTON;..;r.;".:.*0........"_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~IFAf.Figure5.ThinsectionsofEscherichiacolistrainBinfectedwithT2phageshowingmultilayeredcellwallandaseparateelectron-denselayer,thecytoplasmicmembrane(KellenbergerandRyter(57)).X63,000.substancesnotgenerallyencounteredinthecellsofhigherorganismshavebeenfoundinbacterialcellsandshowntobelocalizedintherigidwallstructures.Thusmuramicacid(104),discoveredfirstinsporepeptidesbyStrangeandPowell(106)andlaterinwallsbyCumminsandHarris(19),StrangeandDark(105),andSalton(83),anda,e-diaminopimelicacid,isolatedandcharacterizedbyWork(128),aretwosubstancesconfinedtobacteriaandcloselyrelatedmicro-organismssuchasblue-greenalgae(90,130).Anotherfascinatingfeatureofcell-wallchemistryhasbeenthewidespreadoccurrenceoftheD-isomersoftheaminoacids,alanine,glutamicacid,andasparticacid(52,53,84,99,109),inthewallmucopeptides.IfwecanendowNaturewithpurpose,itseemseminentlysensibleofHertohavedesignedwallscontainingD-aminoacidsintheirpeptides,thusprovidingstructuresresistanttomanyofthecommonerproteolyticenzymesandpeptidases.Thewallsofmanygram-positivebacteriamaybemadeupentirelyofthemucocomplexsubstances,mucopeptidesandmucopolysac-charides,orboth.Themucopeptides(64)invari-ablycontaintheaminosugarsglucosamineandmuramicacid,andpeptidescomposedofavarietyof3,4,or5principalaminoacids.Inadditiontomucopeptides,somewallscontainpolysaccharideoroligosaccharideresidues(46,84[VOL.25 ANATOMYOFBACTERIALSURFACEFigure6.FinestructureinawalllayerobtainedfromdisintegratedcellsofLampropediahyalina(unpublishedobservationsbyJ.A.ChapmanandM.R.J.Salton).X110,000.68,79)covalentlylinkedtothemucopeptides.Anewclassofcell-wallpolymerdifferingfromthemucocomplexsubstanceswasdiscoveredseveralyearsagobyBaddileyandhiscolleagues(4,5,9).Followingthecharacterizationoftwonucleotides,cytidinediphosphoglycerolandcvtidinediphosphoribitol(8),asearchforabio-syntheticfunctionforthesenucleotidesledtothedetectionofribitolandglycerol-phosphatepolymersinbacteriaandultimatelytothelocalizationoftheteichoicacids(fromGreekteichos=wall)intheisolatedcellwalls.ItwillberecalledthatinanearlierstudyMitchellandMoyle(72)hadfoundpolyolphosphatesintheir"envelope"fractionsofStaphylococcusaureus.Ingeneralthetwotypesofteichoicacid(glycerol-andribitol-teichoicacid)donotoccurtogether(5)andtheyseemtobeabsentfromanumberofgram-positivebacteria.Oneinterestingfeatureoftheteichoicacidsisthepresenceofester-linkedalanineinbothtypes.Therelationshipoftheglycerol-teichoicacidtothepolyglycerophos-phatecompoundfoundinanumberofgram-positivebacteriabyMcCarty(69)hasnotbeenestablished.Thelattercouldconceivablyarisefromtheglycerol-teichoicacidifthelabileester-linkedalaninewaslostduringisolationandpurification.Studiesonthemolecularstructureofwallmucopeptideshaveadvancedrapidlyinthepastfewyears.Muchinformationhasbeengainedfromseveralsources,includingtheelucidation8519611 M.R.J.SALTONBACKBONESTRUCTURE(1-6)(1-4)(16)(14)(16)(1-4)(16)AG-AMAAGAMAAG-AMA.AGAMA.PeptidePeptideLsozymeSensitivebondsFigure7.TypeofmolecularstructureproposedforthewallofMicrococcuslysodeikticus(91),showingthearrangementofpeptideside-chainsonanacetylaminosugarbackbonepossessingalternating1-44,1-46bondsbetweenN-acetyl-muramicacid(AMA)andN-acetylglucosamine(AG).ofthestructureofthenucleotidesaccumulaitnginthepresenceofpenicillinandotherantibiotics(77,107)andinvestigationsoftheproductsofenzymatichydrolysisofisolatedcellwalls(83).Onetypeofstructureemergingfromtheearlyworkontheproductsoflysozymedigestionofwalls(83)wassuggestedbySalton(85)andfurtherexpandedfromtheknowledgeofthenucleotidestructurebyBrumfitt,Wardlaw,andPark(14).Theisolationofdi-andtetrasac-charidesandpeptide-aminosugarcomplexes(mucopeptides)inlysozymedigestsofwalls(35)andtheirchemicalcharacterization(34,91)enableustosuggest(92)thetypeofstructureforthewallofMicrococcuslysodeikticusillustratedinfigure7.Thecellwallsofgram-negativebacteriaaremuchmorecomplex.Inadditiontocontainingmucopeptidesincommonwithgram-positivebacteria(87,124)theyalsopossessmajorpro-tein,lipid,andpolysaccharideconstituents.Themucocomplexormucopeptidecomponentsofthewallsofgram-negativebacteriamayaccountforonly10to20percentoftheweightofthewall,butitisapparentthatitisthisclassofchemicalconstituentwhichisresponsibleforthestructuralrigidityofthewall(87,88,90,124,125).Itseemslikelythattheprotein,lipid,andpolysaccharidecomponentsofthewallarepresentasamacro-molecularcomplex,withthemucopeptideform-inglinksinarigidlayer(125)orareinforcingnetworkthroughouttheentirewall(90).Thevariousantigenicsubstancesisolatedasthe0,orsomaticsmooth-phase,antigensareprobablyderivedfromthemacromolecularcomplexesofthecellwalls(89).Itisnotknownatpresentwhetherthewallismadeupofavarietyofchemicallyandimmunologicallydifferentmacro-molecularsubunits.TABLE3ChemicalcompositionofbacterialcellwallsGram-posi-tivebacte-riaGram-nega-tivebacte-riaPrincipalClassesofConstituentsandProductsofAcidHydrolysis1.Mucopeptides-glucosamine;muramicacid;3,4,or5aminoacids.2.Mucopolysaccharides-aminosugars,monosaccharides3.Teichoicacids-ribitol,phos-phate,glucoseorglucosamine,alanine;glycerol,phosphate,alanineWallsmayhavecompositionswiththefollowingcombina-tions:1,1+2,1+3,1+2+3.Mucopeptidesasabove.