/
Chordal deletion is xedparameter tractable Daniel Marx Chordal deletion is xedparameter tractable Daniel Marx

Chordal deletion is xedparameter tractable Daniel Marx - PDF document

luanne-stotts
luanne-stotts . @luanne-stotts
Follow
393 views
Uploaded On 2015-05-15

Chordal deletion is xedparameter tractable Daniel Marx - PPT Presentation

bmehu Abstract It is known to be NPhard to decide whether a graph can be made chordal by the deletion of vertices or by the deletion of edges Here we present a uniformly polynomialtime algorithm for b oth prob lems the running time is for some consta ID: 66980

bmehu Abstract known

Share:

Link:

Embed:

Download Presentation from below link

Download Pdf The PPT/PDF document "Chordal deletion is xedparameter tractab..." is the property of its rightful owner. Permission is granted to download and print the materials on this web site for personal, non-commercial use only, and to display it on your personal computer provided you do not modify the materials and that you retain all copyright notices contained in the materials. By downloading content from our website, you accept the terms of this agreement.


Presentation Transcript

Chordaldeletionis xed-parametertractableDanielMarx?DepartmentofComputerScienceandInformationTheoryBudapestUniversityofTechnologyandEconomicsBudapestH-1521Hungarydmarx@cs.bme.huAbstract.ItisknowntobeNP-hardtodecidewhetheragraphcanbemadechordalbythedeletionofkverticesorbythedeletionofkedges.Herewepresentauniformlypolynomial-timealgorithmforbothprob-lems:therunningtimeisf(k)n forsomeconstant notdependingonkandsomefdependingonlyonk.Forlargevaluesofn,suchanalgo-rithmismuchbetterthantryingalltheO(nk)possibilities.Therefore,thechordaldeletionproblemparameterizedbythenumberkofverticesoredgestobedeletedis xed-parametertractable.ThisanswersanopenquestionofCai[4].1IntroductionAgraphischordalifitdoesnotcontainaninducedcycleoflengthgreaterthan3.Itcanbedecidedinlineartimewhetheragraphischordal[26].However,itisNP-completetodecidewhetheragraphcanbemadechordalbythedeletionofkvertices[19],bythedeletionofkedges[23],orbytheadditionofkedges[27](ifkispartoftheinput).Inthispaperweinvestigatetheseproblemsfromtheparameterizedcom-plexitypointofview.Parameterizedcomplexitydealswithproblemswheretheinputhasadistinguishedpartk(usuallyaninteger)calledtheparameter.Aparameterizedproblemiscalled xed-parametertractable(FPT)ifthereisanalgorithmwithrunningtimef(k)n ,wheref(k)isanarbitraryfunctionand isapositiveconstantindependentofk.ItturnsoutthatseveralNP-hardde-cisionproblems,suchasMinimumVertexCover(parameterizedbythesizekofthevertexcovertobefound)andLongestPath(parameterizedbythelengthkofthepath),are xed-parametertractable.Thefunctionf(k)isusu-allyexponential,thusiftheparameterkcanbearbitrary,thenthealgorithmsarenotpolynomial(asexpected).However,forsmall xedvaluesofk, xed-parametertractableproblemshavelow-degreepolynomialalgorithms,whicharesometimesevenpracticallyfeasible.Thede nitionof xed-parametertractabil-itycanbeextendedinastraightforwardwaytothecasewhentheinputhastwoparametersk1;k2.Inthiscase,ouraimisto ndanalgorithmwithrunningtime ?ResearchissupportedbytheMagyaryZoltanFels}ooktatasiKozalaptvanyandtheHungarianNationalResearchFund(OTKAgrant67651). f(k1;k2)n .Formorebackground,thereaderisreferredtothemonographofDowneyandFellows[8]ortotherecentbookofFlumandGrohe[9].Ifkisa xedconstant,thenthethreechordaldeletion/completionproblemscanbesolvedinpolynomialtimebyexhaustivesearch.Forexample,intheedgecompletionproblemwecantryallthenO(k)possibleedgesetsofsizekandcheckwhethertheadditionoftheseedgesmakesthegraphchordal.ThistrivialnO(k)timealgorithmcanbeimprovedtoO(4k=(k+1)3=2(n+m))time[3]orO(k2nm+k624k)time[16].Therefore,chordaledgecompletion(whichisalsocalledtheminimum ll-inproblem)is xed-parametertractable.Themainresultofthepaperisthatchordalvertexdeletionandchordaledgedeletionarealso xed-parametertractable.Infact,wegiveanalgorithmforthecommongeneralizationofthetwodeletionproblems:intheChordalDeletionproblemthegraphhastobemadechordalbythedeletionofatmostk1verticesandatmostk2edges.Theorem1.ChordalDeletionis xed-parametertractablewithcombinedparametersk1andk2,wherek1(resp.,k2)isthemaximumnumberofvertices(resp.,edges)tobedeleted.Cai[4]proposedageneralclassofgraphmodi cationproblemsanalogoustoChordalDeletion.LetGbeanarbitraryclassofgraphs.WedenotebyG+ke(resp.,Gke)theclassofthosegraphsthatcanbeobtainedbyadding(resp.,deleting)kedgesto/fromamemberofG.Similarly,letG+kvcontainthosegraphsthatcanbeobtainedfromsomememberofGbyaddingknewverticesandconnectingtheseverticeswiththeoriginalverticesandwitheachotherinanarbitraryway.(Anequivalentde nitionistosaythatagraphisinG+kvifitcanbemadeamemberofGbydeletingkvertices.)ForeverygraphclassG,wecanaskaboutthecomplexityofrecognizinggraphsinG+ke,Gke,orG+kv.Inparticular,weareinterestedinwhethertheseproblemsare xed-parametertractableparameterizedbyk.Ourmainresultimpliesthatrecognizingchordal+keandchordal+kvgraphsare xed-parametertractable.ThisanswersanopenquestionofCai[4].Theonlypreviousresultforthisproblemisalinear-timealgorithm[15]forrecognizingchordal+1eandchordal+1vgraphs,whichismoreecientthandeletingeachedge(vertex)andcheckingwhethertheremaininggraphischordal.Ouralgorithmcanactually ndthekedgesorkverticeswhosedeletionmakesthegraphchordal;theseedges/verticesarecalledthemodulatorofthegraphin[4].Vertexcoloringofchordal+kegraphsis xed-parametertractableparameterizedbyk,providedthatthemodulatorofthegraphisgivenintheinput[21].Theresultinthispaperimpliesthatthemodulatorofachordal+kegraphcanbegeneratedinf(k)n time,hencethevertexcoloringonchordal+kegraphsremains xed-parametertractableevenifthemodulatorisnotgivenintheinput.Theiterativecompressionmethodintroducedin[24]allowsustoconcentrateonaneasier\solutioncompression"problem.Thistechniqueprovedusefulformanyotherproblems,see[7,6,13].Thecompressionproblemisthefollowing(forbrevity,wediscussonlythevertex-deletionversioninthisparagraph):given2 asetXofk+1verticessuchthatGnXischordal, ndkverticeswhosedeletionmakesGchordal.Tosolvethissolutioncompressionproblem,we rstdeterminethesizeofthemaximumcliqueinthechordalgraphGnX.IfthecliquesizeGnXissmall,thenGnX(andhencetheslightlylargerG)hassmalltreewidth.Usingstandardtechniques,theproblemcanbesolvedinlineartimeforgraphswithboundedtreewidth.Ontheotherhand,weshowthatifthereisalargecliqueinGnX,thenthecliquecontains\irrelevant"verticesthatcanberemovedfromthegraphwithoutchangingthesolvabilityoftheproblem.Themaintechnicaldicultyoftheproofistoprovethatanirrelevantvertexalwaysexistsinalargeclique.Thisideaofrepeatedlydeletingirrelevantverticesuntilabounded-treewidthinstanceisobtainedwasusefulforotherproblemsaswell[25,12,22].Thepaperisorganizedasfollows.Section2reviewssomebasicfactsonchordalgraphs.Section3presentsthealgorithmforbounded-treewidthgraphs.InSection4weshowhowtheiterativecompressionmethodof[24]canbeappliedtoourproblem.Section5discusseshowwecanreducethesizeofthecliquestomakeourgraphaboundedtreewidthgraph.2ChordalgraphsWerecallsomestandardde