(Teichoicacidsnotasyetisolatedfromthisgroup.)ProteinIProbablyLipid(presentascom-PolysaccharidesplexesofallthreeclassesReferences88,90.Someoftheprincipalfeaturesofthechemicalcompositionofbacterialwallsaresummarizedintable3.Moreextensiveaccountsofcell-wallchemistryareavailableinearlierreviewsbyCummins(18)andWVork(129)andinmorerecentcontributionsbySalton(88,90).V.PROTOPLASTMEMBRANESOneofthemostimportantadvancescontribut-ingtothefurtherstudyoftheanatomyofthesurfacestructuresofthebacterialcellwasmadewhenWeibull(118)isolatedandcharacterizedtheprotoplastsofBacillusmegateriumin1953.Thisenabledadirectexaminationofthefunc-tionalandchemicalpropertiesofthebacterialmembranetobemade.Thattheisolatedproto-plastpresentedasurfacedifferentfromthatoftheoriginalintactcellwasdemonstratedinanumberofways.Itcouldnotbeinfectedwithbacteriophages(118),whichrequireaspecificreceptorinthecellwall(94).Theantigensonthesurfaceoftheprotoplastsdifferedfromthoseoftheisolatedwallsandintactcells(111,114,115).Unlikewallsandintactcells,theprotoplastsofBacillusmegateriumandMicrococcuslysodeikticusandtheirmembranesareextremelysusceptibletodisaggregationwithsodiumdodecylsulfate86[VOL.25 ANATOMYOFBACTERIALSURFACEandotheranionicdetergents(36,38,86).Thesevariouspropertiesbasedonthecharacteristicsoftheprotoplastmembranecanbeusedascriteriaindefiningprotoplasts,atermreservedfortheorganizedprotoplasmicelementsofbacterialormicrobialcellsdeprivedcompletelyofthecell-wallstructure(12).Mostofthetrueprotoplastshavebeenobtainedbyenzymaticdegradationofthewall(12,20,32,40,70,118).Withorgan-ismssuchasBacillusmegaterium,Micrococcuslysodeikticus,andSarcinalutea,walldegradationwithlysozymemaybecompleteandleavenoneofthecharacteristicwallcompoundsintheprotoplastsortheprotoplastmembranes(12,70).Thereare,however,severalinstancesinwhichprotoplastshavebeenobtainedwithoutcom-pletedigestionofthecellwall.AnautolyticenzymefromStaphylococcusaureuscutsthewallofthatorganismintotwohemispheres,thusreleasingtheintactprotoplastwhentheen-zymaticactionisallowedtotakeplaceinasuitablestabilizingmedium(75).Similarly,partialbreakdownofthewallofNeurosporacrassapermitstheextrusionofanintactproto-plast(7).Unfortunately,notallorganismsareamenabletosuchelegantenzymaticmanipulationsde-signedforthestepwise"peelingoff"ofthesur-facelayersofthecell.Thewallsofmanygram-positivebacteriaareonlypartiallydegradedbylysozyme(95)and,consequently,attemptstoisolateandcharacterizetheprotoplastmem-branesoftheseorganismswillhavetoawaitthedevelopmentofmorespecificenzymeprepara-tions.Theincompleteremovalofwallcom-ponentsisespeciallyconspicuouswiththeforma-tionofsphericalcells("protoplasts,"spheroplasts(12,70))ofgram-negativebacteriafollowingtreatmentwithlysozymeandethylenediamine-tetraaceticacid(EDTA),orthegrowthoftheseFigure8.Someanatomicalconsequencesoftheactionofpencicillinonbacteria.ThinsectionsofStaphylococcusaureusexposedtopenicillin.Grossdistortionatthepointsofcrosswallfor-mationclearlyvisible(Murray,Francombe,andMayall(76)).X46,000.1961187 M.R.J.SALTONFigure9.Someanatomicalconsequencesoftheactionofpenicillinonbacteria.Vibriometschnikovii"protoplasts"preparedbygrowthinthepresenceofpenicillin.Themajorityoftheprotoplastssoformedhaveanouterweakwallasintheleft-hand"protoplast";theright-handonehashadthewalldetachedduringpreparationforelectronmicroscopy(Salton(90)).X16,500.organismsinthepresenceofpenicillin(61,70,96).Aspointedoutpreviously,themucopeptidecomponentofthewallofgram-negativeorgan-ismscanberegardedaseitherareinforcingnetworkor,assuggestedbyWeidel,Frank,andMartin(125),aspartofanorganized,rigidlayer.Atleastthestructuralconsequencesoftheactionofpenicillininitsinterferencewiththeformationofmucopeptidecanbeclearlyseenfromthe"lesions"apparentinthethinsectionsofStaphylococcusaureusshowninfigure8,takenfromthestudiesofMurray,Francombe,andMayall(76).Suchanorganismhas,sotospeak,nosecondlineofdefenseinitswall,foroncethemechanicalintegrityofthewallisbreachedtheprotoplastmembranewillbeunabletowithstandthehighosmoticpressureandlysiswillultimatelyensue.Bywayofcontrast,thewallsofthegram-negativebacteriawiththeirprotein-lipid-polysaccharidecomplexeshaveanadditionalchanceofmaintainingtheirintegrity.Althoughthewallisconsiderablyweakenedbygrowthinthepresenceofpenicillin,thetypical"poached-egg"appearanceofthesphericalformsofVibriometschnikoviistillshowsanouterwallsurround-ingtheprotoplast(figure9).Unliketheproto-plastsofgram-positivebacteria,thesesphericalcellsorspheroplastsareagglutinatedbyintactcellandcell-wallantisera,thusindicatingaverysimilar,ifnotidentical,immunologicalsurface(47,96,98).Thestructuralanalysisofgram-negativebacteriahasthusbeenhamperedbytheabsenceofsuitablemethodsforisolatingprotoplastsanalogoustothoseofgram-positivebacteriaandasaconsequencetheevidencefortheexistenceofaseparate,functionalprotoplasmicmembranestructureisstilllargelycircumstantial.However,88[VOL.25 ANATOMYOFBACTERIALSURFACEtheappearanceofthinsectionsofgram-negativebacteriastronglysupportstheconclusionthattheytoopossessawelldefinedprotoplastmem-brane(seefigure5).Thebehaviorofthe"envelope"or"hull"ofcertaingram-negativeorganismshassuggestedtoseveralinvestigatorsthatseparatewallandmembranestructuresmaynotexistinthem(65,66).Itislikelythatthisquestioncouldbere-solvedwithanenzymesystemcapableofdegrad-ingthewallsufficientlytoallowtheisolationofaprotoplastifsuchexists.AttemptstoisolatesuchenzymeshavebeendisappointingandaspointedoutbySalton(82)theproductionbyasingleorganismofalltheenzymesrequiredtobreakdownthewallmaybeaninfrequenteventinNature.Itisofcourseapparenttoeventheele-mentarystudentofmicrobiologythattheremustbeorganismsproducingenzymescapableofbreakingdowneverything(usedonlyinthesenseofallmacromolecularcomponentsandtheirbuildingblocks),otherwisewewouldbekneedeeporevenfurtherimmersedinwallsofgram-negativebacteria!Whensuchenzymesbecomeavailableitmaybepossibletodecidewhetherthereisastructureanalogoustothemembraneofthegram-positivebacteria,orwhetherthe"envelope"ofthegram-negativeorganismsisanintegratedstructurepossessingboth"wall"andtransportingfunctionsofanosmoticmembrane.Thesuccessofthisapproachwouldbedependentontherebeingenoughdifferenceinthechemicalconstitutionofwallandmembranetopermittheselectionofspecificenzymes.Itisquiteconceiv-able,however,thatwallsandmembranesofgram-negativebacteriamaybesufficientlysimilartomaketheselectiveremovalofthewallverydifficultorevenimpossible.A.ChemicalCompositionofMembranesThattheprotoplastmembranewouldbechemicallymorecomplexthanbacterialwallswassuspectedfromWeibull's(118,119)demon-strationofthepresenceofthecytochromesystemintheisolatedmembranesofBacillusmegateriumandthedetectionofanumberofenzymesoftheelectrontransportsysteminthesestructuresbyStorckandWachsman(103).TwogroupsofinvestigatorshaveisolatedandcharacterizedchemicallytheprotoplastmembranesofBacillusmegaterium(122)andMicrococcuslysodeikticus(39).BothbacterialmembranesaremadeupTABLE4ComparisonofcompositionofcellwallandprotoplastmembraneofBacillusmegaterium%DryWeightConstituentWallMembraneNitrogen..................7.4-7.810.3-10.9Phosphorus.............3...3.43.5Lipid....................4.2-5.915.9-20.9Hexose....................0.3-0.91.8-9.8Aminosugar................20-23Diaminopimelicacid.7-9.Reference122.TABLE5ComparisonofcompositionofcellwallandprotoplastmembraneofMicrococcuslysodeikticus%DryWeightConstituentWallMembraneNitrogen....................7.68.4Phosphorus..................0.221.16Lipid......................028.0Mannose....................018.9Glucose.....................3.5-5.80Aminosugar.................16-222.7Reference39.largelyofproteinandlipid.Acomparisonofwallandmembranecompositionofeachspeciesispresentedintables4and5.Thelipidofthemembranesofthesetwoorganismsappearstobemainlyphosphatidicacid;accordingly,GilbyandFew(38)havesuggestedthatcationicdeter-gentsmayactonthislipidcomponentofthepro-toplastmembrane.Themembranefractionshavefrequentlybeenfoundtoformacharacteristicyellowlayeroncentrifugationoflysedproto-plasts(39,70,75,118).Thispigmentationcanatleastinpartbeaccountedforbythepresenceofcarotenoids(37,39).Nucleicacids(bothribo-nucleic(RNA)anddeoxyribonucleic(DNA))havebeendetectedinisolatedmembranes(114,122).WeibullandBergstr6m(122)foundthattheRNAcontentsofbatchesofmembranesofBacillusmegateriumvariedfromabout0.5to2percentbutsubstantiallyhighervalueshavebeenobservedbyVennesandGerhardt(114).It1961]89 M.R.J.SALTONispossiblethatthenucleicacidmaterialpresentinthemembranefractionmayrepresentcon-taminatingmatterfromthebacterialprotoplasm(122).VI.LOCALIZATIONOFENZYMESINBACTERIALCELLSANDASUMMARYOFTHECOMPARATIVECHEMICALANDBIOCHEMICALANATOMYOFGRAM-POSITIVEANDGRAM-NEGATIVEBAC-TERIAWiththemethodsavailableforthereleaseofprotoplastsofgram-positivebacteriaandtheisolationoftheprotoplastmembranesithasbeenpossibletocometosomeconclusionsaboutthelocalizationofcertainenzymesinthemajorsurfacestructuresofthebacterialcell.Thebio-syntheticcapabilitiesofthebacterialprotoplast(70,120)aresosimilartothoseofintactcellsthatitappearsunlikelythatthecellwallcon-tributesmuchmorethanmechanicalstabilitytothebacterialcell.Thusthecompletelossofthewallduringprotoplastformationdoesnotseriouslyimpairthefunctioningoftheosmoticbarrier,thebiosynthesisofcomplexmoleculessuchasproteinsandnucleicacids,orthesyn-thesisandassemblyofbacteriophagesandspores(20,31,120).ThedistributionofenzymesinprotoplastandsolubleandparticulatefractionsofBacillusmegateriumhasbeenstudiedbyseveralinvesti-gatorsandthereisverygoodagreementbetweentheresultsofStorckandWachsman(103)andthoseofWeibull,Beckman,andBergstrom(123)forseveralstrainsofthisorganism.SomeoftheresultsforthelocalizationofenzymesinTABLE6RelativeamountsofenzymesinmembraneandsolubleprotoplasmicfractionsofBacillusmegateriumEnzyme~~MembraneSolubleEnzymeFractionProtoplasmSuccinicdehydrogenase......145.04.5Malicdehydrogenase.........32.615.7Lacticdehydrogenase........41.257.2Isocitricdehydrogenase3.5112.0Fumarase....................32.2101.8DPNHoxidase..............261.01.0Catalase.....................1.3100.0Hexokinase..................5.587.5Acidphosphatase............3.099.6Datafromreference123.TABLE7EnzymedistributioninfractionsfromastrainofPseudomonasdisintegratedintheMickleapparatusCrudeProto-EnzymeWallplasmicFractionFractionSuccinicdehydrogenase........+:i1Malicdehydrogenase...........+4Fumaratedehydrogenase+Alaninedehydrogenase.-.+DPNHoxidase................+TraceUnpublisheddata,A.D.Brown,S.Jeffery,andM.R.J.Salton.thestudyofWeibulletal.(123)arepresentedintable6.InvestigationswithBacillusmegaterium(123)andStaphylococcusaureusmembranes(74)haveconfirmedthepresenceofcytochromes,thereduceddiphosphopyridinenucleotide(DPNH)oxidase,thesuccinicdehydrogenase,andthemalicdehydrogenasesystemsinthesestructures.MitchellandMoyle(74)foundacidphosphatasemainlyinthemembraneofStaphylococcusaureus,whereasthisenzymeandhexokinasewerelargelyinthe"soluble"protoplasmicfractionofBacillusmegaterium(123)asshownintable6.Thereisnoinformationaboutthedetectionofenzymesinwallfractionsofgram-positivebacteria.Thechemicalcompositionofthesestructureswould,however,leadonetosuspectthatwhateverenzymeswerepresentcouldbederivedfromcon-taminationwithmembranefragmentsorad-sorbedprotoplasm.Thisofcoursedoesnotpre-cludethepossibilitythatenzymesarelocatedonthewalloftheintactbacterialcell.Owingtothedifficultyofisolatingmembranesofgram-negativebacteriaasseparatestructuralentities,thequestionwhethercertainenzymesarelocalizedinthewallormembranewillhavetoawaitfurtherinvestigation.However,therehavebeenseveralstudiesofthedistributionofenzymesinsoluble,particulate,and"envelope"or"hull"fractionsofgram-negativebacteria(2,17,50,51,62).Anumberoftheenzymesoftheelectrontransportsystemhavebeenfoundinthe"envelope"fractions(17,51).Hunt,Rodgers,andHughes(51)isolateda"cellwall-membrane"fractionfrommechanicallydis-integratedcellsofastrainofPseudomonasfluorescens.Fromtheirexcellentstudiestheyconcludedthatthenicotinicacidhydroxylase90[VOL.25 