nitionsfromgraphtheory.AwalkinagraphGisasequenceofverticesv1v2:::vksuchthatviandvi+1areadjacentinGforevery1ik.Thelengthofawalkv1v2:::vkisde nedtobek1.Apathiswalkwherethevi'saredistinct.Wesaythatthepathv1v2:::vkconnectsverticesv1andvk.Thedistanceoftwoverticesuandvisthelengthoftheshortestpathconnectinguandv;thedistanceisde nedtobein nityifthereisnosuchpath.ThedistanceofavertexvandasetSofverticesistheminimumdistanceofvandavertexu2S.VertexvisadjacenttoSifthedistanceofvandSis1,i.e.,thereisanedgebetweenvandsomevertexu2S.AcycleinGisawalkv1v2:::vkvk+1suchthatv1=vk+1andvi=vjforevery1ijk.Thelengthofacyclev1v2:::vkvk+1isthenumberofdistinctverticesinthesequence,i.e.,k.Agraphischordalifitdoesnotcontainacycleoflengthgreaterthan3asaninducedsubgraph.Thisisequivalenttosayingthateverycycleoflengthgreaterthan3containsatleastonechord,i.e.,anedgeconnectingtwoverticesnotadjacentinthecycle.Achordlesscycleoflengthgreaterthan3willbecalledahole.Chordalityisahereditaryproperty:everyinducedsubgraphofachordalgraphischordal.Everychordalgraphisaperfectgraph[11]:theminimumnumberofcolorsrequiredtocolortheverticesofachordalgraphequalsthesizeofthelargestclique.Thecomplementofachordalgraphisalsoperfect,whichtranslatestothestatementthattheminimumnumberofcliquesrequiredtocovertheverticesofachordalgraphequalsthesizeofthelargestindependentset.Furthermore,anoptimumcoloringorcliquecoveringofachordalgraphcanbefoundin3 adeaefbfgabfbcgfedcbFig.1.Achordalgraphanditscliquetreedecomposition.polynomialtime[11].Wewillusetheseobservationstocovercertainsetsofverticeswithasmallnumberofcliquesandtreatthecliquesseparately.Chordalgraphscanbealsocharacterizedastheintersectiongraphsofsub-treesofatree(seee.g.,[11]):Theorem2.Thefollowingtwostatementsareequivalent:1.G(V;E)ischordal.2.ThereexistsatreeT(U;F)andasubtreeTvTforeachv2Vsuchthatu;v2VareneighborsinG(V;E)ifandonlyifTu\Tv=;(i.e.,TuandTvhaveacommonnode).ThetreeTtogetherwiththesubtreesTviscalledthecliquetreedecom-positionofG.Figure1showsachordalgraphandapossiblecliquetreede-composition.Theverticesinanodeofthetreeshowwhichsubtreescontainthatparticularnode;forexample,theleftmostnodeofthetreeiscontainedinsubtreesTbandTc.Onecan ndacliquetreedecompositionofagivenchordalgraphinpolynomialtime(see[11,26]).Forclarity,wewillusetheword\vertex"whenwerefertothegraphG(V;E),and\node"whenreferringtoT(U;F).WesaythatavertexvcoversnodexifTvcontainsnodex.ForanarbitrarynodexofT,theverticescoveringxinduceaclique.Conversely,foreverycliqueK,thereisanodexofTsuchthateveryv2Kcoversthisnodex(cf.[11]).Thefollowingeasyobservationwillbeusedrepeatedly:Proposition3.Letx,y,zbeverticesinG(V;E)suchthatxy;xz2Ebutyz62E.IfthereisawalkTinGnxfromytozsuchthatyandzaretheonlyneighborsofxinT,thenT[xcontainsaholeoflengthatleast4.Proof.LetPbeaminimalsubpathofTfromytoz.Sinceyandzarenotneighbors,pathPhaslengthatleast2.Therefore,thelengthofxyPzxisatleast4,anditischordless,sincePisaminimalpathandxisnottheneighboroftheinternalverticesofP.utProposition3canbealsothoughtofasacharacterizationofchordalgraphs:ifv1v2:::vtv1isahole,thenchoosingx=v1,y=v2,z=vtsatis estherequirements.IfthedeletionofXVandYEmakesthegraphG(V;E)chordal,thenwesaythatthepair(X;Y)isaholecoverofG.WeusethenotationGn(X;Y)4 forthegraphobtainedbydeletingtheverticesXandtheedgesYfromG.Thesizeofaholecover(X;Y)isthepair(jXj;jYj).Wesaythataholecover(X;Y)obstructsapathPifXcontainsavertexofPorYcontainsanedgeofP.Foraholecover(X;Y),let!(X;Y)containtheverticesofVandtheendpointsoftheedgesinE;clearlyj!(X;Y)jjXj+2jYj.Theproblemstudiedinthispaperisformallyde nedasfollows: ChordalDeletionInput:AgraphG(V;E)andintegersk1;k2Parameter:k1;k2Task:Fineaholecoverofsize(k1;k2). Itturnsoutthatthedeletionproblemisverydi erentfromtheedgecom-pletionproblem.Thealgorithmsin[3,16]forchordaledgecompletionusethestandardmethodofboundedsearchtrees.Ifthereisachordlesscycleoflengthmorethank+3,thentheanswerisno,aswewouldneedmorethankedgestomakethiscyclechordal.Ifthereisachordlesscycleoflength`k+3,theneverysolutionhastocontain`3edgesthatmakethischordlesscyclechordal.Thereisaconstantnumberofdi erentwaysofmakingaholeofsize`chordalusing`3edges.Thealgorithmtriesallthesepossibilities:webrancho intoatmostaconstant(i.e.,dependingonlyonk)numberofdirections.Aftermakingthecyclechordal,theproblemparameter(thenumberofedgesthatcanbeadded)isdecreasedby`3,andthealgorithmcontinueswiththenextchordlesscycle.Sincetheproblemparametercanbedecreasedonlyatmostktimes,thealgorithm nishesafteratmostkbranchings.Ateachstep,thenumberofdirectionswebranchintocanbeboundedbyafunctionofk,thusthesizeofthesearchspaceexploredbythealgorithmcanbealsoboundedbyafunctionofk.Insummary,themainideaisthatthegraphcannotcontainalargehole,otherwisethegraphcouldnotbemadechordalbyaddingkedges.Inthedeletionproblemwecannotmakethisassumption:itispossiblethatthegraphcanbemadechordalbydeletingfewvertices,eveniftherearelargeholes(forexample,ifthegraphisalargechordlesscycle,thenitcanbemadechordalbythedeletionofasinglevertex).Thismeansthattheremightbemanypossi-bilitiestorepairalongchordlesscycle,thuswecannotusetheboundedsearchtreemethod.Substantiallydi erent(andmorecomplicated)ideasarerequiredforthevertexdeletionproblem.3Bounded-treewidthgraphsOnewaytode netreewidthisthefollowing:thetreewidthofagraphGisthesmallestintegerksuchthatGisasubgraphofachordalgraphHhavingcliquenumberk+1.Graphswithtreewidth1areexactlytheforests.Formorebackgroundontreewidth,seeforexample[18,2].ThealgorithmicimportanceoftreewidthcomesfromthefactthatalargenumberofNP-hardproblemscanbesolvedinlineartimeifwehaveabound5 onthetreewidthoftheinputgraph.Mostofthesealgorithmsuseabottom-updynamicprogrammingapproach,whichgeneralizesdynamicprogrammingontrees.Courcelle'sTheorem[5](seealso[8,Section6.5])givesapowerfulwayofquicklyshowingthataproblemislinear-timesolvableonboundedtreewidthgraphs.SentencesintheExtendedMonadicSecondOrderLogicofGraphs(EMSO)containquanti ers,logicalconnectives(:,_,and^),vertexvariables,edgevari-ables,vertexsetvariables,edgesetvariables,andthefollowingbinaryrelations:2,=,inc(e;v)(edgevariableeisincidenttovertexvariablev),andadj(u;v)(vertexvariablesu,vareneighbors).Ifagraphpropertycanbedescribedinthislanguage,thenthisdescriptioncanbeturnedintoanalgorithm:Theorem4(Courcelle[5]).IfagraphpropertycanbedescribedintheEx-tendedMonadicSecondOrderLogicofGraphs,thenforeveryw,thereisalinear-timealgorithmfortherecognitionofthispropertyongraphswithtreewidthatmostw.UsingProp.3,itisnotdiculttodescribethosegraphsG(V;E)thatcanbemadechordalbythedeletionofatmostk1verticesandatmostk2edges:(k1;k2)-chordal-deletion(V,E):=9v1;:::vk12V;9e1;:::;ek22E;V0V;E0E:chordal(V0;E0)^(8v2V:v2V0_v=v1__v=vk1)^(8e2E:e2E0_e=e1__e=ek2)chordal(V0;E0):=:(9x;y;z2V0;V1V0;E1E0:adj(x;y)^adj(x;z)^:adj(y;z)^(8q2V1:q=y_q=z_:adj(q;x))^connected(y;z;V1;E1))connected(y;z;V;E):=8Y;ZV:[(partition(V;Y;Z)^y2Y^z2Z)!