ANATOMYOFBACTERIALSURFACEandsuccinicaciddehydrogenasesystemswerelocatedinthiscomplexstructure.Furthershak-ingofthese"wall-membrane"fractionswithglassbeadsdidnotreleasemuchoftheenzymeactivities.However,lysozymeandEDTAtreat-mentat25Cfor8to10minreleasedthetotalactivityintothesupernatantfraction.A.D.Brown,S.Jeffery,andM.R.J.Salton(unpub-lishedobservations)studiedthedistributionofenzymesincrude"wall,"smallparticle,andprotoplasmicfractionsofaPseudomonassp.disintegratedinbufferat0CintheMickleapparatus.Thequalitativeresultspresentedintable7againconfirmthepresenceofsuccinicaciddehydrogenase,malicdehydrogenase,andDPNHoxidaseinthecrudewallor"envelope"fractions.Owingtothegreaterdifficultyinob-tainingcleanwallfractionsofgram-negativebacteria,furtherinvestigationswillbeneededbeforeitispossibletoarriveatfirmconclusionsonthedistributionofenzymesinthewallandmembranestructuresorparticlesderivedfromboth.Atthemoment,allwecandecideaboutthegram-negativeorganismsiswhetheranenzymeispresentinthe"envelope"(cellwall-membrane)fractionorintheparticulateorsolublefractions.GRAM-POSITIVECAPSULEPOLY-SACCHARIDEPOLY-PEPTIDEWALLMUCO-PEPTIDEMUCOPOLY-SACCHARIDETEICHOICACIDSENZYMESIMEMBRANEPROTEINLIPIDPOLY-SACCHARIDEENZYMESCYTOCHROMESDEHYDROGEN-ASESDPNH-OXIDASEAlthoughtherearestillmanyseriousgapsinourknowledgewecansummarizeanumberoftheessentialfeaturesofthecomparativeanatomyofthesurfacestructuresofgram-positiveandgram-negativebacteria.Someofthechemicalandbiochemicalpropertiesarepresentedinfigure10.VII.THEGRAMSTAINANDTHEBACTERIALSURFACEWithourpresentincreasedknowledgeofthenatureofthebacterialsurface,isitpossibletoconcludeanythingmoredefinitiveaboutthemechanismoftheGramstainreaction?IbelievewearemuchclosertoanunderstandingofthisstainprocedurewhichdividesthebacterialworldintotwobroadgroupsseparablenotmerelyontheirresponsetotheGramstain,butalsoonthebasisofbiochemicalandchemicalproperties(10).ItshouldofcoursebepointedoutthatitisnowalmostimpossibletoproposeanynewtheorytoexplaintheGramstainreaction,asmostofthepossibilitieshavebeencoveredatsometimeorotherduringthelonghistoryofthisstainingprocedure.Moreover,everymajorclassofthemacromolecularcomponentsofthebacterialcellhasbeenimplicatedinthemechanismoftheGRAM-NEGATIVECAPSULFPOLY-SACCHARIDEWALLPROTEINLIPIDPOLY-SACCHARIDEMUCO-PEPTIDEMEMBRANECOMPOSITIONENZYMESENZYMESa??jENVELOPEENZYMESCYTOCHROMESDEHYDROGENASESDPNHOXIDASEFigure10.Summaryofthechemicalandbiochemicalanatomyofthesurfacestructureofgram-positiveandgram-negativebacteria.911961] M.R.J.SALTONTABLE8TheoriesandcellularsubstancesinvolvedintheGramstainreactionNucleoproteinsDeussen(21)NucleicacidsDubosandMacLeod(24)Henry,Stacey,andTeece(44,45)LipidsEisenberg(30)SpeciallipidsSchumacher(97)Lipo-proteinStearnandStearn(102)CarbohydrateandWebb(117)nucleicacidGlycerophosphateSchumacher(97)complexPolyglycerophos-MitchellandMoyle(71)phatePermeabilityBurkeandBarnes(15)KaplanandKaplan(56)WensinckandBoev6(126)Bartholomew,Cromwell,andFinkelstein(11)stainprocedure.Table8givesabrief,selectedsummaryoftheprincipaltheoriesandsub-stancesallegedtobeinvolved(10,11,15,21,24,30,44,45,56,71,73,97,101,102,117).SoofteninthestudiesofthemechanismoftheGramstain,attemptshavebeenmadetoisolatespecificsubstancesthatmayberesponsiblefortheretentionofthecrystalviolet(CV)-iodine(I)complex.ThisapproachledHenry,Stacey,andTeece(45)to"restore"theGramstainwithextractedMg-ribonucleateandtoconcludethattheRNAofgram-positivebacteria,coupledtobasicproteins,wasresponsibleforthestainreac-tion.MitchellandMoyle(71)couldfindnocorrelationbetweentheGramstainandnucleicacidcontentsbuttheybelievedtheGramreac-tionwasrelatedtothepresenceofpolyolphos-phatesinthebacterialenvelope(71,73).Hereagainaconvincingcorrelationhasbrokendown,aswenowknowthatvariousstronglygram-positivebacteriaaredevoidoftheteichoicacidsinthewall.Thatmanysubstanceslikelytooccurinbacterialcellscanstainasgram-positivematerialhasbeenshownbyShugarandBaranow-ska(101).Lipids,polysaccharides,RNA,andcertainproteinscanallretaintheCV-Icomplextoagreaterorlesserextent(101).ItthereforeTABLE9Cell-wallcompositionandGramstainreactionGramMajorChemicalOrganismReac-ComponentsoftionCellWallsSaccharomyces+Polysaceharide,cerevisiaeprotein,lipidCandidaspp.