(9y02Y;z02Z;e2E:inc(e;y0)^inc(e;z0))]partition(V;Y;Z):=8v2V:(v2Y_v2Z)^(v62Y_v62Z)Thepredicatechordal(V0;E0)expressesthatthesubgraphwithvertexsetV0andedgesetE0isachordalgraph.Totestwhetherthesubgraphischordal,wecheckwhetherthereareverticesx,y,andzsatisfyingtherequirementsofProp.3,i.e.,thereisatpathPwithverticesV1andedgesE1thatconnectyandzinsuchawaythattheinternalverticesarenotadjacenttox.ToensurethatyandzareconnectedbythepathP,werequirethatforeverypartitionY,ZofV1,ify2Yandz2Z,thenthereisanedgeofPconnectingYandZ.Courcelle'sTheoremtogetherwiththeEMSOformulationofChordalDele-tionimplies:Theorem5.Foreveryk1,k2,andw,ChordalDeletioncanbesolvedinlineartimeforgraphswithtreewidthatmostw.WenotethatTheorem5canbeobtainedwithoutCourcelle'sTheoremusingstandard(butverytediousandtechnical)dynamicprogrammingtechniques.6 ChordalDeletion(G;k1;k2)1.Seti:=k1andletXbetheverticesofGk1andYbek2arbitraryedges.2.Invariantcondition:(X;Y)isasize-(k1;k2)holecoverofGi.3.Ifi=n,thenreturn\(X;Y)isasize-(k1;k2)holecoverofG."4.SetX:=X[vi+1,now(X;Y)isasize-(k1+1;k2)holecoverofGi+1.5.CallHoleCoverCompression(Gi+1;k1;k2;X;Y).{Iftheanswerisasize-(k1;k2)holecover(X0;Y0)ofGi+1,thenlet(X;Y):=(X0;Y0),i:=i+1,andgotoStep2.{Iftheansweris\no,"thenreturn\no." Fig.2.AlgorithmChordalDeletion.4IterativecompressionReed,SmithandVetta[24]haveshownthattheBipartiteVertexDeletionproblem(makethegraphbipartitebydeletingkvertices)is xed-parametertractable.Theyintroducedthemethodofiterativecompression,whichcanbeusedinthecaseoftheChordalDeletionproblemaswell.Theideaisthatitissucienttoshowthatthefollowingeasierproblemis xed-parametertractable: HoleCoverCompressionInput:AgraphG,integersk1;k2,andaholecover(X;Y)ofsize(k1+1;k2).Parameter:k1;k2Task:Findaholecover(X0;Y0)ofsize(k1;k2)inG. ThisproblemiseasierthanChordalDeletion:theextrainput(X;Y)givesususefulstructuralinformationaboutG.Inparticular,weknowthatGn(X;Y)ischordal.Ouralgorithmbuildsheavilyonthisfact.Assumethatwehaveanalgorithmwithrunningtimef(k1;k2)n forHoleCoverCompression,thenChordalDeletioncanbesolvedasfollows(seeFigure2).Letv1,v2,:::,vnbeanorderingofthevertices,andletGibethegraphinducedbyv1,:::,vi.Wetryto ndasize-(k1;k2)holecoverforeachGi.GraphGk1triviallyhassuchaholecover.NowassumethatGihasasize-(k1;k2)holecover(X;Y).Clearly,(X[vi+1;Y)isasize-(k1+1;k2)holecoverofGi+1.Therefore,thecompressionalgorithmcanbeusedto ndasize-(k1;k2)holecoverforGi+1.Ifthereissuchaholecover,thenwecanproceedtoGi+2.Otherwisetheanswerisno,wecanconcludethatthesupergraphGofGi+1cannothaveasize-(k1;k2)holecovereither.Thealgorithmcallsthecompressionmethodatmostntimes,thusthetotalrunningtimeisf(k1;k2)n +1,whichshowsthattheproblemis xed-parametertractable.NotethatGi+1isobtainedfromGibyaddinganewvertex(ratherthananedge),thusthecompressionalgorithmisinvokedwithparameter(k1+1;k2)andnotwith(k1;k2+1).7 NowletusturnourattentiontotheHoleCoverCompressionalgorithmitself.Assumethatasize-(k1+1;k2)holecover(X;Y)ofGisgiven.LetW:=!(X;Y),letV0=VnW,anddenotebyG0thechordalgraphGnW.IfthesizeofthemaximumcliqueinV0isc,thenthetreewidthofthechordalgraphG0isc1,andthetreewidthofGisatmostc1+jWjc1+k1+2k2+1.Therefore,ifthecliquesizeofG0canbeboundedbyaconstantdependingonk1andk2,thenthemethoddescribedforbounded-treewidthgraphsinSection3canbeusedtodecidewhetherGhasasize-(k1;k2)holecover.InSection5,wepresentamethodofreducingthecliquesizeofG0toaconstantdependingonlyonk1;k2.Avertexv2Visirrelevantifeverysize-(k1;k2)holecoverofGnvisalsoaholecoverofG.Ifweidentifyanirrelevantvertexv,thentheproblemcanbereducedto ndingasize-(k1;k2)holecoverinGnv.WeshowthatifthereisacliqueKinG0whosesizeisgreaterthansomeconstantck1;k2,thentheproblemcanbereducedtoasimplerform:eitherwe ndanirrelevantvertexorasmallsetofvertices/edgessuchthateverysize-(k1;k2)holecovercontainsatleastonememberofthisset.Moreprecisely,forasetNvofverticesandsetNeofedgeswesaythat(Nv;Ne)isanecessarysetifwhenever(X;Y)isasize-(k1;k2)holecover,theneitherXcontainsavertexofNvorYcontainsanedgeofNe.Iftheset(Nv;Ne)=(;;;)isanecessaryset,thenthismeansthatthereisnoholecoveroftherequiredsize.Thenecessarysetsthatwe ndarealwayssmall,i.e.,thereisaconstantbk1;k2suchthatjNvj+jNejbk1;k2.(Inthefollowing,whenwesay\anecessarysetcanbefound,"wealwaysmeanthatthesizeofthissetcanbeboundedbyafunctionofk1andk2.)Ifthecliquereductionalgorithmreturnsanecessaryset(Nv;Ne),thenwecanconcludethateverysize-(k1;k2)holecovercontainsatleastonevertexofNvoranedgeofNe.Therefore,webranchintojNvj+jNejdirections:foreachvertexvofNv,wecheckwhetherthereisasize-(k11;k2)holecoverofGnvandforeachedgeofNe,wecheckwhetherthereisasize-(k1;k21)holecover.Thustheproblemcanbereducedtoatmostbk1;k2subproblemswithsmallerparametervalues,wherebk1;k2dependsonlyonk.Insummary,thecliquereductionalgorithmdoesoneofthefollowing:{Identi esanirrelevantvertexv2K.Inthiscase,thedeletionofvdoesnotchangetheproblem.Ifthemaximumcliquesizeisstilllargerthanck1;k2,thenthealgorithmcanbeappliedagain.Otherwise,wecanusethealgorithmofTheorem5.{Identi esanecessaryset(Nv;Ne)whosesizeisboundedbyafunctionofk1andk2.Inthiscase,thealgorithmcanbranchintoaconstantnumberofdirections:onevertexofNvoroneedgeofNehastobedeleted.TheoverallalgorithmHoleCoverCompressionisshowninFigure3.Thealgorithmcallsthecliquereductionmethod(whichisdescribedinthefol-lowingsection)andcanmakesomenumberofrecursivecallstoHoleCoverCompressionwithparameter(k11;k2)andwithparameter(k1;k21).Thatis,thesumk1+k2strictlydecreasesineachrecursivecall,hencetherecursiondepthisatmostk1+k2.Byassumption,ifCliqueReductionreturnsanec-essaryset,thenitssizecanbeboundedbyafunctionofk1andk2.Thismeans8 HoleCoverCompression(G;k1;k2;X;Y)1.LetW:=!(X;Y).IfthecliquesizeofGnWisatmostck1;k2,thenusethealgorithmofTheorem5.2.IfGnWhasacliqueKofsizemorethanck1;k2,thencallCliqueRe-duction(G;W;K;k1;k2).3.Ifthereisanirrelevantvertexv,thendeletevfromG,andgotoStep1.4.Ifthereisanecessaryset(Nv;Ne):5.Foreachvertexv2Nv,callHoleCoverCompression(Gnv;k11;k2).{Iftheansweris\Yes"forsomev2Nv,and(X0;Y0)isasize-(k11;k2)holecoverofGnv,thenanswer\(X0[v;Y0)isasize-(k1;k2)holecoverofG."6.Foreachedgee2Ne,callHoleCoverCompression(Gne;k1;k21).{Iftheansweris\Yes"forsomee2Ne,and(X0;Y0)isasize-(k1;k21)holecoverofGne,thenanswer\(X0;Y0[e)isasize-(k1;k2)holecoverofG."7.Iftheansweris\No"foreveryvandeverye,thenanswer\No." Fig.3.AlgorithmHoleCoverCompression.thatthealgorithmbranchesintoaconstantnumberofdirections,andthesizeoftherecursiontreecanbealsoboundedbysomefunctionofk1andk2.ThustherunningtimeofHoleCoverCompressioncanbeboundedbyg(k1;k2)n foranappropriatefunctiongandconstant .5CliquereductionAsintheprevioussection,weassumethatWisasetofatmostk1+2k2+1verticessuchthatG0:=GnWisachordalgraph.InthissectionweshowthatifthereisalargecliqueKinG0,theninpolynomialtimewecaneither ndanecessarysetoranirrelevantvertexofK.Intherestofthesection,we xacliqueKinG0.Intuitivelyspeaking,avertexvofKisnotirrelevant,ifitissomehowessentialfortheholesofG.EveryholeofGgoesthroughavertexofW,thuseveryholeofGnotcompletelycontainedinWgoesthroughaneighborofWinG0.ThustheneighborsofWplayanimportantrole,hencewetrytounderstandthestructureofsuchverticesinSection5.1.ThoseneighborsofWareespeciallyimportantthatarereachablefromKincertaintechnicalsense,andhencecanbepartofaholecontainingalsoavertexofK.WewillinvestigatesuchverticesinSection5.2.ThesestructuralresultsenableustoidentifyaboundednumberofimportantverticesinthecliqueKandwecandeclareanyothervertexofthecliqueirrelevant(Section5.3).Moreprecisely,inSection5.4weshowthatifthereisaholegoingthroughsuchanirrelevantvertex(possiblyafterthedeletionofk1verticesandk2edges),thenthereisaholeavoidingthisvertex.Thisshowsthatremovingtheirrelevantvertexdoesnotchangetheanswertotheproblem.9 5.1LabelingIfavertexv2VnWistheneighborofsomevertex`2W,thenwesaythatvhaslabel`.Avertexcanhavemorethanonelabel;thelabelsofagivenvertexformasubsetofW.Thefollowingeasyobservationswillbeusedto ndnecessarysetsifcertainstructuresappearinthegraphG0:Proposition6.IfPisapathoflengthatleast2connectinguandv,andverticesuandvaretheonlyverticesinPhavinglabel`,theneveryholecoverhastocontaineither`,`u,`voratleastonevertexoredgeofP.Proof.If(X;Y)isaholecoverdisjointfromPandcontainsnoneofvertex`,edges`u,and`v,then`uPv`containsaholeinGn(X;Y)(Prop.3),acontradiction.utLemma7.Letvbeavertexwithoutlabelt,letx1,:::,xk1+k2+2beindependentt-labeledvertices,andletP1,:::,Pk1+k2+2beinternallydisjointpathswherePiconnectsvandxi,andtheinternalverticesofPidonothavelabelt.Then(fv;tg;;)isanecessaryset.Proof.Let(X;Y)beaholecoverofsize-(k1;k2)disjointfrom(fv;tg;;).Con-sidertheinternallydisjointpathsvPixitforeveryi=1;:::;k1+k2+2.Sincev;t62X,holecover(X;Y)canobstructatmostk1+k2ofthesepaths.AssumewithoutlossofgeneralitythatvP1x1tandvP2x2tarenotobstructed;thismeansthatx1andx2canbeconnectedwithapathx1P1vP2x2whoseinternalverticesdonothavelabelt.Sincex1andx2areneighborsoftinGn(X;Y)andthereisnoedgebetweenthem,Prop.6impliesthatthereisaholeinGn(X;Y).Lemma8.LetH1,:::,Hk1+k2+1beholesinG,letSbethesetofallverticesthatarecontainedinmorethanoneHi,andletESbetheedgesinducedbyS.IfjSjcforsomeconstantcdependingonlyonk1andk2,then(S;ES)isanecessarysetofsizeatmostc+c(c1)=2.Proof.Let(X;Y)beaholecoverofsize-(k1;k2)suchthatS\X=;andSE\Y=;.NoweachvertexofXandeachedgeofYcanbecontainedinatmostoneholeHi.Thustherehastobeaholewhichisnotcoveredby(X;Y),acontradiction.InLemma10wegiveaboundonthenumberofindependentlabeledverticesintheneighborhoodofaconnectedunlabeledset.WeneedthefollowinglemmaofKleinberg[17]:Lemma9(Kleinberg[17]).LetAbeasetofvertices.Supposethatforsomek,theredonotexistsk+1pairwisedisjointpathswithdistinctendpointsinA.ThenthereisasetZofsizeatmost3ksuchthateachcomponentofGnZcontainsatmostonevertexofAnZ.Notethatthereisapolynomial-timealgorithmthat ndsk+1pairwisedisjointpathswithdistinctendpointsinA(ifsuchpathsexist)[10]andtheproofofLemma9canbemadealgorithmic.Thusinpolynomialtimewecaneither ndthek+1disjointpathsorthesetZofsize3k.10 Lemma10.LetBbeaconnectedsubsetofV0=V(G0)suchthatnovertexinBhaslabelt.LetIbeanindependentsetoft-labeledverticesintheneighborhoodofB.IfjIj�6(k1+k2)2,thenwecan ndanecessarysetinpolynomialtime.Proof.LetI=fv1;v2;:::;v6(k1+k2)2+1gbeanindependentsetofverticeswithlabeltintheneighborhoodofB.DenotebyG00thesubgraphofG0inducedbyI[B.Iftherearek1+k2+1disjointpathsinG00withdistinctendpointsinI,thenthesepathstogetherwithvertextgivek1+k2+1holesthatintersectonlyinvertext.ByLemma8,thismeansthatwecan ndanecessaryset.Assumethereforethattherearenosuchpaths;byLemma9,thismeansthatthereisasetZofsizeatmost3k1+3k2suchthateachcomponentofG00nZcontainsatmostonevertexofI.LetC1,:::,CcbethecomponentsofG00nZcontainingavertexofI,andletvibetheuniquevertexCi\I.NotethatcjInZj6(k1+k2)2+13(k1+k2)�3(k1+k2)(k1+k2+1)(ifk1+k2�1).WeclaimthateachCiisadjacenttoavertexofZ\B.First,itisnotpossiblethatZ\B=;:verticesviandvjareintheneighborhoodofB,hencetheycanbeconnectedwithapathwhoseinternalverticesareinB,andthispathwouldnotbeblockedbyZifB\Z=;.Letz2B\Zbeanarbitraryvertex.Eachvertexvihasaneighboru2B.Ifu2Z,thenuisaneighborofCiinZ\B.Otherwise,thereisapathfullycontainedinBthatconnectsuandz.Letz0bethe rstvertex(startingfromu)onthispaththatisinZ.Nowz0isaneighborofCi.SincejZ\Bj3(k1+k2),therehastobeavertexz2Z\Bthatisadjacenttomorethank1+k2+1components.AssumewithoutlossofgeneralitythatzisadjacenttocomponentsC1,:::,Ck1+k2+2,andpathPiconnectsvertexviwithzsuchthattheinternalverticesofPiareinCi.NotethatthesepathsintersectonlyinZ\B.Sincez2Z\Bdoesnothavelabelt,Lemma7givesanecessaryset.ut5.2DangerousverticesLetus xamaximalcliqueKofG0.Avertexv2V0nKiscalledat-dangerousvertex(forK)ifvhaslabeltandthereisapathPfromvtoavertexu2Ksuchthatvistheonlyvertexhavinglabeltonthepath.Vertexvisat-dangerousvertexifvhaslabeltandthereisapathPfromvtoavertexu2Ksuchthatvanduarenotneighbors,ualsohaslabelt,andtheinternalverticesofthepathdonothavelabelt.Vertexuisat-witness(t-witness)ofv,thepathPisat-witness(t-witness)pathofv.Avertexvcanbet-dangerousformorethanonet2W,oritcanbet-andt-dangerousatthesametime.ForasubgraphG00ofG0,weusetheexpressionwithrespecttoG00ifwerequirethatthewitnesspathisinG00.ThenamedangerouscomesfromtheobservationthatifthereisaholeinGthatgoesthroughthecliqueK,thentheholehastogothroughadangerousvertexaswell.Forexample,ifaholestartsint2W,goestoat-labeledneighborv2V0nKoft,goestoat-labeledvertexu2KviaapathPV0,andreturnstot,thenvisat-dangerousvertex,uisitswitness,andPisthewitnesspath11 (a)(b)v2v1t2t1 P KKtvuuFig.4.(a)At-dangerousvertexv.(b)At1-dangerousvertexv1andat2-dangerousvertexv2.