+Polysaccharide,proteinStaphylococcus+Mucopeptide,aureusteichoicacidsBacillussubtilis+Mueopeptide,teichoicacidsStreptococcusfaecalis+Mucopeptide,mucopolysac-charide,teichoicacidsMicrococcuslyso-+MucopeptidedeikticusEscherichiacoli-Protein,polysac-charide,lipid,mucopeptideSalmonellagal--AsforE.colilinarumProteusvulgaris-AsforE.coliSpirillumserpens-AsforE.coliseemedunlikelythattheGramstaincouldbecorrelatedwiththepresenceofanyonespecificsubstanceinthecellsofthosebacteriashowingapositivereaction.TowhatextentthechemicalconstituentsofthebacterialwallarecorrelatedwiththeGramstaincanbejudgedfromthedatapresentedintable9.Themainfeatureswhichemergefromcomparativestudiesofthechemistryofmicrobialwallsarethepresenceofmucopeptide,mucopoly-saccharide,andpolysaccharidecomplexesinthewallsofallgram-positivebacteriaandtherelativelyhigh(upto20percent)lipidcontentsinthewallsofgram-negativeorganisms.Itthereforeseemedconceivabletothewriterthatontheonehandthehighlipidcontentofthewallsofgram-negativebacteriamightbeafactorcontributingtotheirnegativity,andthatontheotherhandthedehydrationofthewallmuco-complexesduringthedecolorizingstepoftheGramstainmightreducethe"poresize"inthewallandrendertheCV-Icomplexrelativelyinaccessibletothesolvent.Bothofthesepossi-bilitieswouldbeamenabletoexperimentationandanyresultsshouldgiveanindicationofthe92[VOL.25 ANATOMYOFBACTERIALSURFACEimportanceof"permeability"factorsintheGramstain.Theextractabilityoflipidsfromthewallswith95percentethanol,theconcentrationemployedinthedifferentiationstepinHucker'smodifica-tionofthestain(10),wastested.From40to50percentofthelipidcontentofisolatedwallsofEscherichiacoliorProteusvulgariscouldbeextractedundertheseconditions.ThedirectremovalofwalllipidfromtheseorganismscouldthuscontributetotheextractabilityoftheCV-Jcomplex.Ifthereisadifferentialresponseofthewallofthetwogroupstothepassageofsubstancesacrossitinethanol,thensomefurtherevidencecouldbegainedfrom"permeability"(notinaphysiologicalsenseofcourse)orleakagestudies.WithorganismsgrownonmediacontainingP32,ithasnowbeenpossibletoshowadifferentialpassageofintracellularmetabolitescontainingP32acrossthewallsor"envelopes"(cellwall-membrane)whencellswereplacedingradedcon-centrationsofethanol.Acomparisonoftypicalresultsobtainedwithtwogram-positiveandtwogram-negativebacteriaisaffordedbytheresultsshowninfigures11and12.Thisdifferentialeffectofethanolconcentrationontheleakageofintracellularsubstancesfromgram-positiveandgram-negativebacteriaisverysimilartotheextractabilityoftheCV-Icomplexreportedinz7-1-.-Uw(nw-Jwc'JC,)CLj20001000theexcellentstudiesofWensinckandBoev6(126).Theleakagestudiesthussuggestthattheporesizeofthewallissufficientlyreducedduringdehydrationinhighconcentrationsofethanoltotrapalargefractionoftheintracellularconstitu-entswithinthecellsofgram-positivebacteria.Aseriesofgram-positiveandgram-negativebac-teriahavebeenstudiedinthismannerandtheethanol-inducedreleaseofP32(expressedasapercentageofthemaximalreleaseforeachorganism)issummarizedintable10.Exposureofgram-positivebacterialabeledwithP32toiodinesolutions(asusedintheGramstain)priortosuspensioninethanolreducedtheleakageevenfurtherintheethanolconcentrationsbe-tween80to100percent(v/v).Suchapretreat-mentwaswithouteffectonthegram-negativebacteria.Leakageexperimentswerethenper-formedonwashedcellsusingtheGramstainconditionsforbacterialsuspensionsdescribedbyWensinckandBoeve(126),i.e.,suspensionincrystalvioletsolution,washingwithwater,andtreatmentwithiodine.WhenthecellsweretakenupingradedethanolconcentrationsandthePnreleasewasdetermined,thedifferentialpatternofextractabilityforthegram-positiveStaphylococcusaureusandthegram-negativeEscherichiacoli(asshowninfigures11and12)persisted.Theseresultsareinaccordwith"per-meability"differencesbeingresponsibleforthe02550750/(V/V)100ETHANOLFigure11.Effectofethanolconcentrationonthereleaseofp32compoundsfromStreptococcusfaecalis(SF)andSaccharomycescerevisiae(SC)cellsuspensionsat20C.1961]93 M.R.J.SALTON[EC2000100002550751000/0(VlV)ETHANOLFigure12.EffectofethanolconcentrationonthereleaseofP32compoundsfromEscherichiacoli(EC)andProteusvulgaris(PV)cellsuspensionsat20C.Gramstain.TheevidencesuggestsnotonlythattheCV-Icomplexislargelyinextractablebutalsothatevensmallmolecularweightmetabolitescon-tainingP32arealsotrappedwithinthecellwhenthewallisdehydratedwith95percentethanol.Ithasofcoursebeenknownforsometimethatcellstreatedwithlysozymebecomegram-negative(Webb(117))andinmorerecentyearsisolatedprotoplastshavealsobeenfoundtogiveagram-negativereactionasshownbyGerhardt,Vennes,andBritt(33).TheseworkershavealsoshownthatcrushedprotoplastsfromBacillusmegateriumGram-stainedpriortowallremovalwithlysozyme,aswellascrushedwholecells,couldbedecolorized,thusreaffirmingthatstruc-turalintegrityoftheorganismisaprerequisiteforGrampositivity.Finally,themostconvincingevidencethatitisthewallofthegram-positiveorganismwhichisthebarriertoremovaloftheCV-Icomplexhasbeenobtainedwithsuspen-sionsofseverallysozyme-sensitivebacteriaGram-stainedbytheproceduredescribedbyWensinckandBoeve(126).Whenstainedcellsuspensionsofgram-positiveorganismsareincubatedwithlysozyme,thecellwallsaredigestedandtheresidualprotoplastretainstheCV-Icomplex,whichisthencompletelyaccessi-bleandisextractedquantitativelybyasingleTABLE10Releaseofp32frombacteriain100percentethanolGramReleasedReac-OrganismReleatiedttionMaximum-Pseudomonassp.96-Proteusvulgaris90-Escherichiacoli84-Salmonellagallinarum75-Neisseriacatarrhalis65+Micrococcuslysodeikticus35+Streptococcusfaecalis33+Staphylococcusaureus26+Bacillusmegaterium22+Saccharomycescerevisiae10treatmentwith95percentethanol.TheseresultsthussupporttheviewthatGrampositivityisduetothereducedaccessibilityoftheCV-Icomplextothesolvent,resultingprobablyfromareduc-tionintheporesizebydehydrationofwallmuco-complexesby95percentethanolandpossiblyalsofromthepresenceofthelargeiodineatom,whichmayofcoursebecomeassociatedwithpartsofthemoleculesasitdoesinotherpoly-saccharides(41).However,asiodineisaninhibi-z-__Uwenw-Jwc'J94[VOL.25 