(seeFigure4a).InthesituationdepictedinFigure4b,theholegoesthroughtwoverticest1;t2ofW,andtheholehasasubpathwithendpointsv1;v2thatgoesthroughK(wherev1andv2aretheneighborsoft1andt2,respectively).Theinternalverticesofthispathdonothavelabelst1;t2,hencev1ist1-dangerousandv2ist2-dangerous,anduisawitnessforboth.Whenwedeleteverticestomakethegraphchordal,ouraimistodestroyasmanywitnesspathsaspossibleandtomakemanyverticesnon-dangerous.Itwillturnoutthatifacliqueislarge,thenitcontainsmanyverticeswhosedeletiondoesnota ectthedangerousvertices,thusthereisnouseofdeletingthem.Weprovetwotechnicalresultsondangerousvertices:weboundby6(k1+k2)2(resp.,6(k1+k2)3)thenumberofindependentt-dangerous(resp.,t-dangerous)vertices.SinceG0ischordal(henceperfect),itfollowsthattheseverticescanbecoveredby6(k1+k2)2(resp.,6(k1+k2)3)cliques.Lemma11.GivenasetIofmorethan6(k1+k2)2independentt-dangerousvertices,wecan ndanecessarysetinpolynomialtime.Proof.ConsiderthesubgraphG00ofG0inducedbythoseverticesthatdonothavelabelt.ThecliqueKcontainsverticesonlyfromoneconnectedcomponentofG00,letBbethiscomponent.Clearly,everyt-dangerousvertexisaneighborofBinG0.Therefore,byLemma10,wecan ndanecessaryset.utLemma12.GivenasetIofmorethan6(k1+k2)3independentt-dangerousvertices,wecan ndanecessarysetinpolynomialtime.Proof.ConsiderthesubgraphG00ofG0inducedbytheverticeswithoutlabelt.LetC1,:::,CcbetheconnectedcomponentsofG00.Theinternalverticesofawitnesspathforat-dangerousvertexarecompletelycontainedinoneofthesecomponents.LetIiIcontainat-dangerousvertexv2IifandonlyifvhasawitnesspathwithinternalverticesonlyinCi.IfjIij�6(k1+k2)2forsome1ic,thenwearereadybyusingLemma10fortheconnectedsubgraphCi.Thusc�k1+k2,otherwisethesizeofthe12 independentsetisatmost6(k1+k2)3.Letus xk1+k2+1ofthesecomponents.ForeachsuchcomponentCi,letusselectat-dangerousvertexthathasawitnesspathPiwhoseinternalverticesareinCi.EachpathPitogetherwithvertextformahole.AstheinternalverticesofthePi'sareindi erentcomponents,thek1+k2+1holescanintersecteachotheronlyintheirendpointsandint.Thismeansthatthereareonly2k1+2k2+3verticesthatarecontainedinmorethanoneoftheholes;therefore,byLemma8,wecan ndanecessarysetofboundedsize.ut5.3MarkingthecliqueInthenexttwolemmas,weshowthatforacliqueQofdangerousvertices,thereisonlyaconstant(i.e.,dependingonlyonk1;k2)numberofverticesinKwhosedeletioncanmakeadangerousvertexofQnon-dangerous.Foreveryothervertexu2K,ifvist-dangerous,thenv2Qremainst-dangerouswithrespecttoG0nu.Evenmoreistrue:ifXisasetofatmostk1verticesandYisasetofatmostk2edges,thenv2Qist-dangerouswithrespecttoG0n(X;Y)ifandonlyifvist-dangerouswithrespecttoG0n(X[u;Y).Inthefollowinglemma,wemarksomenumberofverticessuchthatanyunmarkedvertexu2Khasthisproperty.Essentially,wehavetomarkthoseverticesofKthatare\closest"toQ,whereclosenessismeasuredinthecliquetreedecomposition.Lemma13.LetQbeacliqueoft-dangerousvertices.Foreveryk1;k2,thereisaconstantdk1;k2,suchthatwecanmarkdk1;k2verticesinKsuchthatifXisasetofk1vertices,andYisasetofk2edges,andv2Qhasanunmarkedt-witnessuwithrespecttoG0n(X;Y),thenvhasamarkedt-witnessu02Kn!(X;Y)withrespecttoG0n(X[u;Y).Proof.ConsiderthecliquetreedecompositionofthechordalgraphG0.SinceQandKarecliques,therearetwonodesxandysuchthateveryvertexofQcoversnodex,andeveryvertexofKcoversnodey.ConsiderthoseverticesofKthatdonothavelabelt,andordertheseverticessuchthatthedistanceoftheirsubtreesfromnodexisnondecreasing.Letusmarkthe rstdk1;k2:=k1+2k2+1vertices(orallofthem,iftherearelessthank1+2k2+1suchvertices).Supposethatthewitnessuofvisnotmarked.Sincej!(X;Y)jk1+2k2,thereisamarkedvertexu02Kn!(X;Y).Bythewaytheverticesareordered,thedistanceofthesubtreeofu0fromxisnotlargerthanthedistanceofthesubtreeofufromx.Therefore,thewitnesspathPconnectingvandugoesthroughtheneighborhoodofu0,i.e.,PhasasubpathP0fromvtoaneighborwofu0.Asu062!(X;Y),theedgewu0isinG0n(X;Y),hencethewitnesspathvP0u0showsthatu0isat-witnessofvwithrespecttoGn(X[u;Y).utThenextlemmaprovesasimilarstatementfort-dangerousvertices.How-ever,nowthemarkingprocedureismorecomplicated.Thereasonforthiscom-plicationisthatat-witnessforvhastosatisfytwo(somewhatcontradicting)requirements:thewitnesshastobereachablefromv(thusithastobeclosetothecliqueQ),butitshouldnotbeaneighborofv(thusitshouldnotbetooclosetoQ).13 Kxb1b2a1b3b4b5a2a3b6a4yu1u4u3u2v1v2v3v4v5v6b 1a 1b 2a 2b 3a 3QFig.5.ProofofLemma14:thepathbetweennodesxandy.Therectanglesshowthesubtreesofthevi'sandui'sonthispath.Lemma14.LetQbeacliqueoft-dangerousvertices.Foreveryk1;k2,thereisaconstantdk1;k2suchthateitherwecan ndanecessarysetorwecanmarkdk1;k2verticesinKsuchthatifXisasetofk1vertices,Yisasetofk2edges,v2Qhasanunmarkedt-witnesswithrespecttoG0n(X;Y),thenvhasamarkedt-witnessu2Kn!(X;Y)aswell.Proof.ConsiderthecliquetreedecompositionofthechordalgraphG0,letTvbethesubtreecorrespondingtoavertexv.SinceQandKarecliques,therearetwonodesxandysuchthateveryv2Qcoversx,andeveryu2Kcoversy.Considertheuniquepathconnectingxandyinthetree,andidentifytheverticesofthepathwiththeintegers1,2,:::,n,wherex=1andy=n.Letu1,u2,:::betheverticesofKhavinglabeltanddenotebyaithesmallestnodeofTuionthispath.Similarly,letv1,v2,:::betheverticesofQanddenotebybithelargestnodeofTvionthispath.Clearly,TviandTujintersectifandonlyifaibj.Forconvenience,weassumethattheai'sandbi'sarealldistinct,thiscanbeachievedbyslightlymodifyingthetreedecomposition.Furthermore,wecanassumethattheverticesareorderedsuchthatthesequenceaiandthesequencebiarestrictlyincreasing(seeFigure5).Wede neasubsequenceofbiandajasfollows.Let 1=1.Foreveryj1,let jbethesmallestvaluesuchthata j�b j.Foreveryi2,let ibethesmallestvaluesuchthatb i�a i1.Ifwecannot ndsucha ior j,thenwestop.Therefore,thesequenceb 1,a 1,b 2,a 2,:::isstrictlyincreasing.InFigure5,darkrectanglescorrespondtothemembersofthissequence.Letusbeawitnessofat-dangerousvertexv j.Weclaimthatu jisalsoawitnessfort-dangerousvertexv j.Clearly,as�b j(otherwiseuswouldbeaneighborofv j),henceasa jbythede nitionof j.LetPbeawitnesspathfromv jtous.Sinceasa j,pathPgoesthroughtheneighborhoodofu j,i.e.,thereisavertexwofPthatisintheneighborhoodofu j.LetP0bethesubpathofPfromv jtow.Asu jisnotaneighborofv j(byconstruction14 ofthesequenceb 1,a 1,:::),pathv jP0u jisawitnesspath.Thisprovestheclaimthatu jisawitnessofv j.Letb `bethelastelementofthesequencethatcorrespondstoavertexofQ.Weclaimthatif`�2k1+2k2+1,thenwecan ndanecessaryset.LetPibeawitnesspathfromv itoitswitnessu i.Forevery1ik1+k2+1,letHibetheholetv 2iP2iu 2it.Suppose rstthatavertexwofG0appearsintwoholesHiandHi0forii0.ThisisonlypossibleifwisaninternalvertexofbothP2iandP2i0.ItiseasytoseethateachinternalvertexofP2icoversatleastonenodeintheinterval[b 2i;a 2i]andeachinternalvertexofP2i0coversatleastonenodeintheinterval[b 2i0;a 2i0].Therefore,wcoversbotha 2iandb 2i0whichimpliesthatwalsocoversb 2i+1anda 2i+1(since2i0&#x-330;&#x.361;2i+1).Nowtv 2i+1wu 2i+1isaholeofsize4andtheverticesandedgesofthisholeformanecessaryset.Therefore,wecanassumethateveryvertexofG0appearsinatmostoneoftheholesH1,:::,Hk1+k2+1.Thusthereisonlyonevertex,namelyt,thatappearsinmorethanoneoftheholes,hencebyLemma8,(ftg;;)isanecessaryset.Therefore,itcanbeassumedthat`2k1+2k2+1.Foreachi=1;2;:::;`,wemarkthek1+2k2+1verticesu i,u i+1,:::,u i+k1+2k2+1(iftheyexist).Thuswemarkatmostdk1;k2:=(k1+2k1+1)(2k1+2k2+1)vertices.Assumethatvertexvx2Qhasawitnesspath(withrespecttoG0n(X;Y))tosomeuy.Sincevxanduyarenotneighbors,bxayandthereisajwithbxa jay.Ify j+k1+2k2+1,thenuyismarked.Otherwise!(X;Y)doesnotcontainatleastoneoftheverticesu j+1,u j+2,:::,u j+k1+2k2+1,sayvertexu j+r62!(X;Y).Sinceuyisawitnessofvx,thereisapathPfromvxtouyinGn(X;Y)suchthattheinternalverticesofPdonothavelabelt.Froma j+ra j+k1+2k2+1ayitfollowsthatPgoesthroughaneighborwofa j+r;letP0bethesubpathofPfromvxtow.Sinceu j+r62!(X;Y),edgewu j+risinGn(X;Y).Moreover,bxa ja j+rimpliesthatvxandu j+rarenotneighbors,thusvertexu j+risat-witnessofvxwithwitnesspathvxP0u j+r.utInthenexttwolemmas,weextendLemma13andLemma14toapplynotonlyforacliqueQoft-dangerousvertices,butforeverydangerousvertex.ByLemmas11and12,therearenolargeindependentsetsofdangerousvertices.ObservingthatG0ischordalandhenceitscomplementisaperfectgraph(asdiscussedinSection2),weobtainthatthenumberofcliquesrequiredtocoverthedangerousverticesisaconstantdependingonlyonk1;k2.Lemma15.Foreveryk1;k2,thereisaconstantc(1)k1;k2suchthateitherwecan ndanecessarysetorwecanmarkc(1)k1;k2verticesinKsuchthatforeverysetXofk1vertices,setYofk2edges,andlabelt2W,ifvertexvisat-dangerousvertexvwithrespecttoG0n(X;Y)andvhasanunmarkedwitnessu2K,thenvhasamarkedwitnessu02Kn!(X;Y)withrespecttoG0n(X[u;Y).Proof.Foreveryt2W,wemarkverticesasfollows.ConsiderthesetofverticesDthataret-dangerousforKinG0.Forchordalgraphs,amaximumindependent15 setcanbefoundinpolynomialtime[11];letIbeamaximumindependentsetinD.IfjIj�6(k1+k2)2,thenwecan ndanecessarysetbyLemma11.ThusthesizeofthemaximumindependentsetinDisatmostaconstantdependingonlyonk1andk2.ThenumberofcliquesrequiredtocoverDisexactlythenumberofindependentsetsrequiredtocoverDinthecomplementgraph,i.e.,itisthechromaticnumberofthecomplementofG[D].SinceG[D]inducesachordalgraph(asDVnW)andthecomplementofachordalgraphisaperfectgraph[11],itfollowsthatDcanbecoveredbyatmost6(k1+k2)2cliques.ForeachsuchcliqueQ,wemarktheverticesgivenbyLemma13.HencethetotalnumberofmarkedverticesinKcanbeboundedbyaconstantdependingonlyonk1;k2.utLemma16.Foreveryk1;k2,thereisaconstantc(2)k1;k2suchthateitherwecan ndanecessarysetorwecanmarkc(2)k1;k2verticesinKsuchthatforeverysetXofk1vertices,setYofk2vertices,andlabelt2W,ifavertexvist-dangerouswithrespecttoGn(X;Y)andhasanunmarkedwitnessu2K,thenvhasamarkedwitnessu2Kn!(X;Y)withrespecttoG0n(X[u;Y)aswell.Proof.TheproofissimilartotheproofofLemma15.Foreacht2WandeachcliqueQoft-dangerousvertices,wemarkverticesasinLemma14,therestoftheproofisidentical.ut5.4FragmentsofaholeLetHbeaholeinG.SinceGnWischordal,HhastocontainatleastonevertexofW.HenceHnWisasetofpathsP1,P2,:::,Ps,thesetF=H\WtogetherwiththiscollectionofpathswillbecalledthefragmentsoftheholeH(Figure6).ThepathsP1,:::,Psareindependent:PiandPjdonothaveadjacentverticesifi=j.TheinternalverticesofapathPidonothaveanylabelsfromF.Moreover,eachendpointhasexactlyonelabelfromF.TheonlyexceptionisthatifapathPiconsistsofonlyasinglevertex,inthiscaseitcontainsexactlytwolabelsfromF(seeP1inFigure6).AlabelinFcanappearonlyonatmosttwoverticesinthefragments:ifavertexofWisinthehole,thenatmosttwoofitsneighborscanbelongtothehole.However,theneighborsofavertexinWcanalsobeinW,thusitispossiblethatalabelinFappearsononlyoneoronnoneofthepaths.AnotherpropertyisthatifthelengthofPiis1,thenthelabelsofthetwoendpointsaredi erent,otherwisetheholewouldinduceatriangle.Thefollowinglemmashowsthatifwehavethefragmentsofahole,andapathisreplacedwithsomenewpathsatisfyingcertainrequirements,thenthenewcollectionofpathsalsoinducesahole.Lemma17.LetF,P1,:::,PsbethefragmentsofaholeH.AssumethatthelengthofP1isatleast1.LetxandybetheendpointsofP1,andlet`xand`ybetheir(unique)labelsinF,respectively.LetP01beapathwiththefollowingproperties:16 WFP3P2P1Fig.6.ThefragmentsF,P1,P2,P3ofahole.{theendpointsofP01arexandy0,forsomevertexy0thathaslabel`y,{theinternalverticesofP01donothavelabel`x,{if`x=`y,theny0doesnothavelabel`x,{if`x=`y,thenxandy0arenotneighbors.ThenthereisaholeinthegraphinducedbytheverticesofF,P01,P2,:::,Ps.Proof.Weconsidertwocases.IfjFj=1,then`x=`y.Sincexandy0arenotneighbors,theinternalverticesofthepathP01donothavelabel`x,itfollowsthatthepathP01andtheonlyvertexofFformaholeoflengthatleast4.NowassumethatjFj�1.ItcanbeassumedthatP01isaminimalpath,i.e.,eachinternalvertexonthepathisadjacentonlytothepreviousandthenextvertex.Letzbethe(unique)neighborofxonP01.ThepathsP01,P2,:::,Ps,andthesetFgivesawalkfromzto`xwithoutgoingthroughx.Furthermore,zand`xaretheonlyverticesonthiswalkthatareintheneighborhoodofx.Toseethis,observethatxisadjacentonlyto`xinF,onlytozinP01,andtonovertexinP2,:::,Ps.As`xandzarenotadjacent(zdoesnothavelabel`x),Prop.3impliesthatthegraphinducedbyF,P01,P2,:::,Pscontainsahole.utToshowthatavertexu2Kisirrelevant,wehavetoshowthateverysize-(k1;k2)holecoverofGnuisaholecoverofG.Thatis,ifXisasetofk1vertices,Yisasetofk2edges,andthereisaholeHinGn(X;Y)goingthroughu,thenthereisaholeH0inGn(X[u;Y).TheideaistolookatthefragmentsofHandrerouteoneofthepaths:ifpathP1isgoingthroughu,thenwe ndapathP01avoidingu,anduseLemma17toobtaintheholeH0.AsweshallseeinLemma19,ifthelengthofP1isatleast1,thenP01canbefoundusingourpreviousresultsondangerousvertices.However,wehavetotreatseparatelythecasewhenP1consistsofonlyasinglevertex.Thisseeminglysimplecaseturnsouttobesurprisinglydicult.17 Lemma18.Foreveryk1;k2,thereisaconstantc(3)k1;k2suchthateitherwecan ndanecessarysetorwecanmarkc(3)k1;k2verticesinKsuchthatifXisasetofk1vertices,Yisasetofk2edges,andthereisaholeinGn(X;Y)withfragmentsF,P1,:::,PswhereP1isonlyasinglevertexu2K,thenGn(X;Y)hasaholethatdoesnotuseanyunmarkedvertexofK.Proof.Forevery`1;`2;`32W,considerthoseverticesofKthathavebothlabels`1and`2,butdonothavelabel`3andletusmarkk1+2k2+1ofthesevertices(iftherearelessthank1+2k2+1suchvertices,thenwemarkallofthem).Sincethenumberoftriples(`1;`2;`3)dependsonlyonjWjk1+2k2+1,thenumberofmarkedverticescanbeboundedbyafunctionofk1;k2.LetF,P1,:::,PsbethefragmentsofaholeH.Withoutlossofgenerality,assumethatP1consistsofasinglevertexu,inthiscaseuhastwolabels`1,`2fromF.LetusconsiderthecasejFj�2 