ANATOMYOFBACTERIALSURFACEtoroflysozyme(108),itseemsthatthebackboneinthewallissufficientlyfreeofCV-IcomplexorItopermittheenzymetodegradethewall.TheseresultsalsoindicatethattheCV-Icomplexis"attached"tothebacterialprotoplast,eitheratthesurfaceordistributedthroughouttheprotoplasm.Intheshortspaceofthepastdecadeagreatdealhasbeenlearnedabouttheanatomyofthebacterialsurfaceand,fortunatelyforthemicro-biologist,thechemistandthebiochemisthavebeenattractedbysomeoftheunusualsubstancespresentinbacterialcells.Theincursionofthechemistintothemicrobialworldhaspromptedatleastonegroupofmicrobiologiststoremark:"Bugs:SlurpmacromoleculargooAndchemistswillmakeapetofyou."2Itislikelythatthe"macromoleculargoo"willcontinuetoattractmanyintothefascinatingworldofthemicroorganismandwilladdagreatstimulustoourunderstandingofthestructureandfunctioningoftheorganizedmicrobialcell.VIII.REFERENCES1.ADAMS,M.H.ANDPARK,B.H.1956Anenzymeproducedbyaphage-hostcellsystem.Virology,2,719-736.2.ALEXANDER,M.1956Localizationofen-zymesinthemicrobialcell.Bacteriol.Rev.,20,67-93.3.ANDERSON,T.F.1949Onthemechanismofadsorptionofbacteriophagesonhostcells.SymposiumSoc.Gen.Microbiol.,1,76-95.4.ARMSTRONG,J.J.,BADD1LEY,J.,BUCHANAN,J.G.,ANDCARSS,B.1958Nucleotidesandthebacterialcellwall.Nature,181,1692-1693.5.ARMSTRONG,J.J.,BADDILEY,J.,BUCHANAN,J.G.,DAVISON,A.L.,KELEMEN,M.V.,ANDNEUHAUS,F.C.1959Compositionofteichoicacidsfromanumberofbacterialwalls.Nature,184,247-249.6.AVERY,0.T.ANDDUBOS,R.J.1931TheprotectiveactionofaspecificenzymeagainsttypeIIIpneumococcusinfectioninmice.J.Exptl.Med.,54,73-90.7.BACHMANN,B.J.ANDBONNER,D.M.1960ProtoplastsfromNeurosporacrassa.J.Bacteriol.,78,550-556.8.BADDILEY,J.,BUCHANAN,J.G.,CARSS,B.,MATHIAS,A.P.,ANDSANDERSON,A.R.1956Theisolationofcytidinediphosphate2HaskinsLaboratory(NewYork),ChristmasCard,1951.glycerol,cytidinediphosphateribitolandmannitol1-phosphatefromLactobacillusarabinosus.Biochem.J.,64,599-603.9.BADDILEY,J.,BUCHANAN,J.G.,ANDCARSS,B.1958Thepresenceofribitolphos-phateinbacterialcellwalls.Biochim.etBiophys.Acta,27,220.10.BARTHOLOMEW,J.W.ANDMITTWER,T.1952TheGramstain.Bacteriol.Rev.,16,1-29.11.BARTHOLOMEW,J.W.,CROMWELL,T.,ANDFINKELSTEIN,H.1959Correlationbe-tweeniodinepermeabilityandtheGramcharacteristicofcells.Nature,183,123-124.12.BRENNER,S.,DARK,F.A.,GERHARDT,P.,JEYNES,M.H.,KANDLER,O.,KELLEN-BERGER,E.,KLIENBERGER-NOBEL,E.,MCQUILLEN,K.,RUBIO-HUERTOS,M.,SALTON,M.R.J.,STRANGE,R.E.,TOmCsIK,J.,ANDWEIBULL,C.1958Bacterialprotoplasts.Nature,181,1713-1715.13.BRINTON,C.C.1959Non-flagellarappend-agesofbacteria.Nature,183,782-786.14.BRUMFITT,W.,WARDLAW,A.C.,ANDPARK,J.T.1958Developmentoflysozyme-resistanceinMicrococcuslysodeikticusanditsassociationwithanincreasedO-acetylcontentofthecellwall.Nature,181,1783-1784.15.BURKE,V.ANDBARNES,M.W.1929ThecellwallandtheGramreaction.J.Bacteriol.,18,69-92.16.CLARK,W.R.,MCLAUGHLIN,J.,ANDWEBSTER,M.E.1958Anaminohexu-ronicacidastheprincipalhydrolyticcomponentoftheViantigen.J.Biol.Chem.,230,81-89.17.COTA-ROBLES,E.H.,MARR,A.G.,ANDNILSON,E.H.1958Submicroscopicpar-ticlesinextractsofAzotobacteragilis.J.Bacteriol.,75,243-252.18.CUMMINS,C.S.1956Thechemicalcom-positionofthebacterialcellwall.Intern.Rev.Cytol.,5,25-50.19.CUMMINS,C.S.ANDHARRIS,H.1956Thechemicalcompositionofthecellwallsinsomegram-positivebacteriaanditspossi-blevalueasataxonomiccharacter.J.Gen.Microbiol.,14,583-600.20.DARK,F.A.ANDSTRANGE,R.E.1957BacterialprotoplastsfromBacillusspeciesbytheactionofautolyticenzymesNature,180,759-760.21.DEUSSEN,E.1921DieGramscheBakte-rienfairburg,ihrWesenundihreBedeutung.Z.Hyg.,93,512-522.1961]95 M.R.J.SALTON22.DISCHE,Z.1953Qualitativeandquantita-tivecolorimetricdeterminationofhep-toses.J.Biol.Chem.,204,983-997.23.DUBOS,R.J.1932Factorsaffectingtheyieldofspecificenzymeinculturesofbacillusdecomposingthecapsularpoly-saccharideoftypeIIIpneumococcus.J.Exptl.Med.,55,377-391.24.DUBOS,R.J.ANDMAcLEOD,C.M.1938Theeffectofatissueenzymeuponpneu-mococci.J.Exptl.Med.,67,791-797.25.DUDMAN,W.F.ANDWILKINSON,J.F.1956Thecompositionoftheextracellularpoly-saccharidesofAerobacter-Klebsiellastrains.Biochem.J.,62,289-295.26.DUGUID,J.P.1951Thedemonstrationofbacterialcapsulesandslime.J.Pathol.Bacteriol.,63,673-685.27.DUGUID,J.P.ANDGILLIES,R.R.1956Non-flagellarfilamentousappendages('fimbriae')andhaemagglutinatingactiv-ityindysenterybacilli.J.Gen.Micro-biol.,15,vi.28.DUGUID,J.P.ANDGILLIES,R.R.1957Fimbriaeandadhesivepropertiesindysenterybacilli.J.Pathol.Bacteriol.,74,397-411.29.DUGUID,J.P.,SMITH,I.W.,DEMPSTER,G.,ANDEDMUNDS,P.N.1955Non-flagellarfilamentousappendages("fimbriae")andhaemagglutinatingactivityinBacteriumcoli.J.Pathol.Bacteriol.,70,335-348.30.EISENBERG,P.1910ZurTheoriderGramfestigkeit.Zentr.Bakteriol.Para-sitenk.(Orig.),56,193-200.31.FITZ-JAMES,P.C.1958Cytologicalandchemicalstudiesofthegrowthofproto-plastsofBacillusmegaterium.J.Biophys.Biochem.Cytol.,4,257-266.32.FREIMER,E.H.,KRAUSE,R.M.,ANDMC-CARTY,M.1959StudiesofLformsandprotoplastsofgroupAstreptococci.J.Exptl.Med.,110,853-874.33.GERHARDT,P.,VENNES,J.W.,ANDBRITT,E.M.1956GramreactionofisolatedprotoplastsandsurfacemembranesofBacillusmegaterium.J.Bacteriol.,72,721.34.GHUYSEN,J.M.1960Enzymicsensitivityofpurifiedacetylhexosamineandacetyl-hexosamine-peptidecomplexes.Biochim.etBiophys.Acta,40,473-480.35.GHUYSEN,J.M.ANDSALTON,M.R.J.1960Isolationandcompositionofacetylhexos-amineandacetylhexosamine-peptidecom-plexes.Biochim.etBiophys.Acta,40,462-472.36.GILBY,A.R.ANDFEW,A.V.1957Surfacechemicalstudiesontheprotoplastmem-braneofMicrococcuslysodeikticus.Proc.Intern.Congr.SurfaceActivity,2ndCongr.,4,262-270.37.GILBY,A.R.ANDFEW,A.V.1958Luteininabacterialmembrane.Nature,182,55-56.38.GILBY,A.R.ANDFEW,A.V.1960LysisofprotoplastsofMicrococcuslysodeikticusbyionicdetergents.J.Gen.Microbiol.,23,19-26.39.GILBY,A.R.,FEW,A.V.,ANDMCQUILLEN,K.1958ThechemicalcompositionoftheprotoplastmembraneofMicrococcuslyso-deikticus.Biochim.etBiophys.Acta,29,21-29.40.GOODER,H.ANDMAXTED,W.R.1958ProtoplastsofgroupA,-haemolyticstreptococci.Nature,182,808-809.41.GREENWOOD,C.T.1956Aspectsofthephysicalchemistryofstarch.AdvancesinCarbohydrateChem.,11,335-393.42.GuEx-HOLZER,S.ANDTOMCSIK,J.1956Isolationandchemicalnatureofcapsularandcell-wallhaptensinaBacillusspecies.J.Gen.Microbiol.,14,14-25.43.HEIDELBERGER,M.1956Lecturesinimt-munochemistry.AcademicPress,Inc.,NewYork.44.HENRY,H.ANDSTACEY,M.1946Histo-chemistryoftheGramstainingreactionformicroorganisms.Proc.Roy.Soc.