rst.IfjFj�2,thenthereisanotherlabel`32Fnf`1;`2g.Vertex`3hastwoneighborsaandbintheholeH,andthereisawalkfromatobsuchthattheinternalverticesofthiswalkarenotneighborsof`3.Bythewaywemarkedthevertices,thereisamarkedvertexu02Kn(X;Y)thathaslabels`1;`2,butdoesnothavelabel`3.Therefore,ifwereplaceP1withthepathP01consistingonlyofthesinglevertexu0,thenwegetanotherwalkfromatob.Sinceu0doesnothavelabel`3,itremainstruethattheinternalverticesofthiswalkarenotneighborsof`3.HencebyProp.3,thereisawalkthatcontainsonlythemarkedvertexu0fromK.ThehardcaseiswhenjFj=2,therestoftheproofisdevotedtohandlethissituation.Wemarksomeadditionalverticesasfollows.IfjFj=2,thenscannotbelargerthan2.Furthermore,itisnotpossiblethats=1,sincethatwouldimplythattheholehasonlythreevertices`1;`22F,andP1.Therefore,(*)holeHhastwofragmentsP1andP2,whereP1isonlyasinglevertexofK.ConsideracliquetreedecompositionofG0andletxbeanodethatiscoveredbyeveryvertexofthecliqueK.Assumethatxistherootofthetreeinthedecomposition.ForeachholeHsatisfying(*),de newHtobethenodethatiscoveredbysomevertexofP2andisclosesttothenodex.ObservethatwHcannotbex:thatwouldimplythatsomevertexofP2isadjacentwitheveryvertexofK,includingP1.Letw1,:::,wrbethosenodesthatcanarisethiswayfromsomeholesatisfying(*).Althoughthenumberofholessatisfying(*)canbeexponential,foreverynodewwecancheckinpolynomialtimewhetherthereisaholeHwithwH=w:allwehavetodoistotryeverypossiblesingle-vertexpathP1inKandeverypossibleendpointsofP2,andforeachpossibilitycheckwhetherthereisasuitablepaththatcoversonlywandsomeofitsdescendants.Assumethatthenodeswiareorderedbynonincreasingdistancefromx.Weselectasubsetofthesenodesthefollowingway:wegothroughthelistw1,:::,wr,andaselectanodeifandonlyifnoneofitsdescendantsareselected.Letwi1,:::,wiqbetheselectednodes.Observethataselectednodecannotbetheancestorordescendantofsomeotherselectednode.18 Weconsidertwocases.Firstweshowthatifq�k1+k2,thenanecessarysetcanbeidenti ed.ConsidertheholesHi1,:::,Hik1+k2+1thatgiverisetothenodeswi1,:::,wik1+k2+1.ForeachholeHij,thereisapathP2inthefragmentsofthehole,denotebyPijthispath.Bythede nitionofwij,theverticesofPijcoveronlythedescendantsofwij,henceinparticulartheydonotcoveradescendantofwij0foranyj=j0.Itfollowsthatthereareatmostk1+k2+3verticesthatappearinmorethanoneoftheseholes:thevertices`1;`2andatmostk1+k2+1verticesinK.ThusbyLemma8,wecan ndanecessaryset.Assumethereforethatqk1+k2.Foreachwij,wemarkatmostk1+2k2+1verticesofK.ConsiderthoseverticesofKthathavebothlabels`1and`2.Foreverysuchvertexv,thetreecorrespondingtovhassomedistancefromnodewij.Ordertheverticessuchthatthisdistanceisnonincreasingandmarkthe rstk1+2k2+1verticesinthisordering(orallofthem,iftherearelessthank1+2k2+1suchvertices).Thusatmost(k1+k2)(k1+2k2+1)verticesaremarked.Weshowthatthemarkedverticessatisfytherequirements.LetHbeaholeinGn(X;Y)andletP1,P2bethetwofragmentsofH,whereP1consistsofasinglevertexu2K.SinceHsatis es(*),thereisanodewicorrespondingtoH.Becauseofthewaythenodesareselected,somedescendantofwi(possiblywiitself)isselected,i.e.,somewijisthedescendantofwi.VertexuisnotadjacenttoanyvertexofP2,henceudoesnotcoverwi,i.e.,thetreeofuhasnonzerodistancefromwi.Thismeansthatthetreeofuhasnonzerodistancealsofromwij.Considerthek1+2k2+1verticesmarkedwhenthenodewijwasconsidered.Ifuisnotmarked,thenthismeansthattherearek1+2k2+1verticesinKwhosetreeshavenotsmallerdistancefromwij,implyingthattheseverticesdonotcoverwieither.Atleastoneofthesek1+2k2+1verticesarenotin!(X;Y),letu02Kbesuchavertex.Nowu0isnotadjacenttoanyvertexofP2,hencewecanobtainaholeavoidinguinGn(X;Y)byreplacingP1withthesingle-vertexpathconsistingofu0only.utNowwearereadytoprovethemainlemma:Lemma19.Foreveryk1;k2,thereisaconstantck1;k2suchthateitherwecan ndanecessarysetorwecan ndanirrelevantvertexineverymaximalcliqueofsizegreaterthanck1;k2.Proof.GivenamaximalcliqueK,wemarktheverticesaccordingtoLem-mas15,16,and18.Moreover,foreach`1;`22F,considerthoseverticesthathavelabel`1,butdonothavelabel`2,andmarkk1+2k2+1ofthesevertices(iftherearelessthank1+2k2+1suchverticesforagiven`1;`2,thenallofthemaremarked).Wearguethatanyunmarkedvertexisirrelevant.Sincethenumberofmarkedverticesdependsonlyonk1;k2,thelemmafollows.Letu2Kbeanunmarkedvertex.Toshowthatuisirrelevant,assumethatXisasetofk1vertices,Yisasetofk2edges,andHisaholeinGn(X;Y)containingu.WehavetoshowthatGn(X;Y)containsaholeavoidingu.WeconstructtheholeavoidingubyreplacingthefragmentofHgoingthroughuwithsomeotherpathgoingthroughK.19 Case5 x=y=u Case1`1`1`2`2 Case2`x=`yCase6 yyuuCase3Case4y=uy=uy=uxxxxx`x`x`x`x`y`y`y`yFig.7.ThecasesintheproofofLemma19.LetF,P1,:::,PsbethefragmentsofH.Sincethepathsofthefragmentsareindependent(i.e.,theverticesontwodi erentpathsarenotneighbors),withoutlossofgeneralityitcanbeassumedthatuisinP1andonlyP1intersectsthecliqueK.LetxandybethetwoendverticesofP1.PathP1cancontainatmostoneothervertexofKbesidesu.Weconsiderseveralcasesdependingonwhichcombinationofx=y,u=x,u=y,jK\P1j=1holds(Figure7):Case1:P1consistsofonlyasinglevertex(x=y=u).Lemma18ensuresthatthereisaholeinGn(X;Y)thatdoesnotuseu.Intheremainingcasesweassumethatx=y.Moreover,withoutlossofgeneralityitcanbeassumedthatu=x.Let`xbethe(unique)labelofxinFandlet`ybethe(unique)labelofyinF.Case2:P1consistsoftwoverticesx,y=u,andP1iscompletelycontainedinK.Inthiscase`x=`y,otherwisetherewouldbeatriangleinthehole.Sinceuisnotmarked,therearek1+2k2+1markedverticesinKthathavelabel`ybutdonothavelabel`x.Atleastoneoftheseverticesarenotin!(X;Y),letu0besuchavertex.IfwereplaceP1=fx;ugwiththepathP01=fx;u0g,thenbyLemma17thereisaholenotcontainingu.IntheremainingcasesweassumewithoutlossofgeneralitythatendpointxisnotinK.Case3:x;y62K.Inthiscase,jK\P1jcanbeeither1or2(Fig.7sketchesjK\P1j=2).Itispossiblethat`x=`yandthefollowingproofworksforthat20 situationaswell.Vertexx(resp.,y)isan`x-dangerous(resp.,`y-dangerous)vertexwithrespecttoG0n(X;Y)forK,anduisawitnessforthat.Bythewaytheverticesaremarked(seeLemma15)thereisamarkedwitnessux(resp.,uy)inKn!(X;Y)forx(resp.,y);letPx(resp.,Py)bethecorrespondingwitnesspathinG0n(X[u;Y).Weconsiderthreecases:{Pxnxcontainsavertexy0thathaslabel`y.(NoticethatPxnxcontainsnovertexwithlabel`x,hencethiscaseisnotpossibleif`x=`y).Lety0bethe rstvertexonPx(startingfromx)withlabel`y.LetP01bethesubpathofPxfromxtoy0.NowF,P01,P2,:::,PssatisfytherequirementsofLemma17,henceGn(X;Y)hasaholedisjointfromu.{ThecasewhenPynycontainsavertexthathaslabel`xfollowsbysymmetry.{AssumethatPxnxcontainsnovertexwithlabel`yandPynycontainsnovertexwithlabel`x.LetP01bethepathxPxuxuyPyy;fromux;uy2Kn!