(London),B,133,391-406.45.HENRY,H.,STACEY,M.,ANDTEECE,E.G.1945Natureofthegrampositivecomplexinmicroorganisms.Nature,156,720-721.46.HOLDSWORTH,E.S.1952ThenatureofthecellwallofCorynebacteriumdiphtheriae.Isolationofanoligosaccharide.Biochim.etBiophys.Acta,9,19-28.47.HOLME,T.,MALMBORG,A.S.,ANDCOTA-ROBLES,E.1960AntigensofspheroplastmembranepreparationsfromEscherichiacoliB.Nature,185,57-58.48.HOUWINK,A.L.1953Amacromolecularmono-layerinthecellwallofSpirillumspec.Biochim.etBiophys.Acta,10,360-366.49.HOUWINK,A.L.ANDVANITERSON,W.1950Astudyonflagellation.Biochim.etBiophys.Acta,5,10-44.50.HUNT,A.L.1958Purificationofthenicotinicacidhydroxylasesystem.Bio-chem.J.,69,2P.51.HUNT,A.L.,RODGERS,A.,ANDHUGHES,D.E.1959Sub-cellularparticlesandthenicotinicacidhydroxylasesystemin96[VOL.25 ANTATOMYOFBACTERIALSURFACEextractsofPseudomonasfluorescensKB1.Biochim.etBiophys.Acta,34,354-372.52.IKAWA,M.ANDSNELL,E.E.1956D-Glutamicacidandaminosugarsascellwallconstituentsinlacticacidbacteria.Biochim.etBiophys.Acta,19,576-578.53.IKAWA,M.ANDSNELL,E.E.1960Cellwallcompositionoflacticacidbacteria.J.Biol.Chem.,235,1376-1382.54.IVANOVICS,G.ANDBRUCKNER,V.1937DiechemischeStrukturderKapselsub-stanzdesMilzbrandbazillusundderserologischidentischenspezifischensub-stanzdesBacillusmesentericus.Z.Im-munitatsforsch.,90,304-318.55.IVANOVICS,G.ANDHORVATH,S.1953ThestructureofthecapsuleofB.megatherium.ActaPhysiol.Acad.Sci.Hung.,4,175-186.56.KAPLAN,M.L.ANDKAPLAN,L.1933TheGramstainanddifferentialstaining.J.Bacteriol.,25,309-321.57.KELLENBERGER,E.ANDRYTER,A.1958CellwallandcytoplasmicmembraneofEscherichiacoli.J.Biophys.Biochem.Cytol.,4,323-326.58.KOFFLER,H.,KOBAYASHI,T.,ANDMALLET,G.E.1956Cysteine-cystinecontentandthefreeaminogroupsofflagellin.Arch.Biochem.Biophys.,64,509-511.59.LABAW,W.ANDMOSLEY,.VM.1954Dem-onstrationofstriatedfibresinthecapsuleoftheLisbonnestrainoflysogenicEscher-ichiacoli.J.Bacteriol.,67,576-584.60.LANCEFIELD,R.C.1943Effectsofproteo-lyticenzymesonstreptococcalcells.J.Exptl.Med.,78,465-476.61.LEDERBERG,J.1956Bacterialprotoplastsinducedbypenicillin.Proc.Natl.Acad.Sci.U.S.,42,574-577.62.LINNANE,A.W.ANDSTILL,J.L.1955TheintracellulardistributionofenzymesinSerratiamarcescens.Biochim.etBiophys.Acta,16,305-306.63.MAcLENNAN,A.P.1956Theproductionofcapsules,hyaluronicacidandhyaluroni-daseby25strainsofgroupCstreptococci.J.Gen.Microbiol.,15,485-491.64.MANDELSTAM,J.ANDROGERS,H.J.1959Theincorporationofaminoacidsintothecell-wallmucopeptideofstaphylococciandtheeffectofantibioticsontheprocess.Biochem.J.,72,654-662.65.MARR,A.G.1960Localizationofenzymesinbacteria.InThebacteria,vol.I,pp.443-468.EditedbyI.C.GunsalusandR.Y.Stanier.AcademicPress,Inc.,NewYork.66.MARR,A.G.ANDCOTA-ROBLES,E.H.1957SonicdisruptionofAzotobtctervinelandii.J.Bacteriol.,74,79-86.67.MAXTED,W.R.1952Enhancementofstreptococcalbacteriophagelysisbyhyaluronidase.Nature,170,1020-1021.68.MCCARTY,M.1952Natureofthecellularsubstrateattackedbythelyticenzymes.J.Exptl.Med.,96,569-580.69.MCCARTY,M.1959Theoccurrenceofpolyglycerophosphateasanantigeniccomponentofvariousgram-positivebac-terialspecies.J.Exptl.Med.,109,361-378.70.MCQUILLEN,K.1960Bacterialproto-plasts.InThebacteria,vol.I,pp.249-359.EditedbyI.C.GunsalusandR.Y.Stanier.AcademicPress,Inc.,NewYork.71.MITCHELL,P.ANDMOYLE,J.1950Occur-renceofaphosphoricesterincertainbacteria:itsrelationtoGramstainingandpenicillinsensitivity.Nature,166,218-220.72.MITCHELL,P.ANDMOYLE,J.1951Theglycerophospho-proteincomplexenvelopeofMicrococcuspyogenes.J.Gen.Micro-biol.,5,981-992.73.MITCHELL,P.ANDMOYLE,J.1954TheGramreactionandcellcomposition:nucleicacidsandotherphosphatefrac-tions.J.Gen.Microbiol.,10,533-540.74.MITCHELL,P.ANDMOYLE,J.1956Thecytochromesystemintheplasmamem-braneofStaphylococcusaureus.Biochem.J.,64,19P.75.MITCHELL,P.ANDMOYLE,J.1957Auto-lyticreleaseandosmoticpropertiesof'protoplasts'fomStaphylococcusaureus.J.Gen.Microbiol.,16,184-194.76.MURRAY,R.G.E.,FRANCOMBE,W.H.,ANDMAYALL,B.H.1959Theeffectofpenicillinonthestructureofstaphylococ-calcellwalls.Can.J.Microbiol.,5,641-648.77.PARK,J.T.ANDSTROMINGER,J.L.1957Modeofactionofpenicillin.Science,125,99-101.78.REBERS,P.A.ANDHEIDELBERGER,M.1959ThespecificpolysaccharideoftypeVIpneumococcus.J.Am.Chem.Soc.,81,2415-2419.79.SALTON,M.R.J.1952Preliminaryinves-tigationofthechemicalconstitutionofthecellwallofStreptococcusfaecalis.Bio-chim.etBiophys.Acta,8,510-519.80.SALTON,M.R.J.1952Thenatureofthecellwallsofsomegram-positiveandgram-negativebacteria.Biochim.etBiophys.Acta,9,334-335.9719611 M.R.J.SALTON81.SALTON,M.R.J.1953Thecompositionofthecellwallsofsomegram-positiveandgram-negativebacteria.Biochim.etBio-phys.Acta,10,512-523.82.SALTON,M.R.J.1955Cellularstructureandenzymicbacteriolysis.Proc.Intern.Congr.Biochem.,3rdCongr.(Brussels),404-410.83.SALTON,M.R.J.1956Theactionoflysozymeoncellwallsofsomelysozyme-sensitivebacteria.Biochim.etBiophys.Acta,22,495-506.84.SALTON,M.R.J.1957Cell-wallamino-acidsandamino-sugars.Nature,180,338-339.85.SALTON,M.R.J.1957ThepropertiesofIysozymeanditsactiononmicroorganisms.Bacteriol.Rev.,21,82-100.86.SALTON,M.R.J.1957Theactionoflyticagentsonthesurfacestructuresofthebacterialcell.Proc.Intern.Congr.Sur-faceActivity,2ndCongr.,4,245-253.87.SALTON,M.R.J.1958Thelysisofmicro-organismsbylysozymeandrelateden-zymes.J.Gen.Microbiol.,18,481-490.88.SALTON,M.R.J.1960Surfacelayersofthebacterialcell.InThebacteria,vol.I,pp.97-151.EditedbyI.C.GunsalusandR.Y.Stanier.AcademicPress,Inc.,NewYork.89.SALTON,M.R.J.1960Monosaccharideconstituentsofthewallsofgram-negativebacteria.Biochim.etBiophys.Acta,45,364-371.90.SALTON,M.R.J.1961Microbialcellwalls.JohnWileyandSons,NewYork,inpress.91.SALTON,M.R.J.ANDGHUYSEN,J.M.1959Thestructureofdi-andtetra-saccharidesreleasedfromcellwallsbylysozymeandstreptomycesF.enzymeandthe13(1-4)N-acetylhexosaminidaseactivityoftheseenzymes.Biochim.etBiophys.Acta,36,552-554.92.SALTON,M.R.J.ANDGHUYSEN,J.M.1960Thestructureofdi-andtetra-saccharidesreleasedfromcellwallsbylysozymeandstreptomycesF1enzyme.Biochim.etBiophys.Acta,45,355-363.93.SALTON,M.R.J.ANDHORNE,R.W.1951Methodsofpreparationandsomeproper-tiesofcellwalls.Biochim.etBiophys.Acta,7,177-197.94.SALTON,M.R.J.ANDMCQUILLEN,K.1955Bacteriophagemultiplicationinproto-plastsofsensitiveandlysogenicstrainsofBacillusmegaterium.Biochim.etBio-phys.Acta,17,465-472.95.SALTON,M.R.J.ANDPAVLIK,J.G.1960Wallcompositionandsensitivitytolyso-zyme.Biochim.etBiophys.Acta,39,398-407.96.SALTON,M.R.J.ANDSHAFA,F.1958Somechangesinthesurfacestructureofgram-negativebacteriainducedbypenicillinaction.Nature,181,1321-1324.97.SCHUMACHER,J.1928UeberdiechemischeZusammensetzungderLipoidsaureunduberkunstlichgrampositivgemachteHefezellen.Zentr.Bakteriol.Parasitenk.(Orig.),109,181-191.98.SHAFA,F.1958Astudyofthesurfacestructureofsomebacteria.Ph.D.thesis,UniversityofManchester.99.SHOCKMAN,G.D.1959Bacterialcellwallsynthesis.Theeffectofthreoninedepletion.J.Biol.Chem.,234,2340-2342.100.SHOCKMAN,G.D.,KOLB,J.J.,ANDTOENNIES,G.1958Relationsbetweenbacterialcellwallsynthesis,growthphase,andautolysis.J.Biol.Chem.,230,961-977.101.SHUGAR,D.ANDBARANOWSKA,J.1957Gramstainingofextracellularmaterial.Biochim.etBiophys.Acta,23,227-228.102.STEARN,A.E.ANDSTEARN,E.W.1930Thenatureofthegramcompoundanditsbearingonthemechanismofstaining.J.Bacteriol.,20,287-235.103.STORCK,R.ANDWACHSMAN,J.T.1957EnzymelocalizationinBacillusmega-terium.J.Bacteriol.,73,784-790.104.STRANGE,R.E.1959CellwalllysisandthereleaseofpeptidesinBacillusspecies.Bacteriol.Rev.,23,1-7.105.STRANGE,R.E.ANDDARK,F.A.1956Anunidentifiedamino-sugarpresentincellwallsandsporesofvariousbacteria.Nature,177,186-188.106.STRANGE,R.E.ANDPOWELL,J.F.1954Hexosamine-containingpeptidesinsporesofBacillussubtilisB.megatheriumandB.cereus.Biochem.J.,58,80-85.107.STROMINGER,J.L.1960Mononucleotideacidanhydridesandrelatedcompoundsasintermediatesinmetabolicreactions.Physiol.Rev.,40,55-111.108.THOMPSON,R.1941Lysozymeandtheantibacterialpropertiesoftears.Arch.Ophthalmol.,25,491-509.109.TOENNIES,G.,BAKAY,B.,ANDSHOCKMAN,G.D.1959Bacterialcompositionandgrowthphase.J.Biol.Chem.,234,3269-3275.110.TOMCSIK,J.1956Bacterialcapsulesandtheirrelationtothecellwall.SymposiumSoc.Gen.Microbiol.,6,41-67.98[VOL.25 ANATOMYOFBACTERIALSURFACE111.TOMCSIK,J.ANDGUEX-HOLZER,S.1954AntikorperproduktionmitisolierterBakterien-ZellwandundmitProtoplasten.Experientia,12,484.112.TORII,M.1955DecapsulationofBacillusanthracis.Med.J.OsakaUniv.,6,725-737.113.VANITERSON,W.1958Gallionellafer-rugineaEhrenberginadifferentlight.Noord-HollandscheVitgeversMaatsch-appij,Amsterdam.114.VENNES,J.W.ANDGERHARDT,P.1956Immunologiccomparisonofisolatedsur-facemembranesofBacillusmegaterium.Science,124,535-536.115.VENNES,J.W.ANDGERHARDT,P.1959Antigenicanalysisofcellstructuresiso-latedfromBacillusmegaterium.J.Bac-teriol.,77,581-592.116.VINCENZI,L.1887UeberdieChemischenBestandtheilederSpaltpilze.Hoppe-Seyler'sZ.Physiol.Chem.,11,181.117.WEBB,M.1948Theactionoflysozymeonheat-killedgram-positivemicroorganisms.J.Gen.Microbiol.,2,260-274.118.WEIBULL,C.1953Theisolationofproto-plastsfromBacillusmegateriumbycon-trolledtreatmentwithlysozyme.J.Bacteriol.,66,688-695.119.WEIBULL,C.1953CharacterizationoftheprotoplasmicconstituentsofBacillusmegaterium.J.Bacteriol.,66,696-702.120.WEIBULL,C.1958Bacterialprotoplasts.Ann.Rev.Microbiol.,12,1-26.121.WEIBULL,C.1960Movement.InThebacteria,vol.I,pp.153-205.EditedbyI.C.GunsalusandR.Y.Stanier.AcademicPress,Inc.,NewYork.122.WEIBULL,C.ANDBERGSTROM,L.1958ThechemicalnatureofthecytoplasmicmembraneandcellwallofBacillusmega-terium,strainM.Biochim.etBiophys.Acta,30,340-351.123.WEIBULL,C.,BECKMAN,H.,ANDBERGSTROM,L.LocalizationofenzymesinBacillusmegaterium,strainM.J.Gen.Microbiol.,20,519-531.124.WEIDEL,W.ANDPRIMOSIGH,J.1958Bio-chemicalparallelsbetweenlysisbyvirulentphageandlysisbypenicillin.J.Gen.Microbiol.,18,513-517.125.WEIDEL,W.,FRANK,H.,ANDMARTIN,H.H.1960TherigidlayerofthecellwallofEscherichiacolistrainB.J.Gen.Micro-biol.,22,158-166.126.WENSINCK,F.ANDBOEVP,J.J.1957Quan-titativeanalysisoftheGramreaction.J.Gen.Microbiol.,17,401-413.127.WILKINSON,J.F.1958Theextracellularpolysaccharidesofbacteria.Bacteriol.Rev.,22,46-73.128.WORK,E.1951Theisolationofa,e-diaminopimelicacidfromCorynebacteriumdiphtheriaeandMycobacteriumtuberculosis.Biochem.J.,49,17-23.129.WORK,E.1957Biochemistryofthebac-terialcellwall.Nature,179,841-847.130.WORK,E.ANDDEWEY,D.L.1953Thedistributionofa,e-diaminopimelicacidamongvariousmicroorganisms.J.Gen.Microbiol.,9,394-406.1961199

Related Contents


Next Show more