(X;Y)itfollowsthatedgeux;uy62Y,henceP01isfullycontainedinGn(X[u;Y).ItiseasytoseethatF,P01,P2,:::,PssatisfytherequirementsofLemma17,henceGn(X;Y)hasaholedisjointfromu.Intheremainingcases,weassumethatx62Kandy2K.Case4:x62K,y2K,u=y(hencejK\P1j=2).Vertexxisan`x-dangerousvertexforK,anduisawitnessforxinG0n(X;Y).Bythewaytheverticesaremarked(seeLemma15)thereisanotherwitnessu02Kn!(X;Y);letPxbethewitnesspathcorrespondingtou0.LetP01bethepathxPxu0y,sinceu02Kn!(X;Y),theedgeu0yisinG0n(X;Y).NowF,P01,P2,:::,PssatisfyLemma17,thusthereisaholenotcontainingu.Case5:x62K,y=u,`x=`y.Inthiscase,jK\P1jcanbeeither1or2(Fig.7sketchesjK\P1j=1).Vertexxisan`x-dangerousvertexforK,anduisawitnessforxinG0n(X;Y).Bythewaytheverticesaremarked(seeLemma15)thereisanotherwitnessu02Kn(X;Y);letPxbethewitnesspathcorrespondingtou0.Sinceuisnotmarked,therearek1+2k2+1markedverticesinKthathavelabel`ybutdonothavelabel`x.Atleastoneoftheseverticesarenotin!(X;Y),lety0besuchavertex.LetP01bethepathxPxu0y0.NowtheconditionsinLemma17aresatis ed,hencethereisaholenotcontainingu.Case6:x62K,y=u,`x=`y.Inthiscase,jK\P1jcanbeeither1or2(Fig.7sketchesjK\P1j=2).Vertexxisan`x-dangerousvertexforK,anduisawitnessforxinG0n(X;Y).Bythewaytheverticesaremarked(seeLemma15)thereisanotherwitnessu02Kn!(X;Y);letPxbethewitnesspathcorrespondingtou0.ItisclearthatF;P01satisfyLemma17.ut6ConclusionsWehaveshownthatChordalDeletionis xed-parametertractable.Theproblemwasformulatedinawaythatincludesboththevertexandedgedeletionversions:k1verticesandk2edgeshavetobedeletedtomakethegraphchordal.Thisformulationcouldbeconvenientforthestudyofotherdeletionproblemsaswell.Ouralgorithmdoesnotprovideaproblemkernelinanobviousway,thus21 itisanaturalopenquestionwhetherthereisproblemkernelofpolynomialsizefortheproblem.Theparameterizedcomplexityliteraturecontainsagrowingnumberof xed-parametertractabilityresultsforvariousdeletionproblems.SomeoftheseresultsfollowimmediatelyfromthegraphminorstheoryofRobertsonandSeymour(see[1]),whilesomeoftheresultsaremoreconcretealgorithms[6,24,22].Recently,ahardnessresulthasbeenobtained,whichshowsthatwecannotexpectthatthedeletionproblemisFPTforeverynaturalgraphclass:Lokshtanovhasshownthatdeletingkedges/verticestomakethegraphwheel-freeisW[2]-hard[20].Thus,despitethesimilarityofwheel-freeandchordal(i.e.,hole-free)graphs,thedeletionproblemisW[2]-hardfortheformerandFPTforthelatter.Anaturalnextstepwouldbetostudythedeletionproblemforintervalgraphs.The(edge)completionproblemforintervalgraphswasshowntobeFPTbyHeggernesetal.[14].Thealgorithmismuchmoreinvolvedthanchordalcompletion.First,alltheminimalchordalcompletionsareenumerated(usingthealgorithmdiscussedintheintroduction),thustheproblemisreducedtochordalgraphsthatarenotintervalgraphs.Thealgorithmisbasedonathoroughunderstandingofsuchgraphs.Itisnotclearwhetherasimilarstrategycouldbeusedfortheintervaldeletionproblem:thealgorithmpresentedinthispapercannotbemodi edsuchthatitenumeratesalltheminimalsolutions,infact,itispossiblethattherearenO(k)minimalsolutions.Thusitisnotsucienttosolvetheintervaldeletionproblemonchordalgraphs.References1.I.Adler,M.Grohe,andS.Kreutzer.Computingexcludedminors.InSODA'08:ProceedingsofthenineteenthannualACM-SIAMsymposiumonDiscreteal-gorithms,pages641{650,Philadelphia,PA,USA,2008.SocietyforIndustrialandAppliedMathematics.2.H.L.Bodlaender.Atouristguidethroughtreewidth.ActaCybernet.,11(1-2):1{21,1993.3.L.Cai.Fixed-parametertractabilityofgraphmodi cationproblemsforhereditaryproperties.Inform.Process.Lett.,58(4):171{176,1996.4.L.Cai.Parameterizedcomplexityofvertexcolouring.DiscreteAppl.Math.,127:415{429,2003.5.B.Courcelle.Graphrewriting:analgebraicandlogicapproach.InHandbookoftheoreticalcomputerscience,Vol.B,pages193{242.Elsevier,Amsterdam,1990.6.F.Dehne,M.Fellows,M.Langston,F.Rosamond,andK.Stevens.AnO(2O(k)n3)FPTalgorithmfortheundirectedfeedbackvertexsetproblem.TheoryComput.Syst.,41(3):479{492,2007.7.M.Dom,J.Guo,F.Hu ner,R.Niedermeier,andA.Tru.Fixed-parametertractabilityresultsforfeedbacksetproblemsintournaments.InAlgorithmsandcomplexity,volume3998ofLectureNotesinComputerScience,pages320{331.Springer,Berlin,2006.8.R.G.DowneyandM.R.Fellows.ParameterizedComplexity.MonographsinComputerScience.Springer,NewYork,1999.9.J.FlumandM.Grohe.ParameterizedComplexityTheory.TextsinTheoreticalComputerScience.AnEATCSSeries.Springer,Berlin,2006.22 10.T.Gallai.Maximum-minimumSatzeundverallgemeinerteFaktorenvonGraphen.ActaMath.Acad.Sci.Hungar.,12:131{173,1961.11.M.C.Golumbic.Algorithmicgraphtheoryandperfectgraphs.AcademicPress,NewYork,1980.12.M.Grohe.Computingcrossingnumbersinquadratictime.J.Comput.SystemSci.,68(2):285{302,2004.13.J.Guo,J.Gramm,F.Hu ner,R.Niedermeier,andS.Wernicke.Compression-based xed-parameteralgorithmsforfeedbackvertexsetandedgebipartization.J.Comput.SystemSci.,72(8):1386{1396,2006.14.P.Heggernes,C.Paul,J.A.Telle,andY.Villanger.Intervalcompletionwithfewedges.InSTOC'07:Proceedingsofthethirty-ninthannualACMsymposiumonTheoryofcomputing,pages374{381,NewYork,NY,USA,2007.ACM.15.M.L.Ho.Lineartimealgorithmsforgraphsclosetochordalgraphs,2003.M.PhilThesis,DepartmentofComputerScienceandEngineering,TheChineseUniversityofHongKong.16.H.Kaplan,R.Shamir,andR.E.Tarjan.Tractabilityofparameterizedcomple-tionproblemsonchordal,stronglychordal,andproperintervalgraphs.SIAMJ.Comput.,28(5):1906{1922,1999.17.J.Kleinberg.Detectinganetworkfailure.InternetMath.,1(1):37{55,2003.18.T.Kloks.Treewidth,volume842ofLectureNotesinComputerScience.Springer,Berlin,1994.19.J.M.LewisandM.Yannakakis.Thenode-deletionproblemforhereditaryprop-ertiesisNP-complete.J.Comput.SystemSci.,20(2):219{230,1980.20.D.Lokshtanov.Wheel-freedeletionisW[2]-hard.InProceedingsoftheInterna-tionalWorkshoponParameterizedandExactComputation(IWPEC2008),volume5018ofLectureNotesinComputerScience,pages141{147.Springer,2008.21.D.Marx.Parameterizedcoloringproblemsonchordalgraphs.Theor.Comput.Sci.,351(3):407{424,2006.22.D.MarxandI.Schlotter.Obtainingaplanargraphbyvertexdeletion.In33ndInternationalWorkshoponGraph-TheoreticConceptsinComputerScience(WG2007),volume4769ofLectureNotesinComputerScience,pages292{303.Springer,Berlin,2007.23.A.Natanzon,R.Shamir,andR.Sharan.Complexityclassi cationofsomeedgemodi cationproblems.DiscreteAppl.Math.,113(1):109{128,2001.24.B.Reed,K.Smith,andA.Vetta.Findingoddcycletransversals.OperationsResearchLetters,32(4):299{301,2004.25.N.RobertsonandP.D.Seymour.Graphminors.XIII.Thedisjointpathsproblem.J.Combin.TheorySer.B,63(1):65{110,1995.26.D.J.Rose,R.E.Tarjan,andG.S.Lueker.Algorithmicaspectsofvertexelimi-nationongraphs.SIAMJ.Comput.,5(2):266{283,1976.27.M.Yannakakis.Computingtheminimum ll-inisNP-complete.SIAMJ.AlgebraicDiscreteMethods,2(1):77{79,1981.23